Properties

Label 372.2.g.b.247.3
Level $372$
Weight $2$
Character 372.247
Analytic conductor $2.970$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [372,2,Mod(247,372)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("372.247"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(372, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 372 = 2^{2} \cdot 3 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 372.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.97043495519\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{14} - x^{13} - 2 x^{12} + 5 x^{11} + 4 x^{10} - 10 x^{9} - 20 x^{7} + 16 x^{6} + 40 x^{5} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 247.3
Root \(-1.31420 + 0.522370i\) of defining polynomial
Character \(\chi\) \(=\) 372.247
Dual form 372.2.g.b.247.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.31420 - 0.522370i) q^{2} +1.00000 q^{3} +(1.45426 + 1.37300i) q^{4} +3.41432 q^{5} +(-1.31420 - 0.522370i) q^{6} -2.57432i q^{7} +(-1.19398 - 2.56406i) q^{8} +1.00000 q^{9} +(-4.48711 - 1.78354i) q^{10} -0.618251 q^{11} +(1.45426 + 1.37300i) q^{12} -6.01558i q^{13} +(-1.34475 + 3.38318i) q^{14} +3.41432 q^{15} +(0.229736 + 3.99340i) q^{16} +6.56767i q^{17} +(-1.31420 - 0.522370i) q^{18} +0.164649i q^{19} +(4.96530 + 4.68787i) q^{20} -2.57432i q^{21} +(0.812507 + 0.322956i) q^{22} -6.90297 q^{23} +(-1.19398 - 2.56406i) q^{24} +6.65758 q^{25} +(-3.14236 + 7.90569i) q^{26} +1.00000 q^{27} +(3.53455 - 3.74373i) q^{28} +2.64515i q^{29} +(-4.48711 - 1.78354i) q^{30} +(5.56329 + 0.223126i) q^{31} +(1.78411 - 5.36814i) q^{32} -0.618251 q^{33} +(3.43076 - 8.63126i) q^{34} -8.78956i q^{35} +(1.45426 + 1.37300i) q^{36} +2.29489i q^{37} +(0.0860078 - 0.216382i) q^{38} -6.01558i q^{39} +(-4.07662 - 8.75453i) q^{40} +5.03933 q^{41} +(-1.34475 + 3.38318i) q^{42} -8.46494 q^{43} +(-0.899096 - 0.848859i) q^{44} +3.41432 q^{45} +(9.07191 + 3.60591i) q^{46} -8.40212i q^{47} +(0.229736 + 3.99340i) q^{48} +0.372864 q^{49} +(-8.74942 - 3.47772i) q^{50} +6.56767i q^{51} +(8.25940 - 8.74821i) q^{52} +4.86996i q^{53} +(-1.31420 - 0.522370i) q^{54} -2.11091 q^{55} +(-6.60073 + 3.07368i) q^{56} +0.164649i q^{57} +(1.38175 - 3.47627i) q^{58} +13.1432i q^{59} +(4.96530 + 4.68787i) q^{60} -6.27850i q^{61} +(-7.19474 - 3.19933i) q^{62} -2.57432i q^{63} +(-5.14884 + 6.12286i) q^{64} -20.5391i q^{65} +(0.812507 + 0.322956i) q^{66} -1.25147i q^{67} +(-9.01742 + 9.55110i) q^{68} -6.90297 q^{69} +(-4.59141 + 11.5513i) q^{70} +13.7892i q^{71} +(-1.19398 - 2.56406i) q^{72} +5.21502i q^{73} +(1.19878 - 3.01595i) q^{74} +6.65758 q^{75} +(-0.226064 + 0.239442i) q^{76} +1.59158i q^{77} +(-3.14236 + 7.90569i) q^{78} +2.23797 q^{79} +(0.784392 + 13.6347i) q^{80} +1.00000 q^{81} +(-6.62271 - 2.63240i) q^{82} +11.8591 q^{83} +(3.53455 - 3.74373i) q^{84} +22.4241i q^{85} +(11.1246 + 4.42183i) q^{86} +2.64515i q^{87} +(0.738176 + 1.58523i) q^{88} +4.47064i q^{89} +(-4.48711 - 1.78354i) q^{90} -15.4860 q^{91} +(-10.0387 - 9.47779i) q^{92} +(5.56329 + 0.223126i) q^{93} +(-4.38902 + 11.0421i) q^{94} +0.562165i q^{95} +(1.78411 - 5.36814i) q^{96} -9.71032 q^{97} +(-0.490019 - 0.194773i) q^{98} -0.618251 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{3} + 2 q^{4} + 3 q^{8} + 16 q^{9} - 5 q^{10} + 4 q^{11} + 2 q^{12} + 5 q^{14} + 10 q^{16} - q^{20} - 16 q^{23} + 3 q^{24} + 12 q^{25} - 10 q^{26} + 16 q^{27} + 3 q^{28} - 5 q^{30} - 6 q^{31}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/372\mathbb{Z}\right)^\times\).

\(n\) \(125\) \(187\) \(313\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.31420 0.522370i −0.929282 0.369372i
\(3\) 1.00000 0.577350
\(4\) 1.45426 + 1.37300i 0.727129 + 0.686501i
\(5\) 3.41432 1.52693 0.763465 0.645849i \(-0.223496\pi\)
0.763465 + 0.645849i \(0.223496\pi\)
\(6\) −1.31420 0.522370i −0.536521 0.213257i
\(7\) 2.57432i 0.973002i −0.873680 0.486501i \(-0.838273\pi\)
0.873680 0.486501i \(-0.161727\pi\)
\(8\) −1.19398 2.56406i −0.422134 0.906533i
\(9\) 1.00000 0.333333
\(10\) −4.48711 1.78354i −1.41895 0.564005i
\(11\) −0.618251 −0.186410 −0.0932048 0.995647i \(-0.529711\pi\)
−0.0932048 + 0.995647i \(0.529711\pi\)
\(12\) 1.45426 + 1.37300i 0.419808 + 0.396351i
\(13\) 6.01558i 1.66842i −0.551446 0.834211i \(-0.685924\pi\)
0.551446 0.834211i \(-0.314076\pi\)
\(14\) −1.34475 + 3.38318i −0.359399 + 0.904193i
\(15\) 3.41432 0.881574
\(16\) 0.229736 + 3.99340i 0.0574340 + 0.998349i
\(17\) 6.56767i 1.59289i 0.604708 + 0.796447i \(0.293290\pi\)
−0.604708 + 0.796447i \(0.706710\pi\)
\(18\) −1.31420 0.522370i −0.309761 0.123124i
\(19\) 0.164649i 0.0377731i 0.999822 + 0.0188866i \(0.00601214\pi\)
−0.999822 + 0.0188866i \(0.993988\pi\)
\(20\) 4.96530 + 4.68787i 1.11028 + 1.04824i
\(21\) 2.57432i 0.561763i
\(22\) 0.812507 + 0.322956i 0.173227 + 0.0688544i
\(23\) −6.90297 −1.43937 −0.719685 0.694301i \(-0.755714\pi\)
−0.719685 + 0.694301i \(0.755714\pi\)
\(24\) −1.19398 2.56406i −0.243719 0.523387i
\(25\) 6.65758 1.33152
\(26\) −3.14236 + 7.90569i −0.616268 + 1.55043i
\(27\) 1.00000 0.192450
\(28\) 3.53455 3.74373i 0.667967 0.707499i
\(29\) 2.64515i 0.491193i 0.969372 + 0.245596i \(0.0789838\pi\)
−0.969372 + 0.245596i \(0.921016\pi\)
\(30\) −4.48711 1.78354i −0.819230 0.325628i
\(31\) 5.56329 + 0.223126i 0.999197 + 0.0400746i
\(32\) 1.78411 5.36814i 0.315389 0.948962i
\(33\) −0.618251 −0.107624
\(34\) 3.43076 8.63126i 0.588370 1.48025i
\(35\) 8.78956i 1.48571i
\(36\) 1.45426 + 1.37300i 0.242376 + 0.228834i
\(37\) 2.29489i 0.377278i 0.982046 + 0.188639i \(0.0604076\pi\)
−0.982046 + 0.188639i \(0.939592\pi\)
\(38\) 0.0860078 0.216382i 0.0139523 0.0351019i
\(39\) 6.01558i 0.963264i
\(40\) −4.07662 8.75453i −0.644570 1.38421i
\(41\) 5.03933 0.787012 0.393506 0.919322i \(-0.371262\pi\)
0.393506 + 0.919322i \(0.371262\pi\)
\(42\) −1.34475 + 3.38318i −0.207499 + 0.522036i
\(43\) −8.46494 −1.29089 −0.645445 0.763807i \(-0.723328\pi\)
−0.645445 + 0.763807i \(0.723328\pi\)
\(44\) −0.899096 0.848859i −0.135544 0.127970i
\(45\) 3.41432 0.508977
\(46\) 9.07191 + 3.60591i 1.33758 + 0.531662i
\(47\) 8.40212i 1.22557i −0.790248 0.612787i \(-0.790048\pi\)
0.790248 0.612787i \(-0.209952\pi\)
\(48\) 0.229736 + 3.99340i 0.0331595 + 0.576397i
\(49\) 0.372864 0.0532663
\(50\) −8.74942 3.47772i −1.23735 0.491824i
\(51\) 6.56767i 0.919658i
\(52\) 8.25940 8.74821i 1.14537 1.21316i
\(53\) 4.86996i 0.668940i 0.942406 + 0.334470i \(0.108557\pi\)
−0.942406 + 0.334470i \(0.891443\pi\)
\(54\) −1.31420 0.522370i −0.178840 0.0710856i
\(55\) −2.11091 −0.284634
\(56\) −6.60073 + 3.07368i −0.882059 + 0.410738i
\(57\) 0.164649i 0.0218083i
\(58\) 1.38175 3.47627i 0.181433 0.456456i
\(59\) 13.1432i 1.71110i 0.517716 + 0.855552i \(0.326782\pi\)
−0.517716 + 0.855552i \(0.673218\pi\)
\(60\) 4.96530 + 4.68787i 0.641018 + 0.605201i
\(61\) 6.27850i 0.803880i −0.915666 0.401940i \(-0.868336\pi\)
0.915666 0.401940i \(-0.131664\pi\)
\(62\) −7.19474 3.19933i −0.913733 0.406315i
\(63\) 2.57432i 0.324334i
\(64\) −5.14884 + 6.12286i −0.643605 + 0.765358i
\(65\) 20.5391i 2.54756i
\(66\) 0.812507 + 0.322956i 0.100013 + 0.0397531i
\(67\) 1.25147i 0.152891i −0.997074 0.0764454i \(-0.975643\pi\)
0.997074 0.0764454i \(-0.0243571\pi\)
\(68\) −9.01742 + 9.55110i −1.09352 + 1.15824i
\(69\) −6.90297 −0.831020
\(70\) −4.59141 + 11.5513i −0.548778 + 1.38064i
\(71\) 13.7892i 1.63647i 0.574883 + 0.818236i \(0.305048\pi\)
−0.574883 + 0.818236i \(0.694952\pi\)
\(72\) −1.19398 2.56406i −0.140711 0.302178i
\(73\) 5.21502i 0.610372i 0.952293 + 0.305186i \(0.0987187\pi\)
−0.952293 + 0.305186i \(0.901281\pi\)
\(74\) 1.19878 3.01595i 0.139356 0.350598i
\(75\) 6.65758 0.768752
\(76\) −0.226064 + 0.239442i −0.0259313 + 0.0274659i
\(77\) 1.59158i 0.181377i
\(78\) −3.14236 + 7.90569i −0.355802 + 0.895143i
\(79\) 2.23797 0.251792 0.125896 0.992043i \(-0.459819\pi\)
0.125896 + 0.992043i \(0.459819\pi\)
\(80\) 0.784392 + 13.6347i 0.0876977 + 1.52441i
\(81\) 1.00000 0.111111
\(82\) −6.62271 2.63240i −0.731356 0.290700i
\(83\) 11.8591 1.30170 0.650852 0.759205i \(-0.274412\pi\)
0.650852 + 0.759205i \(0.274412\pi\)
\(84\) 3.53455 3.74373i 0.385651 0.408474i
\(85\) 22.4241i 2.43224i
\(86\) 11.1246 + 4.42183i 1.19960 + 0.476818i
\(87\) 2.64515i 0.283590i
\(88\) 0.738176 + 1.58523i 0.0786899 + 0.168986i
\(89\) 4.47064i 0.473887i 0.971523 + 0.236943i \(0.0761456\pi\)
−0.971523 + 0.236943i \(0.923854\pi\)
\(90\) −4.48711 1.78354i −0.472983 0.188002i
\(91\) −15.4860 −1.62338
\(92\) −10.0387 9.47779i −1.04661 0.988128i
\(93\) 5.56329 + 0.223126i 0.576886 + 0.0231371i
\(94\) −4.38902 + 11.0421i −0.452693 + 1.13890i
\(95\) 0.562165i 0.0576769i
\(96\) 1.78411 5.36814i 0.182090 0.547884i
\(97\) −9.71032 −0.985934 −0.492967 0.870048i \(-0.664088\pi\)
−0.492967 + 0.870048i \(0.664088\pi\)
\(98\) −0.490019 0.194773i −0.0494994 0.0196750i
\(99\) −0.618251 −0.0621365
\(100\) 9.68185 + 9.14087i 0.968185 + 0.914087i
\(101\) −5.59956 −0.557177 −0.278588 0.960411i \(-0.589867\pi\)
−0.278588 + 0.960411i \(0.589867\pi\)
\(102\) 3.43076 8.63126i 0.339696 0.854622i
\(103\) 9.05162i 0.891883i 0.895062 + 0.445941i \(0.147131\pi\)
−0.895062 + 0.445941i \(0.852869\pi\)
\(104\) −15.4243 + 7.18246i −1.51248 + 0.704298i
\(105\) 8.78956i 0.857773i
\(106\) 2.54392 6.40011i 0.247087 0.621634i
\(107\) 5.56176i 0.537676i −0.963185 0.268838i \(-0.913360\pi\)
0.963185 0.268838i \(-0.0866396\pi\)
\(108\) 1.45426 + 1.37300i 0.139936 + 0.132117i
\(109\) −1.25068 −0.119793 −0.0598966 0.998205i \(-0.519077\pi\)
−0.0598966 + 0.998205i \(0.519077\pi\)
\(110\) 2.77416 + 1.10267i 0.264506 + 0.105136i
\(111\) 2.29489i 0.217822i
\(112\) 10.2803 0.591415i 0.971396 0.0558834i
\(113\) −16.1132 −1.51580 −0.757900 0.652370i \(-0.773775\pi\)
−0.757900 + 0.652370i \(0.773775\pi\)
\(114\) 0.0860078 0.216382i 0.00805537 0.0202661i
\(115\) −23.5690 −2.19782
\(116\) −3.63180 + 3.84674i −0.337204 + 0.357161i
\(117\) 6.01558i 0.556141i
\(118\) 6.86564 17.2729i 0.632033 1.59010i
\(119\) 16.9073 1.54989
\(120\) −4.07662 8.75453i −0.372142 0.799176i
\(121\) −10.6178 −0.965251
\(122\) −3.27970 + 8.25123i −0.296930 + 0.747031i
\(123\) 5.03933 0.454381
\(124\) 7.78411 + 7.96289i 0.699034 + 0.715089i
\(125\) 5.65953 0.506203
\(126\) −1.34475 + 3.38318i −0.119800 + 0.301398i
\(127\) 11.1482 0.989241 0.494620 0.869109i \(-0.335307\pi\)
0.494620 + 0.869109i \(0.335307\pi\)
\(128\) 9.96502 5.35708i 0.880792 0.473503i
\(129\) −8.46494 −0.745296
\(130\) −10.7290 + 26.9926i −0.940998 + 2.36741i
\(131\) 9.20268i 0.804042i −0.915631 0.402021i \(-0.868308\pi\)
0.915631 0.402021i \(-0.131692\pi\)
\(132\) −0.899096 0.848859i −0.0782563 0.0738837i
\(133\) 0.423860 0.0367533
\(134\) −0.653728 + 1.64468i −0.0564735 + 0.142079i
\(135\) 3.41432 0.293858
\(136\) 16.8399 7.84164i 1.44401 0.672415i
\(137\) 18.7908i 1.60541i −0.596379 0.802703i \(-0.703394\pi\)
0.596379 0.802703i \(-0.296606\pi\)
\(138\) 9.07191 + 3.60591i 0.772252 + 0.306955i
\(139\) −2.89057 −0.245175 −0.122587 0.992458i \(-0.539119\pi\)
−0.122587 + 0.992458i \(0.539119\pi\)
\(140\) 12.0681 12.7823i 1.01994 1.08030i
\(141\) 8.40212i 0.707586i
\(142\) 7.20305 18.1218i 0.604466 1.52074i
\(143\) 3.71914i 0.311010i
\(144\) 0.229736 + 3.99340i 0.0191447 + 0.332783i
\(145\) 9.03140i 0.750017i
\(146\) 2.72417 6.85360i 0.225454 0.567208i
\(147\) 0.372864 0.0307533
\(148\) −3.15089 + 3.33737i −0.259002 + 0.274330i
\(149\) −11.1299 −0.911800 −0.455900 0.890031i \(-0.650682\pi\)
−0.455900 + 0.890031i \(0.650682\pi\)
\(150\) −8.74942 3.47772i −0.714387 0.283955i
\(151\) −14.7964 −1.20411 −0.602057 0.798453i \(-0.705652\pi\)
−0.602057 + 0.798453i \(0.705652\pi\)
\(152\) 0.422171 0.196587i 0.0342426 0.0159453i
\(153\) 6.56767i 0.530965i
\(154\) 0.831392 2.09165i 0.0669955 0.168550i
\(155\) 18.9949 + 0.761824i 1.52570 + 0.0611912i
\(156\) 8.25940 8.74821i 0.661281 0.700417i
\(157\) 16.9165 1.35009 0.675043 0.737778i \(-0.264125\pi\)
0.675043 + 0.737778i \(0.264125\pi\)
\(158\) −2.94115 1.16905i −0.233985 0.0930047i
\(159\) 4.86996i 0.386213i
\(160\) 6.09153 18.3286i 0.481578 1.44900i
\(161\) 17.7705i 1.40051i
\(162\) −1.31420 0.522370i −0.103254 0.0410413i
\(163\) 24.2254i 1.89748i 0.316056 + 0.948741i \(0.397641\pi\)
−0.316056 + 0.948741i \(0.602359\pi\)
\(164\) 7.32849 + 6.91901i 0.572259 + 0.540284i
\(165\) −2.11091 −0.164334
\(166\) −15.5853 6.19484i −1.20965 0.480813i
\(167\) 3.54747 0.274511 0.137256 0.990536i \(-0.456172\pi\)
0.137256 + 0.990536i \(0.456172\pi\)
\(168\) −6.60073 + 3.07368i −0.509257 + 0.237139i
\(169\) −23.1872 −1.78363
\(170\) 11.7137 29.4699i 0.898400 2.26024i
\(171\) 0.164649i 0.0125910i
\(172\) −12.3102 11.6224i −0.938644 0.886197i
\(173\) 1.31424 0.0999199 0.0499599 0.998751i \(-0.484091\pi\)
0.0499599 + 0.998751i \(0.484091\pi\)
\(174\) 1.38175 3.47627i 0.104750 0.263535i
\(175\) 17.1388i 1.29557i
\(176\) −0.142034 2.46892i −0.0107062 0.186102i
\(177\) 13.1432i 0.987907i
\(178\) 2.33533 5.87532i 0.175040 0.440374i
\(179\) −11.7430 −0.877716 −0.438858 0.898557i \(-0.644617\pi\)
−0.438858 + 0.898557i \(0.644617\pi\)
\(180\) 4.96530 + 4.68787i 0.370092 + 0.349413i
\(181\) 9.34059i 0.694281i −0.937813 0.347140i \(-0.887153\pi\)
0.937813 0.347140i \(-0.112847\pi\)
\(182\) 20.3518 + 8.08945i 1.50858 + 0.599630i
\(183\) 6.27850i 0.464120i
\(184\) 8.24198 + 17.6997i 0.607607 + 1.30484i
\(185\) 7.83550i 0.576077i
\(186\) −7.19474 3.19933i −0.527544 0.234586i
\(187\) 4.06047i 0.296931i
\(188\) 11.5361 12.2189i 0.841358 0.891151i
\(189\) 2.57432i 0.187254i
\(190\) 0.293658 0.738799i 0.0213042 0.0535981i
\(191\) 2.76140i 0.199808i 0.994997 + 0.0999039i \(0.0318535\pi\)
−0.994997 + 0.0999039i \(0.968146\pi\)
\(192\) −5.14884 + 6.12286i −0.371586 + 0.441879i
\(193\) 1.08692 0.0782380 0.0391190 0.999235i \(-0.487545\pi\)
0.0391190 + 0.999235i \(0.487545\pi\)
\(194\) 12.7613 + 5.07238i 0.916210 + 0.364176i
\(195\) 20.5391i 1.47084i
\(196\) 0.542240 + 0.511942i 0.0387315 + 0.0365673i
\(197\) 14.7312i 1.04955i −0.851240 0.524777i \(-0.824149\pi\)
0.851240 0.524777i \(-0.175851\pi\)
\(198\) 0.812507 + 0.322956i 0.0577423 + 0.0229515i
\(199\) 15.9168 1.12832 0.564158 0.825667i \(-0.309201\pi\)
0.564158 + 0.825667i \(0.309201\pi\)
\(200\) −7.94900 17.0705i −0.562079 1.20706i
\(201\) 1.25147i 0.0882716i
\(202\) 7.35895 + 2.92504i 0.517774 + 0.205805i
\(203\) 6.80948 0.477932
\(204\) −9.01742 + 9.55110i −0.631346 + 0.668710i
\(205\) 17.2059 1.20171
\(206\) 4.72830 11.8957i 0.329436 0.828810i
\(207\) −6.90297 −0.479790
\(208\) 24.0226 1.38200i 1.66567 0.0958242i
\(209\) 0.101794i 0.00704127i
\(210\) −4.59141 + 11.5513i −0.316837 + 0.797113i
\(211\) 4.78985i 0.329747i −0.986315 0.164874i \(-0.947278\pi\)
0.986315 0.164874i \(-0.0527216\pi\)
\(212\) −6.68645 + 7.08218i −0.459228 + 0.486406i
\(213\) 13.7892i 0.944817i
\(214\) −2.90530 + 7.30928i −0.198602 + 0.499652i
\(215\) −28.9020 −1.97110
\(216\) −1.19398 2.56406i −0.0812398 0.174462i
\(217\) 0.574399 14.3217i 0.0389927 0.972221i
\(218\) 1.64364 + 0.653317i 0.111322 + 0.0442482i
\(219\) 5.21502i 0.352398i
\(220\) −3.06980 2.89828i −0.206966 0.195402i
\(221\) 39.5084 2.65762
\(222\) 1.19878 3.01595i 0.0804571 0.202418i
\(223\) −1.54024 −0.103142 −0.0515710 0.998669i \(-0.516423\pi\)
−0.0515710 + 0.998669i \(0.516423\pi\)
\(224\) −13.8193 4.59288i −0.923343 0.306875i
\(225\) 6.65758 0.443839
\(226\) 21.1760 + 8.41705i 1.40861 + 0.559894i
\(227\) 6.94451i 0.460924i −0.973081 0.230462i \(-0.925976\pi\)
0.973081 0.230462i \(-0.0740237\pi\)
\(228\) −0.226064 + 0.239442i −0.0149714 + 0.0158575i
\(229\) 27.0602i 1.78819i −0.447882 0.894093i \(-0.647821\pi\)
0.447882 0.894093i \(-0.352179\pi\)
\(230\) 30.9744 + 12.3117i 2.04239 + 0.811811i
\(231\) 1.59158i 0.104718i
\(232\) 6.78234 3.15825i 0.445282 0.207349i
\(233\) −19.3200 −1.26570 −0.632848 0.774276i \(-0.718114\pi\)
−0.632848 + 0.774276i \(0.718114\pi\)
\(234\) −3.14236 + 7.90569i −0.205423 + 0.516811i
\(235\) 28.6875i 1.87137i
\(236\) −18.0457 + 19.1137i −1.17467 + 1.24419i
\(237\) 2.23797 0.145372
\(238\) −22.2196 8.83188i −1.44029 0.572485i
\(239\) −25.3977 −1.64284 −0.821421 0.570322i \(-0.806818\pi\)
−0.821421 + 0.570322i \(0.806818\pi\)
\(240\) 0.784392 + 13.6347i 0.0506323 + 0.880119i
\(241\) 11.8873i 0.765729i 0.923804 + 0.382865i \(0.125062\pi\)
−0.923804 + 0.382865i \(0.874938\pi\)
\(242\) 13.9539 + 5.54641i 0.896991 + 0.356536i
\(243\) 1.00000 0.0641500
\(244\) 8.62039 9.13057i 0.551864 0.584525i
\(245\) 1.27308 0.0813339
\(246\) −6.62271 2.63240i −0.422248 0.167836i
\(247\) 0.990460 0.0630215
\(248\) −6.07033 14.5310i −0.385466 0.922722i
\(249\) 11.8591 0.751539
\(250\) −7.43776 2.95637i −0.470406 0.186977i
\(251\) 20.5641 1.29800 0.648998 0.760790i \(-0.275188\pi\)
0.648998 + 0.760790i \(0.275188\pi\)
\(252\) 3.53455 3.74373i 0.222656 0.235833i
\(253\) 4.26777 0.268312
\(254\) −14.6510 5.82348i −0.919283 0.365397i
\(255\) 22.4241i 1.40425i
\(256\) −15.8944 + 1.83485i −0.993403 + 0.114678i
\(257\) −13.0118 −0.811655 −0.405827 0.913950i \(-0.633017\pi\)
−0.405827 + 0.913950i \(0.633017\pi\)
\(258\) 11.1246 + 4.42183i 0.692590 + 0.275291i
\(259\) 5.90779 0.367092
\(260\) 28.2002 29.8692i 1.74890 1.85241i
\(261\) 2.64515i 0.163731i
\(262\) −4.80721 + 12.0942i −0.296990 + 0.747181i
\(263\) −0.105475 −0.00650386 −0.00325193 0.999995i \(-0.501035\pi\)
−0.00325193 + 0.999995i \(0.501035\pi\)
\(264\) 0.738176 + 1.58523i 0.0454316 + 0.0975644i
\(265\) 16.6276i 1.02142i
\(266\) −0.557038 0.221412i −0.0341542 0.0135756i
\(267\) 4.47064i 0.273599i
\(268\) 1.71826 1.81995i 0.104960 0.111171i
\(269\) 0.617529i 0.0376514i −0.999823 0.0188257i \(-0.994007\pi\)
0.999823 0.0188257i \(-0.00599276\pi\)
\(270\) −4.48711 1.78354i −0.273077 0.108543i
\(271\) 8.88861 0.539945 0.269972 0.962868i \(-0.412985\pi\)
0.269972 + 0.962868i \(0.412985\pi\)
\(272\) −26.2273 + 1.50883i −1.59027 + 0.0914863i
\(273\) −15.4860 −0.937258
\(274\) −9.81575 + 24.6949i −0.592991 + 1.49187i
\(275\) −4.11606 −0.248208
\(276\) −10.0387 9.47779i −0.604259 0.570496i
\(277\) 27.3650i 1.64420i 0.569340 + 0.822102i \(0.307199\pi\)
−0.569340 + 0.822102i \(0.692801\pi\)
\(278\) 3.79879 + 1.50995i 0.227836 + 0.0905605i
\(279\) 5.56329 + 0.223126i 0.333066 + 0.0133582i
\(280\) −22.5370 + 10.4945i −1.34684 + 0.627168i
\(281\) −12.1221 −0.723145 −0.361572 0.932344i \(-0.617760\pi\)
−0.361572 + 0.932344i \(0.617760\pi\)
\(282\) −4.38902 + 11.0421i −0.261362 + 0.657547i
\(283\) 10.1449i 0.603053i 0.953458 + 0.301526i \(0.0974961\pi\)
−0.953458 + 0.301526i \(0.902504\pi\)
\(284\) −18.9325 + 20.0530i −1.12344 + 1.18993i
\(285\) 0.562165i 0.0332998i
\(286\) 1.94277 4.88770i 0.114878 0.289016i
\(287\) 12.9729i 0.765764i
\(288\) 1.78411 5.36814i 0.105130 0.316321i
\(289\) −26.1343 −1.53731
\(290\) 4.71774 11.8691i 0.277035 0.696977i
\(291\) −9.71032 −0.569229
\(292\) −7.16023 + 7.58399i −0.419021 + 0.443819i
\(293\) 10.5694 0.617473 0.308737 0.951148i \(-0.400094\pi\)
0.308737 + 0.951148i \(0.400094\pi\)
\(294\) −0.490019 0.194773i −0.0285785 0.0113594i
\(295\) 44.8753i 2.61274i
\(296\) 5.88425 2.74005i 0.342015 0.159262i
\(297\) −0.618251 −0.0358745
\(298\) 14.6270 + 5.81395i 0.847319 + 0.336793i
\(299\) 41.5254i 2.40147i
\(300\) 9.68185 + 9.14087i 0.558982 + 0.527748i
\(301\) 21.7915i 1.25604i
\(302\) 19.4455 + 7.72920i 1.11896 + 0.444766i
\(303\) −5.59956 −0.321686
\(304\) −0.657510 + 0.0378259i −0.0377108 + 0.00216946i
\(305\) 21.4368i 1.22747i
\(306\) 3.43076 8.63126i 0.196123 0.493416i
\(307\) 13.1387i 0.749866i −0.927052 0.374933i \(-0.877666\pi\)
0.927052 0.374933i \(-0.122334\pi\)
\(308\) −2.18524 + 2.31456i −0.124515 + 0.131885i
\(309\) 9.05162i 0.514929i
\(310\) −24.5651 10.9235i −1.39521 0.620416i
\(311\) 18.1154i 1.02723i −0.858021 0.513615i \(-0.828306\pi\)
0.858021 0.513615i \(-0.171694\pi\)
\(312\) −15.4243 + 7.18246i −0.873231 + 0.406627i
\(313\) 2.34613i 0.132611i 0.997799 + 0.0663056i \(0.0211212\pi\)
−0.997799 + 0.0663056i \(0.978879\pi\)
\(314\) −22.2317 8.83669i −1.25461 0.498683i
\(315\) 8.78956i 0.495236i
\(316\) 3.25459 + 3.07274i 0.183085 + 0.172855i
\(317\) 17.7785 0.998542 0.499271 0.866446i \(-0.333601\pi\)
0.499271 + 0.866446i \(0.333601\pi\)
\(318\) 2.54392 6.40011i 0.142656 0.358900i
\(319\) 1.63537i 0.0915630i
\(320\) −17.5798 + 20.9054i −0.982741 + 1.16865i
\(321\) 5.56176i 0.310427i
\(322\) 9.28277 23.3540i 0.517308 1.30147i
\(323\) −1.08136 −0.0601686
\(324\) 1.45426 + 1.37300i 0.0807921 + 0.0762778i
\(325\) 40.0492i 2.22153i
\(326\) 12.6546 31.8371i 0.700876 1.76329i
\(327\) −1.25068 −0.0691626
\(328\) −6.01684 12.9212i −0.332225 0.713452i
\(329\) −21.6298 −1.19249
\(330\) 2.77416 + 1.10267i 0.152712 + 0.0607002i
\(331\) −2.70580 −0.148724 −0.0743622 0.997231i \(-0.523692\pi\)
−0.0743622 + 0.997231i \(0.523692\pi\)
\(332\) 17.2462 + 16.2825i 0.946507 + 0.893621i
\(333\) 2.29489i 0.125759i
\(334\) −4.66209 1.85309i −0.255098 0.101397i
\(335\) 4.27290i 0.233454i
\(336\) 10.2803 0.591415i 0.560836 0.0322643i
\(337\) 11.1788i 0.608948i −0.952521 0.304474i \(-0.901519\pi\)
0.952521 0.304474i \(-0.0984807\pi\)
\(338\) 30.4727 + 12.1123i 1.65750 + 0.658823i
\(339\) −16.1132 −0.875148
\(340\) −30.7884 + 32.6105i −1.66973 + 1.76855i
\(341\) −3.43951 0.137948i −0.186260 0.00747030i
\(342\) 0.0860078 0.216382i 0.00465077 0.0117006i
\(343\) 18.9801i 1.02483i
\(344\) 10.1069 + 21.7046i 0.544929 + 1.17024i
\(345\) −23.5690 −1.26891
\(346\) −1.72718 0.686520i −0.0928537 0.0369076i
\(347\) 29.7510 1.59712 0.798558 0.601918i \(-0.205597\pi\)
0.798558 + 0.601918i \(0.205597\pi\)
\(348\) −3.63180 + 3.84674i −0.194685 + 0.206207i
\(349\) 15.2367 0.815599 0.407800 0.913071i \(-0.366296\pi\)
0.407800 + 0.913071i \(0.366296\pi\)
\(350\) −8.95278 + 22.5238i −0.478546 + 1.20395i
\(351\) 6.01558i 0.321088i
\(352\) −1.10303 + 3.31886i −0.0587916 + 0.176896i
\(353\) 23.6247i 1.25741i −0.777642 0.628707i \(-0.783584\pi\)
0.777642 0.628707i \(-0.216416\pi\)
\(354\) 6.86564 17.2729i 0.364905 0.918044i
\(355\) 47.0806i 2.49878i
\(356\) −6.13819 + 6.50146i −0.325323 + 0.344577i
\(357\) 16.9073 0.894830
\(358\) 15.4327 + 6.13421i 0.815645 + 0.324203i
\(359\) 18.4669i 0.974646i 0.873222 + 0.487323i \(0.162027\pi\)
−0.873222 + 0.487323i \(0.837973\pi\)
\(360\) −4.07662 8.75453i −0.214857 0.461404i
\(361\) 18.9729 0.998573
\(362\) −4.87925 + 12.2754i −0.256448 + 0.645183i
\(363\) −10.6178 −0.557288
\(364\) −22.5207 21.2624i −1.18041 1.11445i
\(365\) 17.8058i 0.931996i
\(366\) −3.27970 + 8.25123i −0.171433 + 0.431298i
\(367\) 25.7959 1.34654 0.673268 0.739399i \(-0.264890\pi\)
0.673268 + 0.739399i \(0.264890\pi\)
\(368\) −1.58586 27.5663i −0.0826687 1.43699i
\(369\) 5.03933 0.262337
\(370\) 4.09303 10.2974i 0.212787 0.535338i
\(371\) 12.5368 0.650880
\(372\) 7.78411 + 7.96289i 0.403587 + 0.412857i
\(373\) −19.3134 −1.00001 −0.500005 0.866023i \(-0.666668\pi\)
−0.500005 + 0.866023i \(0.666668\pi\)
\(374\) −2.12107 + 5.33628i −0.109678 + 0.275932i
\(375\) 5.65953 0.292257
\(376\) −21.5436 + 10.0319i −1.11102 + 0.517357i
\(377\) 15.9121 0.819516
\(378\) −1.34475 + 3.38318i −0.0691665 + 0.174012i
\(379\) 9.43037i 0.484405i 0.970226 + 0.242203i \(0.0778699\pi\)
−0.970226 + 0.242203i \(0.922130\pi\)
\(380\) −0.771853 + 0.817533i −0.0395952 + 0.0419386i
\(381\) 11.1482 0.571138
\(382\) 1.44247 3.62904i 0.0738033 0.185678i
\(383\) −4.00388 −0.204589 −0.102294 0.994754i \(-0.532618\pi\)
−0.102294 + 0.994754i \(0.532618\pi\)
\(384\) 9.96502 5.35708i 0.508526 0.273377i
\(385\) 5.43415i 0.276950i
\(386\) −1.42843 0.567773i −0.0727052 0.0288989i
\(387\) −8.46494 −0.430297
\(388\) −14.1213 13.3323i −0.716901 0.676844i
\(389\) 3.05571i 0.154931i −0.996995 0.0774653i \(-0.975317\pi\)
0.996995 0.0774653i \(-0.0246827\pi\)
\(390\) −10.7290 + 26.9926i −0.543285 + 1.36682i
\(391\) 45.3365i 2.29276i
\(392\) −0.445190 0.956047i −0.0224855 0.0482876i
\(393\) 9.20268i 0.464214i
\(394\) −7.69514 + 19.3598i −0.387676 + 0.975332i
\(395\) 7.64116 0.384468
\(396\) −0.899096 0.848859i −0.0451813 0.0426568i
\(397\) 10.9743 0.550786 0.275393 0.961332i \(-0.411192\pi\)
0.275393 + 0.961332i \(0.411192\pi\)
\(398\) −20.9180 8.31449i −1.04852 0.416768i
\(399\) 0.423860 0.0212195
\(400\) 1.52949 + 26.5864i 0.0764744 + 1.32932i
\(401\) 23.7678i 1.18691i 0.804868 + 0.593454i \(0.202236\pi\)
−0.804868 + 0.593454i \(0.797764\pi\)
\(402\) −0.653728 + 1.64468i −0.0326050 + 0.0820291i
\(403\) 1.34223 33.4664i 0.0668614 1.66708i
\(404\) −8.14320 7.68820i −0.405140 0.382502i
\(405\) 3.41432 0.169659
\(406\) −8.94903 3.55707i −0.444133 0.176534i
\(407\) 1.41882i 0.0703282i
\(408\) 16.8399 7.84164i 0.833701 0.388219i
\(409\) 21.9791i 1.08680i −0.839475 0.543399i \(-0.817137\pi\)
0.839475 0.543399i \(-0.182863\pi\)
\(410\) −22.6120 8.98785i −1.11673 0.443878i
\(411\) 18.7908i 0.926881i
\(412\) −12.4279 + 13.1634i −0.612278 + 0.648514i
\(413\) 33.8350 1.66491
\(414\) 9.07191 + 3.60591i 0.445860 + 0.177221i
\(415\) 40.4907 1.98761
\(416\) −32.2925 10.7325i −1.58327 0.526203i
\(417\) −2.89057 −0.141552
\(418\) −0.0531744 + 0.133779i −0.00260085 + 0.00654332i
\(419\) 24.5238i 1.19807i −0.800724 0.599034i \(-0.795552\pi\)
0.800724 0.599034i \(-0.204448\pi\)
\(420\) 12.0681 12.7823i 0.588862 0.623712i
\(421\) 40.5763 1.97757 0.988785 0.149346i \(-0.0477167\pi\)
0.988785 + 0.149346i \(0.0477167\pi\)
\(422\) −2.50208 + 6.29484i −0.121799 + 0.306428i
\(423\) 8.40212i 0.408525i
\(424\) 12.4869 5.81461i 0.606416 0.282382i
\(425\) 43.7248i 2.12097i
\(426\) 7.20305 18.1218i 0.348989 0.878002i
\(427\) −16.1629 −0.782177
\(428\) 7.63630 8.08824i 0.369115 0.390960i
\(429\) 3.71914i 0.179562i
\(430\) 37.9831 + 15.0975i 1.83171 + 0.728068i
\(431\) 8.81621i 0.424662i −0.977198 0.212331i \(-0.931895\pi\)
0.977198 0.212331i \(-0.0681055\pi\)
\(432\) 0.229736 + 3.99340i 0.0110532 + 0.192132i
\(433\) 16.1566i 0.776438i −0.921567 0.388219i \(-0.873090\pi\)
0.921567 0.388219i \(-0.126910\pi\)
\(434\) −8.23611 + 18.5216i −0.395346 + 0.889064i
\(435\) 9.03140i 0.433023i
\(436\) −1.81881 1.71718i −0.0871051 0.0822381i
\(437\) 1.13657i 0.0543695i
\(438\) 2.72417 6.85360i 0.130166 0.327478i
\(439\) 9.76967i 0.466281i 0.972443 + 0.233141i \(0.0749002\pi\)
−0.972443 + 0.233141i \(0.925100\pi\)
\(440\) 2.52037 + 5.41250i 0.120154 + 0.258031i
\(441\) 0.372864 0.0177554
\(442\) −51.9220 20.6380i −2.46968 0.981649i
\(443\) 15.7031i 0.746079i −0.927815 0.373039i \(-0.878316\pi\)
0.927815 0.373039i \(-0.121684\pi\)
\(444\) −3.15089 + 3.33737i −0.149535 + 0.158384i
\(445\) 15.2642i 0.723592i
\(446\) 2.02419 + 0.804575i 0.0958480 + 0.0380977i
\(447\) −11.1299 −0.526428
\(448\) 15.7622 + 13.2548i 0.744695 + 0.626230i
\(449\) 4.44409i 0.209730i −0.994486 0.104865i \(-0.966559\pi\)
0.994486 0.104865i \(-0.0334410\pi\)
\(450\) −8.74942 3.47772i −0.412451 0.163941i
\(451\) −3.11557 −0.146707
\(452\) −23.4327 22.1234i −1.10218 1.04060i
\(453\) −14.7964 −0.695196
\(454\) −3.62761 + 9.12650i −0.170252 + 0.428328i
\(455\) −52.8743 −2.47879
\(456\) 0.422171 0.196587i 0.0197700 0.00920604i
\(457\) 26.7985i 1.25358i −0.779189 0.626789i \(-0.784369\pi\)
0.779189 0.626789i \(-0.215631\pi\)
\(458\) −14.1354 + 35.5625i −0.660505 + 1.66173i
\(459\) 6.56767i 0.306553i
\(460\) −34.2754 32.3602i −1.59810 1.50880i
\(461\) 18.9732i 0.883672i −0.897096 0.441836i \(-0.854327\pi\)
0.897096 0.441836i \(-0.145673\pi\)
\(462\) 0.831392 2.09165i 0.0386799 0.0973126i
\(463\) −27.9926 −1.30093 −0.650464 0.759537i \(-0.725426\pi\)
−0.650464 + 0.759537i \(0.725426\pi\)
\(464\) −10.5631 + 0.607687i −0.490382 + 0.0282112i
\(465\) 18.9949 + 0.761824i 0.880866 + 0.0353288i
\(466\) 25.3904 + 10.0922i 1.17619 + 0.467512i
\(467\) 1.79665i 0.0831392i 0.999136 + 0.0415696i \(0.0132358\pi\)
−0.999136 + 0.0415696i \(0.986764\pi\)
\(468\) 8.25940 8.74821i 0.381791 0.404386i
\(469\) −3.22168 −0.148763
\(470\) −14.9855 + 37.7012i −0.691230 + 1.73903i
\(471\) 16.9165 0.779472
\(472\) 33.7001 15.6927i 1.55117 0.722316i
\(473\) 5.23345 0.240634
\(474\) −2.94115 1.16905i −0.135092 0.0536963i
\(475\) 1.09617i 0.0502955i
\(476\) 24.5876 + 23.2138i 1.12697 + 1.06400i
\(477\) 4.86996i 0.222980i
\(478\) 33.3778 + 13.2670i 1.52666 + 0.606819i
\(479\) 33.0395i 1.50961i −0.655948 0.754806i \(-0.727731\pi\)
0.655948 0.754806i \(-0.272269\pi\)
\(480\) 6.09153 18.3286i 0.278039 0.836580i
\(481\) 13.8051 0.629459
\(482\) 6.20958 15.6223i 0.282839 0.711578i
\(483\) 17.7705i 0.808585i
\(484\) −15.4410 14.5782i −0.701863 0.662646i
\(485\) −33.1542 −1.50545
\(486\) −1.31420 0.522370i −0.0596135 0.0236952i
\(487\) −11.9539 −0.541682 −0.270841 0.962624i \(-0.587302\pi\)
−0.270841 + 0.962624i \(0.587302\pi\)
\(488\) −16.0985 + 7.49638i −0.728744 + 0.339345i
\(489\) 24.2254i 1.09551i
\(490\) −1.67308 0.665017i −0.0755821 0.0300424i
\(491\) −7.87087 −0.355208 −0.177604 0.984102i \(-0.556835\pi\)
−0.177604 + 0.984102i \(0.556835\pi\)
\(492\) 7.32849 + 6.91901i 0.330394 + 0.311933i
\(493\) −17.3725 −0.782418
\(494\) −1.30167 0.517387i −0.0585647 0.0232783i
\(495\) −2.11091 −0.0948782
\(496\) 0.387057 + 22.2677i 0.0173794 + 0.999849i
\(497\) 35.4977 1.59229
\(498\) −15.5853 6.19484i −0.698392 0.277597i
\(499\) 42.9063 1.92075 0.960376 0.278708i \(-0.0899063\pi\)
0.960376 + 0.278708i \(0.0899063\pi\)
\(500\) 8.23041 + 7.77053i 0.368075 + 0.347509i
\(501\) 3.54747 0.158489
\(502\) −27.0254 10.7421i −1.20620 0.479443i
\(503\) 8.93560i 0.398419i 0.979957 + 0.199209i \(0.0638374\pi\)
−0.979957 + 0.199209i \(0.936163\pi\)
\(504\) −6.60073 + 3.07368i −0.294020 + 0.136913i
\(505\) −19.1187 −0.850770
\(506\) −5.60871 2.22935i −0.249338 0.0991069i
\(507\) −23.1872 −1.02978
\(508\) 16.2123 + 15.3065i 0.719306 + 0.679114i
\(509\) 32.8606i 1.45652i 0.685301 + 0.728260i \(0.259670\pi\)
−0.685301 + 0.728260i \(0.740330\pi\)
\(510\) 11.7137 29.4699i 0.518692 1.30495i
\(511\) 13.4251 0.593894
\(512\) 21.8470 + 5.89141i 0.965510 + 0.260366i
\(513\) 0.164649i 0.00726944i
\(514\) 17.1002 + 6.79698i 0.754256 + 0.299802i
\(515\) 30.9051i 1.36184i
\(516\) −12.3102 11.6224i −0.541927 0.511646i
\(517\) 5.19461i 0.228459i
\(518\) −7.76404 3.08606i −0.341132 0.135594i
\(519\) 1.31424 0.0576888
\(520\) −52.6636 + 24.5232i −2.30945 + 1.07541i
\(521\) 17.1677 0.752131 0.376066 0.926593i \(-0.377277\pi\)
0.376066 + 0.926593i \(0.377277\pi\)
\(522\) 1.38175 3.47627i 0.0604775 0.152152i
\(523\) 28.3950 1.24163 0.620814 0.783958i \(-0.286802\pi\)
0.620814 + 0.783958i \(0.286802\pi\)
\(524\) 12.6353 13.3831i 0.551975 0.584642i
\(525\) 17.1388i 0.747997i
\(526\) 0.138615 + 0.0550970i 0.00604392 + 0.00240234i
\(527\) −1.46542 + 36.5379i −0.0638347 + 1.59162i
\(528\) −0.142034 2.46892i −0.00618126 0.107446i
\(529\) 24.6510 1.07178
\(530\) 8.68576 21.8520i 0.377285 0.949191i
\(531\) 13.1432i 0.570368i
\(532\) 0.616402 + 0.581960i 0.0267244 + 0.0252312i
\(533\) 30.3145i 1.31307i
\(534\) 2.33533 5.87532i 0.101060 0.254250i
\(535\) 18.9896i 0.820993i
\(536\) −3.20884 + 1.49422i −0.138601 + 0.0645404i
\(537\) −11.7430 −0.506749
\(538\) −0.322579 + 0.811558i −0.0139074 + 0.0349888i
\(539\) −0.230523 −0.00992934
\(540\) 4.96530 + 4.68787i 0.213673 + 0.201734i
\(541\) 8.05633 0.346369 0.173184 0.984889i \(-0.444594\pi\)
0.173184 + 0.984889i \(0.444594\pi\)
\(542\) −11.6814 4.64315i −0.501761 0.199440i
\(543\) 9.34059i 0.400843i
\(544\) 35.2562 + 11.7175i 1.51160 + 0.502382i
\(545\) −4.27021 −0.182916
\(546\) 20.3518 + 8.08945i 0.870977 + 0.346196i
\(547\) 35.8956i 1.53479i −0.641177 0.767393i \(-0.721554\pi\)
0.641177 0.767393i \(-0.278446\pi\)
\(548\) 25.7998 27.3267i 1.10211 1.16734i
\(549\) 6.27850i 0.267960i
\(550\) 5.40933 + 2.15011i 0.230655 + 0.0916808i
\(551\) −0.435522 −0.0185539
\(552\) 8.24198 + 17.6997i 0.350802 + 0.753347i
\(553\) 5.76127i 0.244994i
\(554\) 14.2947 35.9632i 0.607322 1.52793i
\(555\) 7.83550i 0.332598i
\(556\) −4.20363 3.96875i −0.178274 0.168313i
\(557\) 4.09133i 0.173355i 0.996236 + 0.0866777i \(0.0276250\pi\)
−0.996236 + 0.0866777i \(0.972375\pi\)
\(558\) −7.19474 3.19933i −0.304578 0.135438i
\(559\) 50.9215i 2.15375i
\(560\) 35.1002 2.01928i 1.48325 0.0853301i
\(561\) 4.06047i 0.171433i
\(562\) 15.9309 + 6.33223i 0.672005 + 0.267109i
\(563\) 0.838070i 0.0353204i 0.999844 + 0.0176602i \(0.00562171\pi\)
−0.999844 + 0.0176602i \(0.994378\pi\)
\(564\) 11.5361 12.2189i 0.485758 0.514507i
\(565\) −55.0156 −2.31452
\(566\) 5.29940 13.3325i 0.222751 0.560406i
\(567\) 2.57432i 0.108111i
\(568\) 35.3563 16.4639i 1.48352 0.690811i
\(569\) 40.3294i 1.69070i 0.534215 + 0.845348i \(0.320607\pi\)
−0.534215 + 0.845348i \(0.679393\pi\)
\(570\) 0.293658 0.738799i 0.0123000 0.0309449i
\(571\) −33.4910 −1.40155 −0.700776 0.713381i \(-0.747163\pi\)
−0.700776 + 0.713381i \(0.747163\pi\)
\(572\) −5.10638 + 5.40859i −0.213508 + 0.226144i
\(573\) 2.76140i 0.115359i
\(574\) −6.77664 + 17.0490i −0.282852 + 0.711611i
\(575\) −45.9571 −1.91654
\(576\) −5.14884 + 6.12286i −0.214535 + 0.255119i
\(577\) 15.3292 0.638164 0.319082 0.947727i \(-0.396625\pi\)
0.319082 + 0.947727i \(0.396625\pi\)
\(578\) 34.3458 + 13.6518i 1.42860 + 0.567840i
\(579\) 1.08692 0.0451707
\(580\) −12.4001 + 13.1340i −0.514887 + 0.545359i
\(581\) 30.5291i 1.26656i
\(582\) 12.7613 + 5.07238i 0.528974 + 0.210257i
\(583\) 3.01085i 0.124697i
\(584\) 13.3716 6.22661i 0.553323 0.257659i
\(585\) 20.5391i 0.849188i
\(586\) −13.8904 5.52116i −0.573807 0.228077i
\(587\) −2.44784 −0.101033 −0.0505167 0.998723i \(-0.516087\pi\)
−0.0505167 + 0.998723i \(0.516087\pi\)
\(588\) 0.542240 + 0.511942i 0.0223616 + 0.0211122i
\(589\) −0.0367375 + 0.915991i −0.00151374 + 0.0377428i
\(590\) 23.4415 58.9752i 0.965071 2.42797i
\(591\) 14.7312i 0.605961i
\(592\) −9.16442 + 0.527220i −0.376655 + 0.0216686i
\(593\) −12.3833 −0.508522 −0.254261 0.967136i \(-0.581832\pi\)
−0.254261 + 0.967136i \(0.581832\pi\)
\(594\) 0.812507 + 0.322956i 0.0333376 + 0.0132510i
\(595\) 57.7270 2.36658
\(596\) −16.1858 15.2814i −0.662996 0.625951i
\(597\) 15.9168 0.651433
\(598\) 21.6916 54.5728i 0.887036 2.23165i
\(599\) 20.3532i 0.831608i −0.909454 0.415804i \(-0.863500\pi\)
0.909454 0.415804i \(-0.136500\pi\)
\(600\) −7.94900 17.0705i −0.324516 0.696899i
\(601\) 22.9772i 0.937259i 0.883395 + 0.468629i \(0.155252\pi\)
−0.883395 + 0.468629i \(0.844748\pi\)
\(602\) 11.3832 28.6384i 0.463945 1.16721i
\(603\) 1.25147i 0.0509636i
\(604\) −21.5178 20.3155i −0.875547 0.826625i
\(605\) −36.2525 −1.47387
\(606\) 7.35895 + 2.92504i 0.298937 + 0.118822i
\(607\) 33.8896i 1.37554i 0.725930 + 0.687768i \(0.241409\pi\)
−0.725930 + 0.687768i \(0.758591\pi\)
\(608\) 0.883860 + 0.293753i 0.0358453 + 0.0119132i
\(609\) 6.80948 0.275934
\(610\) −11.1980 + 28.1723i −0.453392 + 1.14066i
\(611\) −50.5436 −2.04478
\(612\) −9.01742 + 9.55110i −0.364508 + 0.386080i
\(613\) 34.9455i 1.41143i 0.708494 + 0.705717i \(0.249375\pi\)
−0.708494 + 0.705717i \(0.750625\pi\)
\(614\) −6.86327 + 17.2669i −0.276979 + 0.696837i
\(615\) 17.2059 0.693809
\(616\) 4.08090 1.90030i 0.164424 0.0765654i
\(617\) −15.2775 −0.615049 −0.307525 0.951540i \(-0.599501\pi\)
−0.307525 + 0.951540i \(0.599501\pi\)
\(618\) 4.72830 11.8957i 0.190200 0.478514i
\(619\) 3.13328 0.125937 0.0629686 0.998016i \(-0.479943\pi\)
0.0629686 + 0.998016i \(0.479943\pi\)
\(620\) 26.5775 + 27.1879i 1.06738 + 1.09189i
\(621\) −6.90297 −0.277007
\(622\) −9.46294 + 23.8073i −0.379429 + 0.954586i
\(623\) 11.5089 0.461093
\(624\) 24.0226 1.38200i 0.961674 0.0553241i
\(625\) −13.9645 −0.558580
\(626\) 1.22555 3.08330i 0.0489828 0.123233i
\(627\) 0.101794i 0.00406528i
\(628\) 24.6010 + 23.2264i 0.981687 + 0.926835i
\(629\) −15.0721 −0.600964
\(630\) −4.59141 + 11.5513i −0.182926 + 0.460214i
\(631\) −25.5464 −1.01699 −0.508493 0.861066i \(-0.669797\pi\)
−0.508493 + 0.861066i \(0.669797\pi\)
\(632\) −2.67209 5.73831i −0.106290 0.228258i
\(633\) 4.78985i 0.190380i
\(634\) −23.3646 9.28697i −0.927926 0.368833i
\(635\) 38.0634 1.51050
\(636\) −6.68645 + 7.08218i −0.265135 + 0.280827i
\(637\) 2.24299i 0.0888706i
\(638\) −0.854267 + 2.14920i −0.0338208 + 0.0850878i
\(639\) 13.7892i 0.545491i
\(640\) 34.0238 18.2908i 1.34491 0.723007i
\(641\) 0.521818i 0.0206106i −0.999947 0.0103053i \(-0.996720\pi\)
0.999947 0.0103053i \(-0.00328034\pi\)
\(642\) −2.90530 + 7.30928i −0.114663 + 0.288474i
\(643\) 27.1894 1.07225 0.536123 0.844140i \(-0.319888\pi\)
0.536123 + 0.844140i \(0.319888\pi\)
\(644\) −24.3989 + 25.8429i −0.961451 + 1.01835i
\(645\) −28.9020 −1.13802
\(646\) 1.42113 + 0.564871i 0.0559136 + 0.0222246i
\(647\) −14.0585 −0.552698 −0.276349 0.961057i \(-0.589125\pi\)
−0.276349 + 0.961057i \(0.589125\pi\)
\(648\) −1.19398 2.56406i −0.0469038 0.100726i
\(649\) 8.12582i 0.318966i
\(650\) −20.9205 + 52.6328i −0.820571 + 2.06443i
\(651\) 0.574399 14.3217i 0.0225125 0.561312i
\(652\) −33.2615 + 35.2300i −1.30262 + 1.37971i
\(653\) −14.4478 −0.565387 −0.282693 0.959210i \(-0.591228\pi\)
−0.282693 + 0.959210i \(0.591228\pi\)
\(654\) 1.64364 + 0.653317i 0.0642716 + 0.0255467i
\(655\) 31.4209i 1.22772i
\(656\) 1.15772 + 20.1241i 0.0452012 + 0.785713i
\(657\) 5.21502i 0.203457i
\(658\) 28.4259 + 11.2987i 1.10816 + 0.440471i
\(659\) 25.6200i 0.998013i 0.866598 + 0.499007i \(0.166302\pi\)
−0.866598 + 0.499007i \(0.833698\pi\)
\(660\) −3.06980 2.89828i −0.119492 0.112815i
\(661\) −18.5928 −0.723176 −0.361588 0.932338i \(-0.617765\pi\)
−0.361588 + 0.932338i \(0.617765\pi\)
\(662\) 3.55597 + 1.41343i 0.138207 + 0.0549345i
\(663\) 39.5084 1.53438
\(664\) −14.1595 30.4075i −0.549494 1.18004i
\(665\) 1.44719 0.0561198
\(666\) 1.19878 3.01595i 0.0464519 0.116866i
\(667\) 18.2594i 0.707007i
\(668\) 5.15894 + 4.87068i 0.199605 + 0.188452i
\(669\) −1.54024 −0.0595491
\(670\) −2.23204 + 5.61546i −0.0862311 + 0.216944i
\(671\) 3.88169i 0.149851i
\(672\) −13.8193 4.59288i −0.533092 0.177174i
\(673\) 5.48239i 0.211331i −0.994402 0.105665i \(-0.966303\pi\)
0.994402 0.105665i \(-0.0336972\pi\)
\(674\) −5.83947 + 14.6912i −0.224928 + 0.565885i
\(675\) 6.65758 0.256251
\(676\) −33.7202 31.8361i −1.29693 1.22446i
\(677\) 23.0541i 0.886041i 0.896512 + 0.443020i \(0.146093\pi\)
−0.896512 + 0.443020i \(0.853907\pi\)
\(678\) 21.1760 + 8.41705i 0.813259 + 0.323255i
\(679\) 24.9975i 0.959316i
\(680\) 57.4969 26.7739i 2.20491 1.02673i
\(681\) 6.94451i 0.266114i
\(682\) 4.44815 + 1.97799i 0.170329 + 0.0757411i
\(683\) 27.6463i 1.05786i −0.848666 0.528929i \(-0.822594\pi\)
0.848666 0.528929i \(-0.177406\pi\)
\(684\) −0.226064 + 0.239442i −0.00864375 + 0.00915531i
\(685\) 64.1578i 2.45134i
\(686\) −9.91466 + 24.9437i −0.378543 + 0.952356i
\(687\) 27.0602i 1.03241i
\(688\) −1.94470 33.8038i −0.0741410 1.28876i
\(689\) 29.2956 1.11607
\(690\) 30.9744 + 12.3117i 1.17917 + 0.468699i
\(691\) 21.0900i 0.802302i 0.916012 + 0.401151i \(0.131390\pi\)
−0.916012 + 0.401151i \(0.868610\pi\)
\(692\) 1.91125 + 1.80445i 0.0726547 + 0.0685951i
\(693\) 1.59158i 0.0604590i
\(694\) −39.0988 15.5410i −1.48417 0.589929i
\(695\) −9.86932 −0.374365
\(696\) 6.78234 3.15825i 0.257084 0.119713i
\(697\) 33.0967i 1.25363i
\(698\) −20.0241 7.95917i −0.757922 0.301259i
\(699\) −19.3200 −0.730750
\(700\) 23.5315 24.9242i 0.889409 0.942046i
\(701\) 28.6684 1.08279 0.541396 0.840768i \(-0.317896\pi\)
0.541396 + 0.840768i \(0.317896\pi\)
\(702\) −3.14236 + 7.90569i −0.118601 + 0.298381i
\(703\) −0.377852 −0.0142510
\(704\) 3.18328 3.78546i 0.119974 0.142670i
\(705\) 28.6875i 1.08043i
\(706\) −12.3408 + 31.0476i −0.464453 + 1.16849i
\(707\) 14.4151i 0.542134i
\(708\) −18.0457 + 19.1137i −0.678199 + 0.718336i
\(709\) 14.8562i 0.557938i −0.960300 0.278969i \(-0.910007\pi\)
0.960300 0.278969i \(-0.0899926\pi\)
\(710\) 24.5935 61.8735i 0.922978 2.32207i
\(711\) 2.23797 0.0839306
\(712\) 11.4630 5.33783i 0.429594 0.200044i
\(713\) −38.4032 1.54023i −1.43821 0.0576822i
\(714\) −22.2196 8.83188i −0.831549 0.330525i
\(715\) 12.6983i 0.474890i
\(716\) −17.0774 16.1232i −0.638213 0.602552i
\(717\) −25.3977 −0.948495
\(718\) 9.64657 24.2693i 0.360007 0.905721i
\(719\) −13.0734 −0.487555 −0.243777 0.969831i \(-0.578387\pi\)
−0.243777 + 0.969831i \(0.578387\pi\)
\(720\) 0.784392 + 13.6347i 0.0292326 + 0.508137i
\(721\) 23.3018 0.867804
\(722\) −24.9342 9.91087i −0.927956 0.368845i
\(723\) 11.8873i 0.442094i
\(724\) 12.8246 13.5836i 0.476624 0.504832i
\(725\) 17.6103i 0.654031i
\(726\) 13.9539 + 5.54641i 0.517878 + 0.205846i
\(727\) 4.31555i 0.160055i 0.996793 + 0.0800275i \(0.0255008\pi\)
−0.996793 + 0.0800275i \(0.974499\pi\)
\(728\) 18.4900 + 39.7072i 0.685284 + 1.47165i
\(729\) 1.00000 0.0370370
\(730\) 9.30120 23.4004i 0.344253 0.866087i
\(731\) 55.5949i 2.05625i
\(732\) 8.62039 9.13057i 0.318619 0.337475i
\(733\) 19.6738 0.726667 0.363333 0.931659i \(-0.381639\pi\)
0.363333 + 0.931659i \(0.381639\pi\)
\(734\) −33.9011 13.4750i −1.25131 0.497372i
\(735\) 1.27308 0.0469581
\(736\) −12.3157 + 37.0561i −0.453962 + 1.36591i
\(737\) 0.773719i 0.0285003i
\(738\) −6.62271 2.63240i −0.243785 0.0968999i
\(739\) −12.1990 −0.448747 −0.224374 0.974503i \(-0.572034\pi\)
−0.224374 + 0.974503i \(0.572034\pi\)
\(740\) −10.7581 + 11.3948i −0.395477 + 0.418883i
\(741\) 0.990460 0.0363855
\(742\) −16.4759 6.54887i −0.604851 0.240417i
\(743\) −33.3779 −1.22452 −0.612259 0.790657i \(-0.709739\pi\)
−0.612259 + 0.790657i \(0.709739\pi\)
\(744\) −6.07033 14.5310i −0.222549 0.532734i
\(745\) −38.0012 −1.39225
\(746\) 25.3817 + 10.0887i 0.929291 + 0.369375i
\(747\) 11.8591 0.433901
\(748\) 5.57503 5.90497i 0.203843 0.215907i
\(749\) −14.3178 −0.523160
\(750\) −7.43776 2.95637i −0.271589 0.107951i
\(751\) 44.2439i 1.61448i −0.590222 0.807241i \(-0.700960\pi\)
0.590222 0.807241i \(-0.299040\pi\)
\(752\) 33.5530 1.93027i 1.22355 0.0703897i
\(753\) 20.5641 0.749399
\(754\) −20.9118 8.31202i −0.761562 0.302706i
\(755\) −50.5197 −1.83860
\(756\) 3.53455 3.74373i 0.128550 0.136158i
\(757\) 4.75155i 0.172698i −0.996265 0.0863491i \(-0.972480\pi\)
0.996265 0.0863491i \(-0.0275200\pi\)
\(758\) 4.92614 12.3934i 0.178926 0.450149i
\(759\) 4.26777 0.154910
\(760\) 1.44143 0.671212i 0.0522861 0.0243474i
\(761\) 20.8459i 0.755663i −0.925874 0.377832i \(-0.876670\pi\)
0.925874 0.377832i \(-0.123330\pi\)
\(762\) −14.6510 5.82348i −0.530748 0.210962i
\(763\) 3.21965i 0.116559i
\(764\) −3.79140 + 4.01579i −0.137168 + 0.145286i
\(765\) 22.4241i 0.810747i
\(766\) 5.26191 + 2.09151i 0.190121 + 0.0755693i
\(767\) 79.0643 2.85484
\(768\) −15.8944 + 1.83485i −0.573541 + 0.0662096i
\(769\) −1.44080 −0.0519565 −0.0259783 0.999663i \(-0.508270\pi\)
−0.0259783 + 0.999663i \(0.508270\pi\)
\(770\) 2.83864 7.14158i 0.102297 0.257365i
\(771\) −13.0118 −0.468609
\(772\) 1.58066 + 1.49234i 0.0568891 + 0.0537104i
\(773\) 54.3188i 1.95371i 0.213899 + 0.976856i \(0.431384\pi\)
−0.213899 + 0.976856i \(0.568616\pi\)
\(774\) 11.1246 + 4.42183i 0.399867 + 0.158939i
\(775\) 37.0381 + 1.48548i 1.33045 + 0.0533601i
\(776\) 11.5939 + 24.8979i 0.416196 + 0.893782i
\(777\) 5.90779 0.211941
\(778\) −1.59621 + 4.01582i −0.0572269 + 0.143974i
\(779\) 0.829722i 0.0297279i
\(780\) 28.2002 29.8692i 1.00973 1.06949i
\(781\) 8.52515i 0.305054i
\(782\) −23.6824 + 59.5813i −0.846882 + 2.13062i
\(783\) 2.64515i 0.0945301i
\(784\) 0.0856603 + 1.48899i 0.00305930 + 0.0531783i
\(785\) 57.7584 2.06149
\(786\) −4.80721 + 12.0942i −0.171467 + 0.431385i
\(787\) −5.67370 −0.202245 −0.101123 0.994874i \(-0.532243\pi\)
−0.101123 + 0.994874i \(0.532243\pi\)
\(788\) 20.2260 21.4230i 0.720520 0.763162i
\(789\) −0.105475 −0.00375501
\(790\) −10.0420 3.99151i −0.357280 0.142012i
\(791\) 41.4805i 1.47488i
\(792\) 0.738176 + 1.58523i 0.0262300 + 0.0563288i
\(793\) −37.7688 −1.34121
\(794\) −14.4225 5.73266i −0.511835 0.203445i
\(795\) 16.6276i 0.589720i
\(796\) 23.1472 + 21.8539i 0.820431 + 0.774589i
\(797\) 36.2168i 1.28287i −0.767179 0.641433i \(-0.778340\pi\)
0.767179 0.641433i \(-0.221660\pi\)
\(798\) −0.557038 0.221412i −0.0197189 0.00783790i
\(799\) 55.1824 1.95221
\(800\) 11.8779 35.7389i 0.419946 1.26356i
\(801\) 4.47064i 0.157962i
\(802\) 12.4156 31.2357i 0.438410 1.10297i
\(803\) 3.22419i 0.113779i
\(804\) 1.71826 1.81995i 0.0605985 0.0641848i
\(805\) 60.6741i 2.13848i
\(806\) −19.2458 + 43.2805i −0.677906 + 1.52449i
\(807\) 0.617529i 0.0217381i
\(808\) 6.68574 + 14.3576i 0.235203 + 0.505099i
\(809\) 29.6902i 1.04385i 0.852991 + 0.521926i \(0.174786\pi\)
−0.852991 + 0.521926i \(0.825214\pi\)
\(810\) −4.48711 1.78354i −0.157661 0.0626672i
\(811\) 31.6577i 1.11165i 0.831298 + 0.555827i \(0.187598\pi\)
−0.831298 + 0.555827i \(0.812402\pi\)
\(812\) 9.90274 + 9.34942i 0.347518 + 0.328100i
\(813\) 8.88861 0.311737
\(814\) −0.741149 + 1.86462i −0.0259773 + 0.0653547i
\(815\) 82.7133i 2.89732i
\(816\) −26.2273 + 1.50883i −0.918140 + 0.0528197i
\(817\) 1.39374i 0.0487610i
\(818\) −11.4812 + 28.8850i −0.401432 + 1.00994i
\(819\) −15.4860 −0.541126
\(820\) 25.0218 + 23.6237i 0.873800 + 0.824976i
\(821\) 29.9748i 1.04613i −0.852294 0.523064i \(-0.824789\pi\)
0.852294 0.523064i \(-0.175211\pi\)
\(822\) −9.81575 + 24.6949i −0.342364 + 0.861334i
\(823\) −25.2645 −0.880666 −0.440333 0.897835i \(-0.645140\pi\)
−0.440333 + 0.897835i \(0.645140\pi\)
\(824\) 23.2089 10.8074i 0.808522 0.376494i
\(825\) −4.11606 −0.143303
\(826\) −44.4660 17.6744i −1.54717 0.614970i
\(827\) 10.1261 0.352117 0.176059 0.984380i \(-0.443665\pi\)
0.176059 + 0.984380i \(0.443665\pi\)
\(828\) −10.0387 9.47779i −0.348869 0.329376i
\(829\) 56.0399i 1.94635i −0.230073 0.973173i \(-0.573896\pi\)
0.230073 0.973173i \(-0.426104\pi\)
\(830\) −53.2130 21.1512i −1.84705 0.734167i
\(831\) 27.3650i 0.949282i
\(832\) 36.8326 + 30.9733i 1.27694 + 1.07381i
\(833\) 2.44885i 0.0848475i
\(834\) 3.79879 + 1.50995i 0.131541 + 0.0522852i
\(835\) 12.1122 0.419160
\(836\) 0.139764 0.148035i 0.00483384 0.00511991i
\(837\) 5.56329 + 0.223126i 0.192295 + 0.00771237i
\(838\) −12.8105 + 32.2293i −0.442532 + 1.11334i
\(839\) 0.194352i 0.00670976i 0.999994 + 0.00335488i \(0.00106789\pi\)
−0.999994 + 0.00335488i \(0.998932\pi\)
\(840\) −22.5370 + 10.4945i −0.777600 + 0.362096i
\(841\) 22.0032 0.758730
\(842\) −53.3256 21.1959i −1.83772 0.730458i
\(843\) −12.1221 −0.417508
\(844\) 6.57647 6.96568i 0.226372 0.239769i
\(845\) −79.1686 −2.72348
\(846\) −4.38902 + 11.0421i −0.150898 + 0.379635i
\(847\) 27.3336i 0.939192i
\(848\) −19.4477 + 1.11880i −0.667836 + 0.0384199i
\(849\) 10.1449i 0.348173i
\(850\) 22.8406 57.4633i 0.783425 1.97098i
\(851\) 15.8416i 0.543042i
\(852\) −18.9325 + 20.0530i −0.648618 + 0.687004i
\(853\) −41.3309 −1.41514 −0.707571 0.706643i \(-0.750209\pi\)
−0.707571 + 0.706643i \(0.750209\pi\)
\(854\) 21.2413 + 8.44301i 0.726863 + 0.288914i
\(855\) 0.562165i 0.0192256i
\(856\) −14.2607 + 6.64061i −0.487421 + 0.226971i
\(857\) −55.3475 −1.89063 −0.945317 0.326154i \(-0.894247\pi\)
−0.945317 + 0.326154i \(0.894247\pi\)
\(858\) 1.94277 4.88770i 0.0663249 0.166863i
\(859\) −24.7767 −0.845371 −0.422686 0.906276i \(-0.638913\pi\)
−0.422686 + 0.906276i \(0.638913\pi\)
\(860\) −42.0310 39.6825i −1.43324 1.35316i
\(861\) 12.9729i 0.442114i
\(862\) −4.60532 + 11.5863i −0.156858 + 0.394630i
\(863\) −7.70341 −0.262227 −0.131114 0.991367i \(-0.541855\pi\)
−0.131114 + 0.991367i \(0.541855\pi\)
\(864\) 1.78411 5.36814i 0.0606967 0.182628i
\(865\) 4.48724 0.152571
\(866\) −8.43974 + 21.2331i −0.286794 + 0.721530i
\(867\) −26.1343 −0.887569
\(868\) 20.4990 20.0388i 0.695783 0.680162i
\(869\) −1.38363 −0.0469364
\(870\) 4.71774 11.8691i 0.159946 0.402400i
\(871\) −7.52829 −0.255086
\(872\) 1.49328 + 3.20682i 0.0505688 + 0.108596i
\(873\) −9.71032 −0.328645
\(874\) −0.593710 + 1.49368i −0.0200825 + 0.0505245i
\(875\) 14.5694i 0.492537i
\(876\) −7.16023 + 7.58399i −0.241922 + 0.256239i
\(877\) 4.97712 0.168065 0.0840327 0.996463i \(-0.473220\pi\)
0.0840327 + 0.996463i \(0.473220\pi\)
\(878\) 5.10339 12.8393i 0.172231 0.433307i
\(879\) 10.5694 0.356498
\(880\) −0.484951 8.42969i −0.0163477 0.284165i
\(881\) 5.23018i 0.176209i −0.996111 0.0881046i \(-0.971919\pi\)
0.996111 0.0881046i \(-0.0280810\pi\)
\(882\) −0.490019 0.194773i −0.0164998 0.00655835i
\(883\) −6.44779 −0.216985 −0.108493 0.994097i \(-0.534602\pi\)
−0.108493 + 0.994097i \(0.534602\pi\)
\(884\) 57.4554 + 54.2450i 1.93243 + 1.82446i
\(885\) 44.8753i 1.50847i
\(886\) −8.20285 + 20.6371i −0.275580 + 0.693317i
\(887\) 3.68993i 0.123896i 0.998079 + 0.0619478i \(0.0197312\pi\)
−0.998079 + 0.0619478i \(0.980269\pi\)
\(888\) 5.88425 2.74005i 0.197463 0.0919499i
\(889\) 28.6990i 0.962534i
\(890\) 7.97356 20.0602i 0.267274 0.672421i
\(891\) −0.618251 −0.0207122
\(892\) −2.23990 2.11475i −0.0749976 0.0708070i
\(893\) 1.38340 0.0462938
\(894\) 14.6270 + 5.81395i 0.489200 + 0.194447i
\(895\) −40.0945 −1.34021
\(896\) −13.7908 25.6532i −0.460720 0.857013i
\(897\) 41.5254i 1.38649i
\(898\) −2.32146 + 5.84044i −0.0774681 + 0.194898i
\(899\) −0.590203 + 14.7158i −0.0196844 + 0.490798i
\(900\) 9.68185 + 9.14087i 0.322728 + 0.304696i
\(901\) −31.9843 −1.06555
\(902\) 4.09449 + 1.62748i 0.136332 + 0.0541892i
\(903\) 21.7915i 0.725175i
\(904\) 19.2387 + 41.3152i 0.639871 + 1.37412i
\(905\) 31.8918i 1.06012i
\(906\) 19.4455 + 7.72920i 0.646033 + 0.256786i
\(907\) 13.5441i 0.449723i 0.974391 + 0.224862i \(0.0721930\pi\)
−0.974391 + 0.224862i \(0.927807\pi\)
\(908\) 9.53483 10.0991i 0.316424 0.335151i
\(909\) −5.59956 −0.185726
\(910\) 69.4876 + 27.6200i 2.30349 + 0.915593i
\(911\) 50.9840 1.68917 0.844587 0.535418i \(-0.179846\pi\)
0.844587 + 0.535418i \(0.179846\pi\)
\(912\) −0.657510 + 0.0378259i −0.0217723 + 0.00125254i
\(913\) −7.33189 −0.242650
\(914\) −13.9987 + 35.2186i −0.463036 + 1.16493i
\(915\) 21.4368i 0.708679i
\(916\) 37.1536 39.3525i 1.22759 1.30024i
\(917\) −23.6907 −0.782334
\(918\) 3.43076 8.63126i 0.113232 0.284874i
\(919\) 33.8651i 1.11711i −0.829468 0.558554i \(-0.811357\pi\)
0.829468 0.558554i \(-0.188643\pi\)
\(920\) 28.1408 + 60.4323i 0.927774 + 1.99239i
\(921\) 13.1387i 0.432935i
\(922\) −9.91105 + 24.9347i −0.326403 + 0.821180i
\(923\) 82.9498 2.73033
\(924\) −2.18524 + 2.31456i −0.0718890 + 0.0761436i
\(925\) 15.2784i 0.502352i
\(926\) 36.7880 + 14.6225i 1.20893 + 0.480526i
\(927\) 9.05162i 0.297294i
\(928\) 14.1996 + 4.71925i 0.466123 + 0.154917i
\(929\) 4.01905i 0.131861i −0.997824 0.0659303i \(-0.978998\pi\)
0.997824 0.0659303i \(-0.0210015\pi\)
\(930\) −24.5651 10.9235i −0.805523 0.358197i
\(931\) 0.0613917i 0.00201203i
\(932\) −28.0963 26.5264i −0.920325 0.868901i
\(933\) 18.1154i 0.593071i
\(934\) 0.938519 2.36117i 0.0307093 0.0772598i
\(935\) 13.8637i 0.453393i
\(936\) −15.4243 + 7.18246i −0.504160 + 0.234766i
\(937\) −3.30441 −0.107950 −0.0539752 0.998542i \(-0.517189\pi\)
−0.0539752 + 0.998542i \(0.517189\pi\)
\(938\) 4.23393 + 1.68291i 0.138243 + 0.0549489i
\(939\) 2.34613i 0.0765632i
\(940\) 39.3880 41.7191i 1.28470 1.36073i
\(941\) 25.7782i 0.840347i 0.907444 + 0.420173i \(0.138031\pi\)
−0.907444 + 0.420173i \(0.861969\pi\)
\(942\) −22.2317 8.83669i −0.724350 0.287915i
\(943\) −34.7864 −1.13280
\(944\) −52.4862 + 3.01948i −1.70828 + 0.0982756i
\(945\) 8.78956i 0.285924i
\(946\) −6.87782 2.73380i −0.223617 0.0888835i
\(947\) 1.14281 0.0371364 0.0185682 0.999828i \(-0.494089\pi\)
0.0185682 + 0.999828i \(0.494089\pi\)
\(948\) 3.25459 + 3.07274i 0.105704 + 0.0997980i
\(949\) 31.3714 1.01836
\(950\) 0.572604 1.44058i 0.0185777 0.0467387i
\(951\) 17.7785 0.576508
\(952\) −20.1869 43.3514i −0.654262 1.40503i
\(953\) 1.88706i 0.0611279i −0.999533 0.0305639i \(-0.990270\pi\)
0.999533 0.0305639i \(-0.00973031\pi\)
\(954\) 2.54392 6.40011i 0.0823625 0.207211i
\(955\) 9.42830i 0.305093i
\(956\) −36.9349 34.8711i −1.19456 1.12781i
\(957\) 1.63537i 0.0528639i
\(958\) −17.2588 + 43.4206i −0.557608 + 1.40286i
\(959\) −48.3736 −1.56206
\(960\) −17.5798 + 20.9054i −0.567386 + 0.674719i
\(961\) 30.9004 + 2.48263i 0.996788 + 0.0800849i
\(962\) −18.1427 7.21138i −0.584945 0.232504i
\(963\) 5.56176i 0.179225i
\(964\) −16.3213 + 17.2872i −0.525674 + 0.556784i
\(965\) 3.71108 0.119464
\(966\) 9.28277 23.3540i 0.298668 0.751403i
\(967\) −19.2488 −0.619000 −0.309500 0.950899i \(-0.600162\pi\)
−0.309500 + 0.950899i \(0.600162\pi\)
\(968\) 12.6774 + 27.2246i 0.407466 + 0.875033i
\(969\) −1.08136 −0.0347384
\(970\) 43.5713 + 17.3187i 1.39899 + 0.556071i
\(971\) 21.4054i 0.686932i −0.939165 0.343466i \(-0.888399\pi\)
0.939165 0.343466i \(-0.111601\pi\)
\(972\) 1.45426 + 1.37300i 0.0466454 + 0.0440390i
\(973\) 7.44125i 0.238556i
\(974\) 15.7098 + 6.24435i 0.503375 + 0.200082i
\(975\) 40.0492i 1.28260i
\(976\) 25.0726 1.44240i 0.802553 0.0461700i
\(977\) 40.6587 1.30079 0.650393 0.759598i \(-0.274604\pi\)
0.650393 + 0.759598i \(0.274604\pi\)
\(978\) 12.6546 31.8371i 0.404651 1.01804i
\(979\) 2.76397i 0.0883370i
\(980\) 1.85138 + 1.74794i 0.0591402 + 0.0558358i
\(981\) −1.25068 −0.0399311
\(982\) 10.3439 + 4.11151i 0.330088 + 0.131204i
\(983\) 37.7512 1.20408 0.602039 0.798467i \(-0.294355\pi\)
0.602039 + 0.798467i \(0.294355\pi\)
\(984\) −6.01684 12.9212i −0.191810 0.411912i
\(985\) 50.2970i 1.60260i
\(986\) 22.8310 + 9.07488i 0.727087 + 0.289003i
\(987\) −21.6298 −0.688483
\(988\) 1.44039 + 1.35990i 0.0458248 + 0.0432643i
\(989\) 58.4332 1.85807
\(990\) 2.77416 + 1.10267i 0.0881685 + 0.0350453i
\(991\) −48.6397 −1.54509 −0.772546 0.634959i \(-0.781017\pi\)
−0.772546 + 0.634959i \(0.781017\pi\)
\(992\) 11.1233 29.4665i 0.353165 0.935561i
\(993\) −2.70580 −0.0858660
\(994\) −46.6512 18.5430i −1.47969 0.588147i
\(995\) 54.3452 1.72286
\(996\) 17.2462 + 16.2825i 0.546466 + 0.515932i
\(997\) −9.44897 −0.299252 −0.149626 0.988743i \(-0.547807\pi\)
−0.149626 + 0.988743i \(0.547807\pi\)
\(998\) −56.3876 22.4130i −1.78492 0.709471i
\(999\) 2.29489i 0.0726072i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 372.2.g.b.247.3 yes 16
3.2 odd 2 1116.2.g.i.991.14 16
4.3 odd 2 372.2.g.a.247.4 yes 16
12.11 even 2 1116.2.g.j.991.13 16
31.30 odd 2 372.2.g.a.247.3 16
93.92 even 2 1116.2.g.j.991.14 16
124.123 even 2 inner 372.2.g.b.247.4 yes 16
372.371 odd 2 1116.2.g.i.991.13 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
372.2.g.a.247.3 16 31.30 odd 2
372.2.g.a.247.4 yes 16 4.3 odd 2
372.2.g.b.247.3 yes 16 1.1 even 1 trivial
372.2.g.b.247.4 yes 16 124.123 even 2 inner
1116.2.g.i.991.13 16 372.371 odd 2
1116.2.g.i.991.14 16 3.2 odd 2
1116.2.g.j.991.13 16 12.11 even 2
1116.2.g.j.991.14 16 93.92 even 2