Properties

Label 372.2.g.b.247.10
Level $372$
Weight $2$
Character 372.247
Analytic conductor $2.970$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [372,2,Mod(247,372)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("372.247"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(372, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 372 = 2^{2} \cdot 3 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 372.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.97043495519\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{14} - x^{13} - 2 x^{12} + 5 x^{11} + 4 x^{10} - 10 x^{9} - 20 x^{7} + 16 x^{6} + 40 x^{5} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 247.10
Root \(0.0932801 - 1.41113i\) of defining polynomial
Character \(\chi\) \(=\) 372.247
Dual form 372.2.g.b.247.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0932801 + 1.41113i) q^{2} +1.00000 q^{3} +(-1.98260 + 0.263261i) q^{4} +1.86118 q^{5} +(0.0932801 + 1.41113i) q^{6} -4.60176i q^{7} +(-0.556434 - 2.77315i) q^{8} +1.00000 q^{9} +(0.173611 + 2.62637i) q^{10} +5.40568 q^{11} +(-1.98260 + 0.263261i) q^{12} +4.47873i q^{13} +(6.49370 - 0.429252i) q^{14} +1.86118 q^{15} +(3.86139 - 1.04388i) q^{16} +2.05610i q^{17} +(0.0932801 + 1.41113i) q^{18} -1.12836i q^{19} +(-3.68997 + 0.489976i) q^{20} -4.60176i q^{21} +(0.504242 + 7.62813i) q^{22} -7.23450 q^{23} +(-0.556434 - 2.77315i) q^{24} -1.53601 q^{25} +(-6.32009 + 0.417776i) q^{26} +1.00000 q^{27} +(1.21147 + 9.12344i) q^{28} -5.24803i q^{29} +(0.173611 + 2.62637i) q^{30} +(-4.40344 + 3.40730i) q^{31} +(1.83325 + 5.35156i) q^{32} +5.40568 q^{33} +(-2.90143 + 0.191793i) q^{34} -8.56470i q^{35} +(-1.98260 + 0.263261i) q^{36} +4.62374i q^{37} +(1.59226 - 0.105253i) q^{38} +4.47873i q^{39} +(-1.03562 - 5.16133i) q^{40} +2.86966 q^{41} +(6.49370 - 0.429252i) q^{42} +8.80990 q^{43} +(-10.7173 + 1.42311i) q^{44} +1.86118 q^{45} +(-0.674834 - 10.2088i) q^{46} -0.901508i q^{47} +(3.86139 - 1.04388i) q^{48} -14.1762 q^{49} +(-0.143279 - 2.16752i) q^{50} +2.05610i q^{51} +(-1.17908 - 8.87952i) q^{52} +4.90231i q^{53} +(0.0932801 + 1.41113i) q^{54} +10.0609 q^{55} +(-12.7614 + 2.56057i) q^{56} -1.12836i q^{57} +(7.40568 - 0.489537i) q^{58} -12.4876i q^{59} +(-3.68997 + 0.489976i) q^{60} +2.48968i q^{61} +(-5.21891 - 5.89602i) q^{62} -4.60176i q^{63} +(-7.38076 + 3.08615i) q^{64} +8.33572i q^{65} +(0.504242 + 7.62813i) q^{66} +9.66081i q^{67} +(-0.541292 - 4.07642i) q^{68} -7.23450 q^{69} +(12.0859 - 0.798915i) q^{70} +2.76862i q^{71} +(-0.556434 - 2.77315i) q^{72} +4.95775i q^{73} +(-6.52472 + 0.431303i) q^{74} -1.53601 q^{75} +(0.297053 + 2.23708i) q^{76} -24.8756i q^{77} +(-6.32009 + 0.417776i) q^{78} -7.05216 q^{79} +(7.18673 - 1.94285i) q^{80} +1.00000 q^{81} +(0.267682 + 4.04948i) q^{82} -13.9898 q^{83} +(1.21147 + 9.12344i) q^{84} +3.82677i q^{85} +(0.821788 + 12.4320i) q^{86} -5.24803i q^{87} +(-3.00790 - 14.9908i) q^{88} -11.9810i q^{89} +(0.173611 + 2.62637i) q^{90} +20.6100 q^{91} +(14.3431 - 1.90456i) q^{92} +(-4.40344 + 3.40730i) q^{93} +(1.27215 - 0.0840927i) q^{94} -2.10008i q^{95} +(1.83325 + 5.35156i) q^{96} -0.960609 q^{97} +(-1.32236 - 20.0045i) q^{98} +5.40568 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{3} + 2 q^{4} + 3 q^{8} + 16 q^{9} - 5 q^{10} + 4 q^{11} + 2 q^{12} + 5 q^{14} + 10 q^{16} - q^{20} - 16 q^{23} + 3 q^{24} + 12 q^{25} - 10 q^{26} + 16 q^{27} + 3 q^{28} - 5 q^{30} - 6 q^{31}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/372\mathbb{Z}\right)^\times\).

\(n\) \(125\) \(187\) \(313\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0932801 + 1.41113i 0.0659590 + 0.997822i
\(3\) 1.00000 0.577350
\(4\) −1.98260 + 0.263261i −0.991299 + 0.131631i
\(5\) 1.86118 0.832344 0.416172 0.909286i \(-0.363371\pi\)
0.416172 + 0.909286i \(0.363371\pi\)
\(6\) 0.0932801 + 1.41113i 0.0380814 + 0.576093i
\(7\) 4.60176i 1.73930i −0.493667 0.869651i \(-0.664344\pi\)
0.493667 0.869651i \(-0.335656\pi\)
\(8\) −0.556434 2.77315i −0.196729 0.980458i
\(9\) 1.00000 0.333333
\(10\) 0.173611 + 2.62637i 0.0549006 + 0.830532i
\(11\) 5.40568 1.62987 0.814936 0.579551i \(-0.196772\pi\)
0.814936 + 0.579551i \(0.196772\pi\)
\(12\) −1.98260 + 0.263261i −0.572327 + 0.0759970i
\(13\) 4.47873i 1.24218i 0.783741 + 0.621088i \(0.213309\pi\)
−0.783741 + 0.621088i \(0.786691\pi\)
\(14\) 6.49370 0.429252i 1.73551 0.114723i
\(15\) 1.86118 0.480554
\(16\) 3.86139 1.04388i 0.965347 0.260971i
\(17\) 2.05610i 0.498678i 0.968416 + 0.249339i \(0.0802133\pi\)
−0.968416 + 0.249339i \(0.919787\pi\)
\(18\) 0.0932801 + 1.41113i 0.0219863 + 0.332607i
\(19\) 1.12836i 0.258863i −0.991588 0.129432i \(-0.958685\pi\)
0.991588 0.129432i \(-0.0413153\pi\)
\(20\) −3.68997 + 0.489976i −0.825102 + 0.109562i
\(21\) 4.60176i 1.00419i
\(22\) 0.504242 + 7.62813i 0.107505 + 1.62632i
\(23\) −7.23450 −1.50850 −0.754249 0.656589i \(-0.771999\pi\)
−0.754249 + 0.656589i \(0.771999\pi\)
\(24\) −0.556434 2.77315i −0.113582 0.566068i
\(25\) −1.53601 −0.307203
\(26\) −6.32009 + 0.417776i −1.23947 + 0.0819326i
\(27\) 1.00000 0.192450
\(28\) 1.21147 + 9.12344i 0.228945 + 1.72417i
\(29\) 5.24803i 0.974535i −0.873253 0.487268i \(-0.837994\pi\)
0.873253 0.487268i \(-0.162006\pi\)
\(30\) 0.173611 + 2.62637i 0.0316969 + 0.479508i
\(31\) −4.40344 + 3.40730i −0.790882 + 0.611969i
\(32\) 1.83325 + 5.35156i 0.324076 + 0.946031i
\(33\) 5.40568 0.941007
\(34\) −2.90143 + 0.191793i −0.497592 + 0.0328923i
\(35\) 8.56470i 1.44770i
\(36\) −1.98260 + 0.263261i −0.330433 + 0.0438769i
\(37\) 4.62374i 0.760138i 0.924958 + 0.380069i \(0.124100\pi\)
−0.924958 + 0.380069i \(0.875900\pi\)
\(38\) 1.59226 0.105253i 0.258299 0.0170743i
\(39\) 4.47873i 0.717171i
\(40\) −1.03562 5.16133i −0.163746 0.816079i
\(41\) 2.86966 0.448166 0.224083 0.974570i \(-0.428061\pi\)
0.224083 + 0.974570i \(0.428061\pi\)
\(42\) 6.49370 0.429252i 1.00200 0.0662351i
\(43\) 8.80990 1.34350 0.671749 0.740779i \(-0.265543\pi\)
0.671749 + 0.740779i \(0.265543\pi\)
\(44\) −10.7173 + 1.42311i −1.61569 + 0.214541i
\(45\) 1.86118 0.277448
\(46\) −0.674834 10.2088i −0.0994989 1.50521i
\(47\) 0.901508i 0.131498i −0.997836 0.0657492i \(-0.979056\pi\)
0.997836 0.0657492i \(-0.0209437\pi\)
\(48\) 3.86139 1.04388i 0.557343 0.150671i
\(49\) −14.1762 −2.02517
\(50\) −0.143279 2.16752i −0.0202628 0.306534i
\(51\) 2.05610i 0.287912i
\(52\) −1.17908 8.87952i −0.163508 1.23137i
\(53\) 4.90231i 0.673384i 0.941615 + 0.336692i \(0.109308\pi\)
−0.941615 + 0.336692i \(0.890692\pi\)
\(54\) 0.0932801 + 1.41113i 0.0126938 + 0.192031i
\(55\) 10.0609 1.35662
\(56\) −12.7614 + 2.56057i −1.70531 + 0.342171i
\(57\) 1.12836i 0.149455i
\(58\) 7.40568 0.489537i 0.972413 0.0642793i
\(59\) 12.4876i 1.62575i −0.582437 0.812876i \(-0.697901\pi\)
0.582437 0.812876i \(-0.302099\pi\)
\(60\) −3.68997 + 0.489976i −0.476373 + 0.0632557i
\(61\) 2.48968i 0.318770i 0.987216 + 0.159385i \(0.0509512\pi\)
−0.987216 + 0.159385i \(0.949049\pi\)
\(62\) −5.21891 5.89602i −0.662802 0.748795i
\(63\) 4.60176i 0.579767i
\(64\) −7.38076 + 3.08615i −0.922595 + 0.385769i
\(65\) 8.33572i 1.03392i
\(66\) 0.504242 + 7.62813i 0.0620679 + 0.938958i
\(67\) 9.66081i 1.18026i 0.807310 + 0.590128i \(0.200923\pi\)
−0.807310 + 0.590128i \(0.799077\pi\)
\(68\) −0.541292 4.07642i −0.0656413 0.494339i
\(69\) −7.23450 −0.870931
\(70\) 12.0859 0.798915i 1.44455 0.0954887i
\(71\) 2.76862i 0.328575i 0.986412 + 0.164288i \(0.0525325\pi\)
−0.986412 + 0.164288i \(0.947467\pi\)
\(72\) −0.556434 2.77315i −0.0655763 0.326819i
\(73\) 4.95775i 0.580261i 0.956987 + 0.290130i \(0.0936987\pi\)
−0.956987 + 0.290130i \(0.906301\pi\)
\(74\) −6.52472 + 0.431303i −0.758483 + 0.0501379i
\(75\) −1.53601 −0.177364
\(76\) 0.297053 + 2.23708i 0.0340743 + 0.256611i
\(77\) 24.8756i 2.83484i
\(78\) −6.32009 + 0.417776i −0.715609 + 0.0473038i
\(79\) −7.05216 −0.793430 −0.396715 0.917942i \(-0.629850\pi\)
−0.396715 + 0.917942i \(0.629850\pi\)
\(80\) 7.18673 1.94285i 0.803501 0.217217i
\(81\) 1.00000 0.111111
\(82\) 0.267682 + 4.04948i 0.0295606 + 0.447190i
\(83\) −13.9898 −1.53558 −0.767792 0.640699i \(-0.778645\pi\)
−0.767792 + 0.640699i \(0.778645\pi\)
\(84\) 1.21147 + 9.12344i 0.132182 + 0.995449i
\(85\) 3.82677i 0.415072i
\(86\) 0.821788 + 12.4320i 0.0886157 + 1.34057i
\(87\) 5.24803i 0.562648i
\(88\) −3.00790 14.9908i −0.320643 1.59802i
\(89\) 11.9810i 1.26999i −0.772518 0.634993i \(-0.781003\pi\)
0.772518 0.634993i \(-0.218997\pi\)
\(90\) 0.173611 + 2.62637i 0.0183002 + 0.276844i
\(91\) 20.6100 2.16052
\(92\) 14.3431 1.90456i 1.49537 0.198564i
\(93\) −4.40344 + 3.40730i −0.456616 + 0.353320i
\(94\) 1.27215 0.0840927i 0.131212 0.00867350i
\(95\) 2.10008i 0.215463i
\(96\) 1.83325 + 5.35156i 0.187105 + 0.546191i
\(97\) −0.960609 −0.0975351 −0.0487676 0.998810i \(-0.515529\pi\)
−0.0487676 + 0.998810i \(0.515529\pi\)
\(98\) −1.32236 20.0045i −0.133578 2.02076i
\(99\) 5.40568 0.543291
\(100\) 3.04530 0.404373i 0.304530 0.0404373i
\(101\) 4.68761 0.466434 0.233217 0.972425i \(-0.425075\pi\)
0.233217 + 0.972425i \(0.425075\pi\)
\(102\) −2.90143 + 0.191793i −0.287285 + 0.0189904i
\(103\) 13.0594i 1.28678i −0.765538 0.643390i \(-0.777527\pi\)
0.765538 0.643390i \(-0.222473\pi\)
\(104\) 12.4202 2.49212i 1.21790 0.244372i
\(105\) 8.56470i 0.835829i
\(106\) −6.91782 + 0.457288i −0.671918 + 0.0444157i
\(107\) 7.89615i 0.763350i 0.924297 + 0.381675i \(0.124653\pi\)
−0.924297 + 0.381675i \(0.875347\pi\)
\(108\) −1.98260 + 0.263261i −0.190776 + 0.0253323i
\(109\) −12.4255 −1.19015 −0.595073 0.803672i \(-0.702877\pi\)
−0.595073 + 0.803672i \(0.702877\pi\)
\(110\) 0.938484 + 14.1973i 0.0894809 + 1.35366i
\(111\) 4.62374i 0.438866i
\(112\) −4.80370 17.7692i −0.453907 1.67903i
\(113\) 5.43385 0.511173 0.255587 0.966786i \(-0.417731\pi\)
0.255587 + 0.966786i \(0.417731\pi\)
\(114\) 1.59226 0.105253i 0.149129 0.00985788i
\(115\) −13.4647 −1.25559
\(116\) 1.38160 + 10.4047i 0.128279 + 0.966055i
\(117\) 4.47873i 0.414059i
\(118\) 17.6217 1.16485i 1.62221 0.107233i
\(119\) 9.46168 0.867351
\(120\) −1.03562 5.16133i −0.0945390 0.471163i
\(121\) 18.2213 1.65648
\(122\) −3.51327 + 0.232237i −0.318076 + 0.0210258i
\(123\) 2.86966 0.258749
\(124\) 7.83325 7.91456i 0.703446 0.710748i
\(125\) −12.1647 −1.08804
\(126\) 6.49370 0.429252i 0.578505 0.0382408i
\(127\) −4.79137 −0.425165 −0.212583 0.977143i \(-0.568187\pi\)
−0.212583 + 0.977143i \(0.568187\pi\)
\(128\) −5.04345 10.1274i −0.445782 0.895141i
\(129\) 8.80990 0.775669
\(130\) −11.7628 + 0.777556i −1.03167 + 0.0681962i
\(131\) 8.53497i 0.745704i 0.927891 + 0.372852i \(0.121620\pi\)
−0.927891 + 0.372852i \(0.878380\pi\)
\(132\) −10.7173 + 1.42311i −0.932819 + 0.123865i
\(133\) −5.19243 −0.450241
\(134\) −13.6327 + 0.901161i −1.17769 + 0.0778484i
\(135\) 1.86118 0.160185
\(136\) 5.70188 1.14408i 0.488933 0.0981044i
\(137\) 1.06842i 0.0912810i −0.998958 0.0456405i \(-0.985467\pi\)
0.998958 0.0456405i \(-0.0145329\pi\)
\(138\) −0.674834 10.2088i −0.0574457 0.869035i
\(139\) −17.8201 −1.51148 −0.755741 0.654870i \(-0.772723\pi\)
−0.755741 + 0.654870i \(0.772723\pi\)
\(140\) 2.25475 + 16.9803i 0.190561 + 1.43510i
\(141\) 0.901508i 0.0759206i
\(142\) −3.90690 + 0.258257i −0.327860 + 0.0216725i
\(143\) 24.2106i 2.02459i
\(144\) 3.86139 1.04388i 0.321782 0.0869902i
\(145\) 9.76753i 0.811149i
\(146\) −6.99605 + 0.462459i −0.578997 + 0.0382734i
\(147\) −14.1762 −1.16923
\(148\) −1.21725 9.16701i −0.100057 0.753524i
\(149\) −3.47676 −0.284827 −0.142414 0.989807i \(-0.545486\pi\)
−0.142414 + 0.989807i \(0.545486\pi\)
\(150\) −0.143279 2.16752i −0.0116987 0.176977i
\(151\) −19.5226 −1.58873 −0.794364 0.607442i \(-0.792196\pi\)
−0.794364 + 0.607442i \(0.792196\pi\)
\(152\) −3.12911 + 0.627857i −0.253804 + 0.0509259i
\(153\) 2.05610i 0.166226i
\(154\) 35.1028 2.32040i 2.82867 0.186983i
\(155\) −8.19560 + 6.34159i −0.658286 + 0.509369i
\(156\) −1.17908 8.87952i −0.0944016 0.710931i
\(157\) −5.67916 −0.453247 −0.226623 0.973982i \(-0.572769\pi\)
−0.226623 + 0.973982i \(0.572769\pi\)
\(158\) −0.657826 9.95155i −0.0523338 0.791703i
\(159\) 4.90231i 0.388779i
\(160\) 3.41200 + 9.96021i 0.269743 + 0.787424i
\(161\) 33.2914i 2.62373i
\(162\) 0.0932801 + 1.41113i 0.00732877 + 0.110869i
\(163\) 14.2698i 1.11769i 0.829271 + 0.558847i \(0.188756\pi\)
−0.829271 + 0.558847i \(0.811244\pi\)
\(164\) −5.68939 + 0.755471i −0.444266 + 0.0589924i
\(165\) 10.0609 0.783242
\(166\) −1.30497 19.7415i −0.101286 1.53224i
\(167\) 6.22429 0.481650 0.240825 0.970569i \(-0.422582\pi\)
0.240825 + 0.970569i \(0.422582\pi\)
\(168\) −12.7614 + 2.56057i −0.984562 + 0.197553i
\(169\) −7.05902 −0.543002
\(170\) −5.40009 + 0.356961i −0.414168 + 0.0273777i
\(171\) 1.12836i 0.0862877i
\(172\) −17.4665 + 2.31931i −1.33181 + 0.176845i
\(173\) 22.8753 1.73918 0.869588 0.493778i \(-0.164384\pi\)
0.869588 + 0.493778i \(0.164384\pi\)
\(174\) 7.40568 0.489537i 0.561423 0.0371117i
\(175\) 7.06836i 0.534318i
\(176\) 20.8734 5.64289i 1.57339 0.425349i
\(177\) 12.4876i 0.938628i
\(178\) 16.9068 1.11759i 1.26722 0.0837670i
\(179\) 18.2930 1.36729 0.683643 0.729817i \(-0.260395\pi\)
0.683643 + 0.729817i \(0.260395\pi\)
\(180\) −3.68997 + 0.489976i −0.275034 + 0.0365207i
\(181\) 7.07871i 0.526157i 0.964774 + 0.263078i \(0.0847378\pi\)
−0.964774 + 0.263078i \(0.915262\pi\)
\(182\) 1.92251 + 29.0835i 0.142506 + 2.15581i
\(183\) 2.48968i 0.184042i
\(184\) 4.02552 + 20.0624i 0.296765 + 1.47902i
\(185\) 8.60561i 0.632697i
\(186\) −5.21891 5.89602i −0.382669 0.432317i
\(187\) 11.1146i 0.812781i
\(188\) 0.237332 + 1.78733i 0.0173092 + 0.130354i
\(189\) 4.60176i 0.334729i
\(190\) 2.96349 0.195895i 0.214994 0.0142117i
\(191\) 11.7285i 0.848647i −0.905511 0.424324i \(-0.860512\pi\)
0.905511 0.424324i \(-0.139488\pi\)
\(192\) −7.38076 + 3.08615i −0.532661 + 0.222724i
\(193\) 14.7229 1.05978 0.529889 0.848067i \(-0.322234\pi\)
0.529889 + 0.848067i \(0.322234\pi\)
\(194\) −0.0896057 1.35555i −0.00643331 0.0973227i
\(195\) 8.33572i 0.596933i
\(196\) 28.1057 3.73204i 2.00755 0.266574i
\(197\) 11.7289i 0.835650i −0.908527 0.417825i \(-0.862792\pi\)
0.908527 0.417825i \(-0.137208\pi\)
\(198\) 0.504242 + 7.62813i 0.0358349 + 0.542108i
\(199\) 4.40807 0.312480 0.156240 0.987719i \(-0.450063\pi\)
0.156240 + 0.987719i \(0.450063\pi\)
\(200\) 0.854690 + 4.25960i 0.0604357 + 0.301199i
\(201\) 9.66081i 0.681421i
\(202\) 0.437260 + 6.61484i 0.0307655 + 0.465419i
\(203\) −24.1502 −1.69501
\(204\) −0.541292 4.07642i −0.0378980 0.285407i
\(205\) 5.34095 0.373028
\(206\) 18.4286 1.21818i 1.28398 0.0848747i
\(207\) −7.23450 −0.502832
\(208\) 4.67527 + 17.2941i 0.324171 + 1.19913i
\(209\) 6.09954i 0.421914i
\(210\) 12.0859 0.798915i 0.834009 0.0551304i
\(211\) 18.4644i 1.27114i −0.772042 0.635572i \(-0.780764\pi\)
0.772042 0.635572i \(-0.219236\pi\)
\(212\) −1.29059 9.71931i −0.0886380 0.667525i
\(213\) 2.76862i 0.189703i
\(214\) −11.1425 + 0.736553i −0.761687 + 0.0503497i
\(215\) 16.3968 1.11825
\(216\) −0.556434 2.77315i −0.0378605 0.188689i
\(217\) 15.6796 + 20.2636i 1.06440 + 1.37558i
\(218\) −1.15905 17.5340i −0.0785008 1.18755i
\(219\) 4.95775i 0.335014i
\(220\) −19.9468 + 2.64865i −1.34481 + 0.178572i
\(221\) −9.20872 −0.619446
\(222\) −6.52472 + 0.431303i −0.437910 + 0.0289471i
\(223\) −11.1980 −0.749873 −0.374936 0.927051i \(-0.622335\pi\)
−0.374936 + 0.927051i \(0.622335\pi\)
\(224\) 24.6266 8.43617i 1.64543 0.563665i
\(225\) −1.53601 −0.102401
\(226\) 0.506870 + 7.66789i 0.0337165 + 0.510060i
\(227\) 18.4616i 1.22534i 0.790339 + 0.612670i \(0.209905\pi\)
−0.790339 + 0.612670i \(0.790095\pi\)
\(228\) 0.297053 + 2.23708i 0.0196728 + 0.148154i
\(229\) 26.0983i 1.72462i −0.506377 0.862312i \(-0.669016\pi\)
0.506377 0.862312i \(-0.330984\pi\)
\(230\) −1.25599 19.0005i −0.0828174 1.25286i
\(231\) 24.8756i 1.63670i
\(232\) −14.5536 + 2.92018i −0.955491 + 0.191719i
\(233\) 11.4479 0.749978 0.374989 0.927029i \(-0.377646\pi\)
0.374989 + 0.927029i \(0.377646\pi\)
\(234\) −6.32009 + 0.417776i −0.413157 + 0.0273109i
\(235\) 1.67787i 0.109452i
\(236\) 3.28751 + 24.7580i 0.213999 + 1.61161i
\(237\) −7.05216 −0.458087
\(238\) 0.882586 + 13.3517i 0.0572096 + 0.865462i
\(239\) 14.5901 0.943752 0.471876 0.881665i \(-0.343577\pi\)
0.471876 + 0.881665i \(0.343577\pi\)
\(240\) 7.18673 1.94285i 0.463902 0.125411i
\(241\) 26.8444i 1.72920i 0.502458 + 0.864602i \(0.332429\pi\)
−0.502458 + 0.864602i \(0.667571\pi\)
\(242\) 1.69969 + 25.7127i 0.109260 + 1.65288i
\(243\) 1.00000 0.0641500
\(244\) −0.655435 4.93603i −0.0419600 0.315997i
\(245\) −26.3844 −1.68564
\(246\) 0.267682 + 4.04948i 0.0170668 + 0.258185i
\(247\) 5.05361 0.321554
\(248\) 11.8992 + 10.3155i 0.755599 + 0.655034i
\(249\) −13.9898 −0.886570
\(250\) −1.13472 17.1660i −0.0717662 1.08567i
\(251\) −4.57814 −0.288969 −0.144485 0.989507i \(-0.546152\pi\)
−0.144485 + 0.989507i \(0.546152\pi\)
\(252\) 1.21147 + 9.12344i 0.0763151 + 0.574723i
\(253\) −39.1074 −2.45866
\(254\) −0.446939 6.76126i −0.0280435 0.424239i
\(255\) 3.82677i 0.239642i
\(256\) 13.8206 8.06167i 0.863789 0.503854i
\(257\) 0.426532 0.0266063 0.0133032 0.999912i \(-0.495765\pi\)
0.0133032 + 0.999912i \(0.495765\pi\)
\(258\) 0.821788 + 12.4320i 0.0511623 + 0.773980i
\(259\) 21.2773 1.32211
\(260\) −2.19447 16.5264i −0.136095 1.02492i
\(261\) 5.24803i 0.324845i
\(262\) −12.0440 + 0.796143i −0.744080 + 0.0491859i
\(263\) 1.00675 0.0620791 0.0310396 0.999518i \(-0.490118\pi\)
0.0310396 + 0.999518i \(0.490118\pi\)
\(264\) −3.00790 14.9908i −0.185123 0.922618i
\(265\) 9.12408i 0.560488i
\(266\) −0.484350 7.32722i −0.0296974 0.449261i
\(267\) 11.9810i 0.733227i
\(268\) −2.54332 19.1535i −0.155358 1.16999i
\(269\) 8.04715i 0.490643i −0.969442 0.245322i \(-0.921106\pi\)
0.969442 0.245322i \(-0.0788936\pi\)
\(270\) 0.173611 + 2.62637i 0.0105656 + 0.159836i
\(271\) −1.75472 −0.106592 −0.0532959 0.998579i \(-0.516973\pi\)
−0.0532959 + 0.998579i \(0.516973\pi\)
\(272\) 2.14633 + 7.93940i 0.130140 + 0.481397i
\(273\) 20.6100 1.24738
\(274\) 1.50768 0.0996620i 0.0910822 0.00602080i
\(275\) −8.30319 −0.500701
\(276\) 14.3431 1.90456i 0.863353 0.114641i
\(277\) 12.8572i 0.772517i 0.922391 + 0.386258i \(0.126233\pi\)
−0.922391 + 0.386258i \(0.873767\pi\)
\(278\) −1.66226 25.1466i −0.0996958 1.50819i
\(279\) −4.40344 + 3.40730i −0.263627 + 0.203990i
\(280\) −23.7512 + 4.76569i −1.41941 + 0.284804i
\(281\) −12.6095 −0.752223 −0.376111 0.926574i \(-0.622739\pi\)
−0.376111 + 0.926574i \(0.622739\pi\)
\(282\) 1.27215 0.0840927i 0.0757553 0.00500765i
\(283\) 1.00958i 0.0600135i −0.999550 0.0300068i \(-0.990447\pi\)
0.999550 0.0300068i \(-0.00955289\pi\)
\(284\) −0.728872 5.48907i −0.0432506 0.325716i
\(285\) 2.10008i 0.124398i
\(286\) −34.1643 + 2.25836i −2.02018 + 0.133540i
\(287\) 13.2055i 0.779496i
\(288\) 1.83325 + 5.35156i 0.108025 + 0.315344i
\(289\) 12.7724 0.751320
\(290\) 13.7833 0.911115i 0.809382 0.0535025i
\(291\) −0.960609 −0.0563119
\(292\) −1.30518 9.82922i −0.0763801 0.575212i
\(293\) 23.2804 1.36005 0.680026 0.733188i \(-0.261968\pi\)
0.680026 + 0.733188i \(0.261968\pi\)
\(294\) −1.32236 20.0045i −0.0771213 1.16669i
\(295\) 23.2417i 1.35319i
\(296\) 12.8223 2.57280i 0.745283 0.149541i
\(297\) 5.40568 0.313669
\(298\) −0.324312 4.90617i −0.0187869 0.284207i
\(299\) 32.4014i 1.87382i
\(300\) 3.04530 0.404373i 0.175820 0.0233465i
\(301\) 40.5411i 2.33675i
\(302\) −1.82107 27.5490i −0.104791 1.58527i
\(303\) 4.68761 0.269296
\(304\) −1.17787 4.35703i −0.0675557 0.249893i
\(305\) 4.63373i 0.265327i
\(306\) −2.90143 + 0.191793i −0.165864 + 0.0109641i
\(307\) 20.8616i 1.19063i 0.803491 + 0.595316i \(0.202973\pi\)
−0.803491 + 0.595316i \(0.797027\pi\)
\(308\) 6.54879 + 49.3183i 0.373152 + 2.81017i
\(309\) 13.0594i 0.742923i
\(310\) −9.71332 10.9735i −0.551679 0.623255i
\(311\) 7.18365i 0.407348i 0.979039 + 0.203674i \(0.0652882\pi\)
−0.979039 + 0.203674i \(0.934712\pi\)
\(312\) 12.4202 2.49212i 0.703156 0.141088i
\(313\) 7.17232i 0.405404i 0.979241 + 0.202702i \(0.0649722\pi\)
−0.979241 + 0.202702i \(0.935028\pi\)
\(314\) −0.529753 8.01406i −0.0298957 0.452260i
\(315\) 8.56470i 0.482566i
\(316\) 13.9816 1.85656i 0.786527 0.104440i
\(317\) 9.65687 0.542384 0.271192 0.962525i \(-0.412582\pi\)
0.271192 + 0.962525i \(0.412582\pi\)
\(318\) −6.91782 + 0.457288i −0.387932 + 0.0256434i
\(319\) 28.3692i 1.58837i
\(320\) −13.7369 + 5.74388i −0.767917 + 0.321093i
\(321\) 7.89615i 0.440720i
\(322\) −46.9787 + 3.10543i −2.61802 + 0.173059i
\(323\) 2.32002 0.129089
\(324\) −1.98260 + 0.263261i −0.110144 + 0.0146256i
\(325\) 6.87939i 0.381600i
\(326\) −20.1365 + 1.33108i −1.11526 + 0.0737219i
\(327\) −12.4255 −0.687131
\(328\) −1.59678 7.95801i −0.0881673 0.439408i
\(329\) −4.14852 −0.228715
\(330\) 0.938484 + 14.1973i 0.0516618 + 0.781537i
\(331\) 23.0630 1.26765 0.633827 0.773475i \(-0.281483\pi\)
0.633827 + 0.773475i \(0.281483\pi\)
\(332\) 27.7362 3.68298i 1.52222 0.202130i
\(333\) 4.62374i 0.253379i
\(334\) 0.580602 + 8.78330i 0.0317691 + 0.480601i
\(335\) 17.9805i 0.982379i
\(336\) −4.80370 17.7692i −0.262063 0.969388i
\(337\) 7.27230i 0.396147i −0.980187 0.198074i \(-0.936531\pi\)
0.980187 0.198074i \(-0.0634686\pi\)
\(338\) −0.658466 9.96123i −0.0358158 0.541819i
\(339\) 5.43385 0.295126
\(340\) −1.00744 7.58695i −0.0546362 0.411460i
\(341\) −23.8036 + 18.4187i −1.28904 + 0.997431i
\(342\) 1.59226 0.105253i 0.0860998 0.00569145i
\(343\) 33.0231i 1.78308i
\(344\) −4.90213 24.4312i −0.264305 1.31724i
\(345\) −13.4647 −0.724915
\(346\) 2.13381 + 32.2801i 0.114714 + 1.73539i
\(347\) 0.0950891 0.00510465 0.00255233 0.999997i \(-0.499188\pi\)
0.00255233 + 0.999997i \(0.499188\pi\)
\(348\) 1.38160 + 10.4047i 0.0740617 + 0.557752i
\(349\) −17.0287 −0.911527 −0.455763 0.890101i \(-0.650634\pi\)
−0.455763 + 0.890101i \(0.650634\pi\)
\(350\) −9.97441 + 0.659337i −0.533155 + 0.0352431i
\(351\) 4.47873i 0.239057i
\(352\) 9.90995 + 28.9288i 0.528202 + 1.54191i
\(353\) 13.9266i 0.741236i −0.928785 0.370618i \(-0.879146\pi\)
0.928785 0.370618i \(-0.120854\pi\)
\(354\) 17.6217 1.16485i 0.936584 0.0619110i
\(355\) 5.15290i 0.273488i
\(356\) 3.15414 + 23.7536i 0.167169 + 1.25894i
\(357\) 9.46168 0.500765
\(358\) 1.70638 + 25.8139i 0.0901847 + 1.36431i
\(359\) 9.26179i 0.488818i 0.969672 + 0.244409i \(0.0785940\pi\)
−0.969672 + 0.244409i \(0.921406\pi\)
\(360\) −1.03562 5.16133i −0.0545821 0.272026i
\(361\) 17.7268 0.932990
\(362\) −9.98901 + 0.660303i −0.525011 + 0.0347047i
\(363\) 18.2213 0.956372
\(364\) −40.8614 + 5.42582i −2.14172 + 0.284390i
\(365\) 9.22726i 0.482977i
\(366\) −3.51327 + 0.232237i −0.183641 + 0.0121392i
\(367\) 7.70696 0.402300 0.201150 0.979560i \(-0.435532\pi\)
0.201150 + 0.979560i \(0.435532\pi\)
\(368\) −27.9352 + 7.55197i −1.45622 + 0.393673i
\(369\) 2.86966 0.149389
\(370\) −12.1437 + 0.802731i −0.631319 + 0.0417320i
\(371\) 22.5593 1.17122
\(372\) 7.83325 7.91456i 0.406135 0.410351i
\(373\) 34.8945 1.80677 0.903384 0.428833i \(-0.141075\pi\)
0.903384 + 0.428833i \(0.141075\pi\)
\(374\) −15.6842 + 1.03677i −0.811011 + 0.0536102i
\(375\) −12.1647 −0.628182
\(376\) −2.50002 + 0.501629i −0.128929 + 0.0258696i
\(377\) 23.5045 1.21054
\(378\) 6.49370 0.429252i 0.334000 0.0220784i
\(379\) 24.4472i 1.25577i −0.778307 0.627883i \(-0.783921\pi\)
0.778307 0.627883i \(-0.216079\pi\)
\(380\) 0.552869 + 4.16361i 0.0283616 + 0.213589i
\(381\) −4.79137 −0.245469
\(382\) 16.5505 1.09404i 0.846799 0.0559759i
\(383\) 15.2574 0.779614 0.389807 0.920897i \(-0.372542\pi\)
0.389807 + 0.920897i \(0.372542\pi\)
\(384\) −5.04345 10.1274i −0.257373 0.516810i
\(385\) 46.2980i 2.35956i
\(386\) 1.37335 + 20.7760i 0.0699019 + 1.05747i
\(387\) 8.80990 0.447833
\(388\) 1.90450 0.252891i 0.0966864 0.0128386i
\(389\) 5.57353i 0.282589i −0.989968 0.141295i \(-0.954874\pi\)
0.989968 0.141295i \(-0.0451265\pi\)
\(390\) −11.7628 + 0.777556i −0.595633 + 0.0393731i
\(391\) 14.8749i 0.752254i
\(392\) 7.88811 + 39.3127i 0.398410 + 1.98559i
\(393\) 8.53497i 0.430532i
\(394\) 16.5511 1.09407i 0.833831 0.0551186i
\(395\) −13.1253 −0.660407
\(396\) −10.7173 + 1.42311i −0.538564 + 0.0715137i
\(397\) −33.7581 −1.69427 −0.847134 0.531379i \(-0.821674\pi\)
−0.847134 + 0.531379i \(0.821674\pi\)
\(398\) 0.411185 + 6.22038i 0.0206108 + 0.311799i
\(399\) −5.19243 −0.259947
\(400\) −5.93114 + 1.60342i −0.296557 + 0.0801709i
\(401\) 14.4194i 0.720071i −0.932939 0.360035i \(-0.882765\pi\)
0.932939 0.360035i \(-0.117235\pi\)
\(402\) −13.6327 + 0.901161i −0.679937 + 0.0449458i
\(403\) −15.2604 19.7218i −0.760173 0.982415i
\(404\) −9.29364 + 1.23407i −0.462376 + 0.0613971i
\(405\) 1.86118 0.0924827
\(406\) −2.25273 34.0791i −0.111801 1.69132i
\(407\) 24.9944i 1.23893i
\(408\) 5.70188 1.14408i 0.282285 0.0566406i
\(409\) 23.0982i 1.14213i 0.820904 + 0.571066i \(0.193470\pi\)
−0.820904 + 0.571066i \(0.806530\pi\)
\(410\) 0.498205 + 7.53680i 0.0246046 + 0.372216i
\(411\) 1.06842i 0.0527011i
\(412\) 3.43803 + 25.8915i 0.169380 + 1.27558i
\(413\) −57.4651 −2.82767
\(414\) −0.674834 10.2088i −0.0331663 0.501737i
\(415\) −26.0376 −1.27814
\(416\) −23.9682 + 8.21062i −1.17514 + 0.402559i
\(417\) −17.8201 −0.872655
\(418\) 8.60727 0.568965i 0.420995 0.0278290i
\(419\) 10.0417i 0.490567i −0.969451 0.245283i \(-0.921119\pi\)
0.969451 0.245283i \(-0.0788810\pi\)
\(420\) 2.25475 + 16.9803i 0.110021 + 0.828556i
\(421\) −0.0877370 −0.00427604 −0.00213802 0.999998i \(-0.500681\pi\)
−0.00213802 + 0.999998i \(0.500681\pi\)
\(422\) 26.0558 1.72236i 1.26838 0.0838433i
\(423\) 0.901508i 0.0438328i
\(424\) 13.5949 2.72781i 0.660225 0.132474i
\(425\) 3.15820i 0.153195i
\(426\) −3.90690 + 0.258257i −0.189290 + 0.0125126i
\(427\) 11.4569 0.554438
\(428\) −2.07875 15.6549i −0.100480 0.756708i
\(429\) 24.2106i 1.16890i
\(430\) 1.52949 + 23.1381i 0.0737588 + 1.11582i
\(431\) 35.9640i 1.73232i −0.499764 0.866162i \(-0.666580\pi\)
0.499764 0.866162i \(-0.333420\pi\)
\(432\) 3.86139 1.04388i 0.185781 0.0502238i
\(433\) 31.0804i 1.49363i −0.665033 0.746814i \(-0.731583\pi\)
0.665033 0.746814i \(-0.268417\pi\)
\(434\) −27.1320 + 24.0162i −1.30238 + 1.15281i
\(435\) 9.76753i 0.468317i
\(436\) 24.6347 3.27115i 1.17979 0.156660i
\(437\) 8.16311i 0.390494i
\(438\) −6.99605 + 0.462459i −0.334284 + 0.0220971i
\(439\) 12.5154i 0.597328i 0.954358 + 0.298664i \(0.0965410\pi\)
−0.954358 + 0.298664i \(0.903459\pi\)
\(440\) −5.59824 27.9005i −0.266886 1.33010i
\(441\) −14.1762 −0.675057
\(442\) −0.858990 12.9947i −0.0408580 0.618097i
\(443\) 30.0971i 1.42996i −0.699146 0.714979i \(-0.746436\pi\)
0.699146 0.714979i \(-0.253564\pi\)
\(444\) −1.21725 9.16701i −0.0577682 0.435047i
\(445\) 22.2988i 1.05707i
\(446\) −1.04455 15.8019i −0.0494608 0.748240i
\(447\) −3.47676 −0.164445
\(448\) 14.2017 + 33.9645i 0.670969 + 1.60467i
\(449\) 21.2101i 1.00097i 0.865746 + 0.500483i \(0.166844\pi\)
−0.865746 + 0.500483i \(0.833156\pi\)
\(450\) −0.143279 2.16752i −0.00675426 0.102178i
\(451\) 15.5125 0.730453
\(452\) −10.7731 + 1.43052i −0.506726 + 0.0672861i
\(453\) −19.5226 −0.917252
\(454\) −26.0518 + 1.72210i −1.22267 + 0.0808222i
\(455\) 38.3590 1.79830
\(456\) −3.12911 + 0.627857i −0.146534 + 0.0294021i
\(457\) 11.6380i 0.544401i 0.962241 + 0.272200i \(0.0877513\pi\)
−0.962241 + 0.272200i \(0.912249\pi\)
\(458\) 36.8282 2.43445i 1.72087 0.113754i
\(459\) 2.05610i 0.0959706i
\(460\) 26.6951 3.54473i 1.24466 0.165274i
\(461\) 28.4385i 1.32451i −0.749277 0.662256i \(-0.769599\pi\)
0.749277 0.662256i \(-0.230401\pi\)
\(462\) 35.1028 2.32040i 1.63313 0.107955i
\(463\) −24.5199 −1.13954 −0.569768 0.821806i \(-0.692967\pi\)
−0.569768 + 0.821806i \(0.692967\pi\)
\(464\) −5.47833 20.2647i −0.254325 0.940764i
\(465\) −8.19560 + 6.34159i −0.380062 + 0.294084i
\(466\) 1.06786 + 16.1545i 0.0494678 + 0.748345i
\(467\) 18.0299i 0.834326i −0.908832 0.417163i \(-0.863024\pi\)
0.908832 0.417163i \(-0.136976\pi\)
\(468\) −1.17908 8.87952i −0.0545028 0.410456i
\(469\) 44.4567 2.05282
\(470\) 2.36770 0.156512i 0.109214 0.00721934i
\(471\) −5.67916 −0.261682
\(472\) −34.6301 + 6.94854i −1.59398 + 0.319833i
\(473\) 47.6235 2.18973
\(474\) −0.657826 9.95155i −0.0302150 0.457090i
\(475\) 1.73317i 0.0795234i
\(476\) −18.7587 + 2.49089i −0.859804 + 0.114170i
\(477\) 4.90231i 0.224461i
\(478\) 1.36096 + 20.5885i 0.0622489 + 0.941697i
\(479\) 4.50154i 0.205681i 0.994698 + 0.102840i \(0.0327931\pi\)
−0.994698 + 0.102840i \(0.967207\pi\)
\(480\) 3.41200 + 9.96021i 0.155736 + 0.454619i
\(481\) −20.7085 −0.944225
\(482\) −37.8811 + 2.50405i −1.72544 + 0.114056i
\(483\) 33.2914i 1.51481i
\(484\) −36.1256 + 4.79697i −1.64207 + 0.218044i
\(485\) −1.78787 −0.0811828
\(486\) 0.0932801 + 1.41113i 0.00423127 + 0.0640103i
\(487\) 40.6208 1.84071 0.920353 0.391089i \(-0.127902\pi\)
0.920353 + 0.391089i \(0.127902\pi\)
\(488\) 6.90426 1.38534i 0.312541 0.0627114i
\(489\) 14.2698i 0.645301i
\(490\) −2.46114 37.2320i −0.111183 1.68197i
\(491\) −4.35303 −0.196449 −0.0982247 0.995164i \(-0.531316\pi\)
−0.0982247 + 0.995164i \(0.531316\pi\)
\(492\) −5.68939 + 0.755471i −0.256497 + 0.0340593i
\(493\) 10.7905 0.485979
\(494\) 0.471401 + 7.13132i 0.0212093 + 0.320853i
\(495\) 10.0609 0.452205
\(496\) −13.4466 + 17.7536i −0.603769 + 0.797159i
\(497\) 12.7405 0.571491
\(498\) −1.30497 19.7415i −0.0584773 0.884640i
\(499\) −10.1696 −0.455255 −0.227627 0.973748i \(-0.573097\pi\)
−0.227627 + 0.973748i \(0.573097\pi\)
\(500\) 24.1177 3.20249i 1.07858 0.143220i
\(501\) 6.22429 0.278081
\(502\) −0.427049 6.46037i −0.0190601 0.288340i
\(503\) 17.3892i 0.775345i 0.921797 + 0.387672i \(0.126721\pi\)
−0.921797 + 0.387672i \(0.873279\pi\)
\(504\) −12.7614 + 2.56057i −0.568437 + 0.114057i
\(505\) 8.72448 0.388234
\(506\) −3.64794 55.1857i −0.162171 2.45330i
\(507\) −7.05902 −0.313502
\(508\) 9.49936 1.26138i 0.421466 0.0559648i
\(509\) 3.57970i 0.158668i 0.996848 + 0.0793338i \(0.0252793\pi\)
−0.996848 + 0.0793338i \(0.974721\pi\)
\(510\) −5.40009 + 0.356961i −0.239120 + 0.0158065i
\(511\) 22.8144 1.00925
\(512\) 12.6653 + 18.7508i 0.559732 + 0.828674i
\(513\) 1.12836i 0.0498182i
\(514\) 0.0397869 + 0.601893i 0.00175492 + 0.0265484i
\(515\) 24.3059i 1.07104i
\(516\) −17.4665 + 2.31931i −0.768920 + 0.102102i
\(517\) 4.87326i 0.214326i
\(518\) 1.98475 + 30.0252i 0.0872049 + 1.31923i
\(519\) 22.8753 1.00411
\(520\) 23.1162 4.63827i 1.01371 0.203402i
\(521\) 4.58594 0.200914 0.100457 0.994941i \(-0.467970\pi\)
0.100457 + 0.994941i \(0.467970\pi\)
\(522\) 7.40568 0.489537i 0.324138 0.0214264i
\(523\) −14.8265 −0.648320 −0.324160 0.946002i \(-0.605082\pi\)
−0.324160 + 0.946002i \(0.605082\pi\)
\(524\) −2.24693 16.9214i −0.0981575 0.739215i
\(525\) 7.06836i 0.308489i
\(526\) 0.0939101 + 1.42067i 0.00409468 + 0.0619440i
\(527\) −7.00575 9.05393i −0.305175 0.394395i
\(528\) 20.8734 5.64289i 0.908398 0.245575i
\(529\) 29.3380 1.27556
\(530\) −12.8753 + 0.851094i −0.559267 + 0.0369692i
\(531\) 12.4876i 0.541917i
\(532\) 10.2945 1.36697i 0.446323 0.0592655i
\(533\) 12.8524i 0.556701i
\(534\) 16.9068 1.11759i 0.731630 0.0483629i
\(535\) 14.6961i 0.635370i
\(536\) 26.7909 5.37560i 1.15719 0.232190i
\(537\) 18.2930 0.789403
\(538\) 11.3556 0.750639i 0.489575 0.0323623i
\(539\) −76.6319 −3.30077
\(540\) −3.68997 + 0.489976i −0.158791 + 0.0210852i
\(541\) 25.4235 1.09304 0.546521 0.837445i \(-0.315952\pi\)
0.546521 + 0.837445i \(0.315952\pi\)
\(542\) −0.163681 2.47615i −0.00703069 0.106360i
\(543\) 7.07871i 0.303777i
\(544\) −11.0033 + 3.76934i −0.471765 + 0.161609i
\(545\) −23.1260 −0.990611
\(546\) 1.92251 + 29.0835i 0.0822756 + 1.24466i
\(547\) 29.6160i 1.26629i −0.774033 0.633145i \(-0.781764\pi\)
0.774033 0.633145i \(-0.218236\pi\)
\(548\) 0.281273 + 2.11824i 0.0120154 + 0.0904867i
\(549\) 2.48968i 0.106257i
\(550\) −0.774522 11.7169i −0.0330257 0.499611i
\(551\) −5.92166 −0.252271
\(552\) 4.02552 + 20.0624i 0.171337 + 0.853912i
\(553\) 32.4524i 1.38001i
\(554\) −18.1433 + 1.19932i −0.770834 + 0.0509544i
\(555\) 8.60561i 0.365288i
\(556\) 35.3301 4.69135i 1.49833 0.198957i
\(557\) 38.9913i 1.65211i 0.563587 + 0.826057i \(0.309421\pi\)
−0.563587 + 0.826057i \(0.690579\pi\)
\(558\) −5.21891 5.89602i −0.220934 0.249598i
\(559\) 39.4572i 1.66886i
\(560\) −8.94054 33.0716i −0.377807 1.39753i
\(561\) 11.1146i 0.469259i
\(562\) −1.17622 17.7938i −0.0496158 0.750585i
\(563\) 21.7911i 0.918387i 0.888336 + 0.459193i \(0.151862\pi\)
−0.888336 + 0.459193i \(0.848138\pi\)
\(564\) 0.237332 + 1.78733i 0.00999348 + 0.0752600i
\(565\) 10.1134 0.425472
\(566\) 1.42466 0.0941741i 0.0598829 0.00395843i
\(567\) 4.60176i 0.193256i
\(568\) 7.67782 1.54056i 0.322154 0.0646403i
\(569\) 2.53422i 0.106240i 0.998588 + 0.0531201i \(0.0169166\pi\)
−0.998588 + 0.0531201i \(0.983083\pi\)
\(570\) 2.96349 0.195895i 0.124127 0.00820515i
\(571\) −28.2369 −1.18168 −0.590838 0.806790i \(-0.701203\pi\)
−0.590838 + 0.806790i \(0.701203\pi\)
\(572\) −6.37370 47.9998i −0.266498 2.00697i
\(573\) 11.7285i 0.489967i
\(574\) 18.6347 1.23181i 0.777798 0.0514147i
\(575\) 11.1123 0.463414
\(576\) −7.38076 + 3.08615i −0.307532 + 0.128590i
\(577\) 10.9360 0.455273 0.227636 0.973746i \(-0.426900\pi\)
0.227636 + 0.973746i \(0.426900\pi\)
\(578\) 1.19141 + 18.0236i 0.0495563 + 0.749684i
\(579\) 14.7229 0.611863
\(580\) 2.57141 + 19.3651i 0.106772 + 0.804091i
\(581\) 64.3779i 2.67085i
\(582\) −0.0896057 1.35555i −0.00371428 0.0561893i
\(583\) 26.5003i 1.09753i
\(584\) 13.7486 2.75866i 0.568921 0.114154i
\(585\) 8.33572i 0.344639i
\(586\) 2.17159 + 32.8517i 0.0897077 + 1.35709i
\(587\) −1.71705 −0.0708703 −0.0354351 0.999372i \(-0.511282\pi\)
−0.0354351 + 0.999372i \(0.511282\pi\)
\(588\) 28.1057 3.73204i 1.15906 0.153907i
\(589\) 3.84465 + 4.96866i 0.158416 + 0.204730i
\(590\) 32.7972 2.16799i 1.35024 0.0892547i
\(591\) 11.7289i 0.482463i
\(592\) 4.82664 + 17.8540i 0.198374 + 0.733797i
\(593\) −29.9109 −1.22829 −0.614146 0.789192i \(-0.710499\pi\)
−0.614146 + 0.789192i \(0.710499\pi\)
\(594\) 0.504242 + 7.62813i 0.0206893 + 0.312986i
\(595\) 17.6099 0.721935
\(596\) 6.89302 0.915296i 0.282349 0.0374920i
\(597\) 4.40807 0.180410
\(598\) 45.7227 3.02240i 1.86974 0.123595i
\(599\) 35.8599i 1.46519i 0.680663 + 0.732597i \(0.261692\pi\)
−0.680663 + 0.732597i \(0.738308\pi\)
\(600\) 0.854690 + 4.25960i 0.0348926 + 0.173897i
\(601\) 6.65498i 0.271462i −0.990746 0.135731i \(-0.956662\pi\)
0.990746 0.135731i \(-0.0433383\pi\)
\(602\) 57.2089 3.78167i 2.33166 0.154129i
\(603\) 9.66081i 0.393418i
\(604\) 38.7055 5.13955i 1.57490 0.209125i
\(605\) 33.9132 1.37877
\(606\) 0.437260 + 6.61484i 0.0177625 + 0.268710i
\(607\) 39.8461i 1.61730i −0.588287 0.808652i \(-0.700197\pi\)
0.588287 0.808652i \(-0.299803\pi\)
\(608\) 6.03848 2.06856i 0.244893 0.0838912i
\(609\) −24.1502 −0.978615
\(610\) −6.53882 + 0.432235i −0.264749 + 0.0175007i
\(611\) 4.03761 0.163344
\(612\) −0.541292 4.07642i −0.0218804 0.164780i
\(613\) 18.4912i 0.746853i 0.927660 + 0.373427i \(0.121817\pi\)
−0.927660 + 0.373427i \(0.878183\pi\)
\(614\) −29.4385 + 1.94597i −1.18804 + 0.0785329i
\(615\) 5.34095 0.215368
\(616\) −68.9839 + 13.8416i −2.77944 + 0.557695i
\(617\) −17.7824 −0.715893 −0.357946 0.933742i \(-0.616523\pi\)
−0.357946 + 0.933742i \(0.616523\pi\)
\(618\) 18.4286 1.21818i 0.741305 0.0490024i
\(619\) 7.76041 0.311917 0.155959 0.987764i \(-0.450153\pi\)
0.155959 + 0.987764i \(0.450153\pi\)
\(620\) 14.5791 14.7304i 0.585510 0.591587i
\(621\) −7.23450 −0.290310
\(622\) −10.1371 + 0.670092i −0.406461 + 0.0268682i
\(623\) −55.1338 −2.20889
\(624\) 4.67527 + 17.2941i 0.187160 + 0.692318i
\(625\) −14.9606 −0.598424
\(626\) −10.1211 + 0.669035i −0.404521 + 0.0267400i
\(627\) 6.09954i 0.243592i
\(628\) 11.2595 1.49510i 0.449303 0.0596612i
\(629\) −9.50688 −0.379064
\(630\) 12.0859 0.798915i 0.481515 0.0318296i
\(631\) 7.56577 0.301189 0.150594 0.988596i \(-0.451881\pi\)
0.150594 + 0.988596i \(0.451881\pi\)
\(632\) 3.92406 + 19.5567i 0.156091 + 0.777925i
\(633\) 18.4644i 0.733895i
\(634\) 0.900794 + 13.6271i 0.0357751 + 0.541203i
\(635\) −8.91759 −0.353884
\(636\) −1.29059 9.71931i −0.0511752 0.385396i
\(637\) 63.4913i 2.51562i
\(638\) 40.0327 2.64628i 1.58491 0.104767i
\(639\) 2.76862i 0.109525i
\(640\) −9.38677 18.8488i −0.371045 0.745066i
\(641\) 39.4862i 1.55961i −0.626021 0.779806i \(-0.715318\pi\)
0.626021 0.779806i \(-0.284682\pi\)
\(642\) −11.1425 + 0.736553i −0.439760 + 0.0290694i
\(643\) 22.3601 0.881797 0.440899 0.897557i \(-0.354660\pi\)
0.440899 + 0.897557i \(0.354660\pi\)
\(644\) −8.76434 66.0035i −0.345364 2.60090i
\(645\) 16.3968 0.645624
\(646\) 0.216411 + 3.27386i 0.00851459 + 0.128808i
\(647\) −10.3235 −0.405858 −0.202929 0.979194i \(-0.565046\pi\)
−0.202929 + 0.979194i \(0.565046\pi\)
\(648\) −0.556434 2.77315i −0.0218588 0.108940i
\(649\) 67.5041i 2.64977i
\(650\) 9.70774 0.641710i 0.380769 0.0251699i
\(651\) 15.6796 + 20.2636i 0.614531 + 0.794193i
\(652\) −3.75667 28.2912i −0.147123 1.10797i
\(653\) −30.8722 −1.20812 −0.604060 0.796938i \(-0.706451\pi\)
−0.604060 + 0.796938i \(0.706451\pi\)
\(654\) −1.15905 17.5340i −0.0453224 0.685635i
\(655\) 15.8851i 0.620683i
\(656\) 11.0809 2.99559i 0.432636 0.116958i
\(657\) 4.95775i 0.193420i
\(658\) −0.386974 5.85412i −0.0150858 0.228217i
\(659\) 3.86200i 0.150442i −0.997167 0.0752212i \(-0.976034\pi\)
0.997167 0.0752212i \(-0.0239663\pi\)
\(660\) −19.9468 + 2.64865i −0.776427 + 0.103099i
\(661\) 3.60999 0.140412 0.0702062 0.997532i \(-0.477634\pi\)
0.0702062 + 0.997532i \(0.477634\pi\)
\(662\) 2.15131 + 32.5449i 0.0836132 + 1.26489i
\(663\) −9.20872 −0.357637
\(664\) 7.78442 + 38.7960i 0.302094 + 1.50558i
\(665\) −9.66405 −0.374756
\(666\) −6.52472 + 0.431303i −0.252828 + 0.0167126i
\(667\) 37.9669i 1.47008i
\(668\) −12.3403 + 1.63861i −0.477459 + 0.0633999i
\(669\) −11.1980 −0.432939
\(670\) −25.3729 + 1.67722i −0.980240 + 0.0647967i
\(671\) 13.4584i 0.519555i
\(672\) 24.6266 8.43617i 0.949991 0.325432i
\(673\) 29.1976i 1.12549i 0.826632 + 0.562743i \(0.190254\pi\)
−0.826632 + 0.562743i \(0.809746\pi\)
\(674\) 10.2622 0.678361i 0.395285 0.0261295i
\(675\) −1.53601 −0.0591212
\(676\) 13.9952 1.85837i 0.538277 0.0714757i
\(677\) 17.6108i 0.676837i −0.940996 0.338418i \(-0.890108\pi\)
0.940996 0.338418i \(-0.109892\pi\)
\(678\) 0.506870 + 7.66789i 0.0194662 + 0.294483i
\(679\) 4.42049i 0.169643i
\(680\) 10.6122 2.12934i 0.406960 0.0816566i
\(681\) 18.4616i 0.707450i
\(682\) −28.2117 31.8720i −1.08028 1.22044i
\(683\) 23.8940i 0.914278i −0.889395 0.457139i \(-0.848874\pi\)
0.889395 0.457139i \(-0.151126\pi\)
\(684\) 0.297053 + 2.23708i 0.0113581 + 0.0855369i
\(685\) 1.98851i 0.0759772i
\(686\) −46.6000 + 3.08040i −1.77920 + 0.117610i
\(687\) 26.0983i 0.995712i
\(688\) 34.0184 9.19650i 1.29694 0.350613i
\(689\) −21.9561 −0.836462
\(690\) −1.25599 19.0005i −0.0478146 0.723336i
\(691\) 24.7826i 0.942775i 0.881926 + 0.471388i \(0.156247\pi\)
−0.881926 + 0.471388i \(0.843753\pi\)
\(692\) −45.3525 + 6.02218i −1.72404 + 0.228929i
\(693\) 24.8756i 0.944947i
\(694\) 0.00886992 + 0.134183i 0.000336697 + 0.00509353i
\(695\) −33.1664 −1.25807
\(696\) −14.5536 + 2.92018i −0.551653 + 0.110689i
\(697\) 5.90032i 0.223490i
\(698\) −1.58844 24.0298i −0.0601233 0.909542i
\(699\) 11.4479 0.433000
\(700\) −1.86083 14.0137i −0.0703326 0.529669i
\(701\) 21.5476 0.813841 0.406921 0.913464i \(-0.366603\pi\)
0.406921 + 0.913464i \(0.366603\pi\)
\(702\) −6.32009 + 0.417776i −0.238536 + 0.0157679i
\(703\) 5.21723 0.196772
\(704\) −39.8980 + 16.6827i −1.50371 + 0.628754i
\(705\) 1.67787i 0.0631921i
\(706\) 19.6522 1.29907i 0.739622 0.0488911i
\(707\) 21.5712i 0.811270i
\(708\) 3.28751 + 24.7580i 0.123552 + 0.930461i
\(709\) 34.9369i 1.31208i −0.754724 0.656042i \(-0.772229\pi\)
0.754724 0.656042i \(-0.227771\pi\)
\(710\) −7.27144 + 0.480663i −0.272892 + 0.0180390i
\(711\) −7.05216 −0.264477
\(712\) −33.2252 + 6.66665i −1.24517 + 0.249843i
\(713\) 31.8567 24.6501i 1.19304 0.923153i
\(714\) 0.882586 + 13.3517i 0.0330300 + 0.499675i
\(715\) 45.0602i 1.68516i
\(716\) −36.2677 + 4.81585i −1.35539 + 0.179977i
\(717\) 14.5901 0.544876
\(718\) −13.0696 + 0.863940i −0.487754 + 0.0322419i
\(719\) −8.11177 −0.302518 −0.151259 0.988494i \(-0.548333\pi\)
−0.151259 + 0.988494i \(0.548333\pi\)
\(720\) 7.18673 1.94285i 0.267834 0.0724058i
\(721\) −60.0962 −2.23810
\(722\) 1.65356 + 25.0149i 0.0615390 + 0.930958i
\(723\) 26.8444i 0.998356i
\(724\) −1.86355 14.0342i −0.0692583 0.521578i
\(725\) 8.06105i 0.299380i
\(726\) 1.69969 + 25.7127i 0.0630813 + 0.954289i
\(727\) 0.657750i 0.0243946i −0.999926 0.0121973i \(-0.996117\pi\)
0.999926 0.0121973i \(-0.00388262\pi\)
\(728\) −11.4681 57.1548i −0.425037 2.11830i
\(729\) 1.00000 0.0370370
\(730\) −13.0209 + 0.860719i −0.481925 + 0.0318566i
\(731\) 18.1141i 0.669972i
\(732\) −0.655435 4.93603i −0.0242256 0.182441i
\(733\) 2.37071 0.0875640 0.0437820 0.999041i \(-0.486059\pi\)
0.0437820 + 0.999041i \(0.486059\pi\)
\(734\) 0.718905 + 10.8756i 0.0265353 + 0.401424i
\(735\) −26.3844 −0.973204
\(736\) −13.2626 38.7159i −0.488867 1.42709i
\(737\) 52.2232i 1.92367i
\(738\) 0.267682 + 4.04948i 0.00985352 + 0.149063i
\(739\) −18.4019 −0.676925 −0.338462 0.940980i \(-0.609907\pi\)
−0.338462 + 0.940980i \(0.609907\pi\)
\(740\) −2.26552 17.0615i −0.0832823 0.627192i
\(741\) 5.05361 0.185649
\(742\) 2.10433 + 31.8341i 0.0772523 + 1.16867i
\(743\) 30.5011 1.11898 0.559489 0.828838i \(-0.310997\pi\)
0.559489 + 0.828838i \(0.310997\pi\)
\(744\) 11.8992 + 10.3155i 0.436245 + 0.378184i
\(745\) −6.47087 −0.237074
\(746\) 3.25496 + 49.2408i 0.119173 + 1.80283i
\(747\) −13.9898 −0.511862
\(748\) −2.92605 22.0358i −0.106987 0.805709i
\(749\) 36.3362 1.32770
\(750\) −1.13472 17.1660i −0.0414342 0.626814i
\(751\) 38.1864i 1.39344i −0.717343 0.696721i \(-0.754642\pi\)
0.717343 0.696721i \(-0.245358\pi\)
\(752\) −0.941068 3.48107i −0.0343172 0.126942i
\(753\) −4.57814 −0.166837
\(754\) 2.19250 + 33.1680i 0.0798462 + 1.20791i
\(755\) −36.3351 −1.32237
\(756\) 1.21147 + 9.12344i 0.0440606 + 0.331816i
\(757\) 15.3976i 0.559637i 0.960053 + 0.279818i \(0.0902742\pi\)
−0.960053 + 0.279818i \(0.909726\pi\)
\(758\) 34.4982 2.28043i 1.25303 0.0828291i
\(759\) −39.1074 −1.41951
\(760\) −5.82383 + 1.16855i −0.211253 + 0.0423879i
\(761\) 30.3357i 1.09967i −0.835274 0.549833i \(-0.814691\pi\)
0.835274 0.549833i \(-0.185309\pi\)
\(762\) −0.446939 6.76126i −0.0161909 0.244935i
\(763\) 57.1791i 2.07002i
\(764\) 3.08767 + 23.2530i 0.111708 + 0.841263i
\(765\) 3.82677i 0.138357i
\(766\) 1.42321 + 21.5302i 0.0514225 + 0.777917i
\(767\) 55.9288 2.01947
\(768\) 13.8206 8.06167i 0.498709 0.290900i
\(769\) 2.52944 0.0912138 0.0456069 0.998959i \(-0.485478\pi\)
0.0456069 + 0.998959i \(0.485478\pi\)
\(770\) 65.3326 4.31868i 2.35442 0.155634i
\(771\) 0.426532 0.0153612
\(772\) −29.1896 + 3.87597i −1.05056 + 0.139499i
\(773\) 21.6478i 0.778616i −0.921108 0.389308i \(-0.872714\pi\)
0.921108 0.389308i \(-0.127286\pi\)
\(774\) 0.821788 + 12.4320i 0.0295386 + 0.446857i
\(775\) 6.76375 5.23366i 0.242961 0.187998i
\(776\) 0.534515 + 2.66392i 0.0191880 + 0.0956291i
\(777\) 21.2773 0.763320
\(778\) 7.86500 0.519899i 0.281974 0.0186393i
\(779\) 3.23801i 0.116014i
\(780\) −2.19447 16.5264i −0.0785747 0.591739i
\(781\) 14.9663i 0.535536i
\(782\) 20.9904 1.38753i 0.750616 0.0496179i
\(783\) 5.24803i 0.187549i
\(784\) −54.7397 + 14.7983i −1.95499 + 0.528510i
\(785\) −10.5699 −0.377257
\(786\) −12.0440 + 0.796143i −0.429595 + 0.0283975i
\(787\) −50.1436 −1.78742 −0.893712 0.448640i \(-0.851908\pi\)
−0.893712 + 0.448640i \(0.851908\pi\)
\(788\) 3.08777 + 23.2537i 0.109997 + 0.828379i
\(789\) 1.00675 0.0358414
\(790\) −1.22433 18.5216i −0.0435598 0.658969i
\(791\) 25.0053i 0.889085i
\(792\) −3.00790 14.9908i −0.106881 0.532674i
\(793\) −11.1506 −0.395969
\(794\) −3.14895 47.6371i −0.111752 1.69058i
\(795\) 9.12408i 0.323598i
\(796\) −8.73943 + 1.16047i −0.309761 + 0.0411319i
\(797\) 43.4109i 1.53769i −0.639433 0.768847i \(-0.720831\pi\)
0.639433 0.768847i \(-0.279169\pi\)
\(798\) −0.484350 7.32722i −0.0171458 0.259381i
\(799\) 1.85359 0.0655753
\(800\) −2.81589 8.22007i −0.0995569 0.290623i
\(801\) 11.9810i 0.423329i
\(802\) 20.3477 1.34504i 0.718503 0.0474951i
\(803\) 26.8000i 0.945751i
\(804\) −2.54332 19.1535i −0.0896958 0.675492i
\(805\) 61.9613i 2.18385i
\(806\) 26.4067 23.3741i 0.930135 0.823317i
\(807\) 8.04715i 0.283273i
\(808\) −2.60834 12.9995i −0.0917612 0.457319i
\(809\) 28.7942i 1.01235i 0.862430 + 0.506176i \(0.168941\pi\)
−0.862430 + 0.506176i \(0.831059\pi\)
\(810\) 0.173611 + 2.62637i 0.00610006 + 0.0922813i
\(811\) 28.5531i 1.00263i −0.865264 0.501317i \(-0.832849\pi\)
0.865264 0.501317i \(-0.167151\pi\)
\(812\) 47.8801 6.35781i 1.68026 0.223115i
\(813\) −1.75472 −0.0615409
\(814\) −35.2705 + 2.33148i −1.23623 + 0.0817184i
\(815\) 26.5586i 0.930306i
\(816\) 2.14633 + 7.93940i 0.0751365 + 0.277935i
\(817\) 9.94073i 0.347782i
\(818\) −32.5946 + 2.15460i −1.13964 + 0.0753338i
\(819\) 20.6100 0.720173
\(820\) −10.5890 + 1.40607i −0.369783 + 0.0491020i
\(821\) 1.58649i 0.0553689i 0.999617 + 0.0276845i \(0.00881336\pi\)
−0.999617 + 0.0276845i \(0.991187\pi\)
\(822\) 1.50768 0.0996620i 0.0525863 0.00347611i
\(823\) −38.7648 −1.35126 −0.675629 0.737242i \(-0.736128\pi\)
−0.675629 + 0.737242i \(0.736128\pi\)
\(824\) −36.2157 + 7.26669i −1.26163 + 0.253147i
\(825\) −8.30319 −0.289080
\(826\) −5.36035 81.0910i −0.186510 2.82152i
\(827\) 42.9257 1.49267 0.746336 0.665569i \(-0.231811\pi\)
0.746336 + 0.665569i \(0.231811\pi\)
\(828\) 14.3431 1.90456i 0.498457 0.0661882i
\(829\) 45.1493i 1.56810i 0.620698 + 0.784050i \(0.286849\pi\)
−0.620698 + 0.784050i \(0.713151\pi\)
\(830\) −2.42879 36.7425i −0.0843045 1.27535i
\(831\) 12.8572i 0.446013i
\(832\) −13.8220 33.0564i −0.479193 1.14603i
\(833\) 29.1477i 1.00991i
\(834\) −1.66226 25.1466i −0.0575594 0.870754i
\(835\) 11.5845 0.400899
\(836\) 1.60577 + 12.0929i 0.0555368 + 0.418243i
\(837\) −4.40344 + 3.40730i −0.152205 + 0.117773i
\(838\) 14.1701 0.936686i 0.489499 0.0323573i
\(839\) 5.92237i 0.204463i −0.994761 0.102231i \(-0.967402\pi\)
0.994761 0.102231i \(-0.0325982\pi\)
\(840\) −23.7512 + 4.76569i −0.819495 + 0.164432i
\(841\) 1.45816 0.0502814
\(842\) −0.00818411 0.123809i −0.000282043 0.00426673i
\(843\) −12.6095 −0.434296
\(844\) 4.86097 + 36.6075i 0.167321 + 1.26008i
\(845\) −13.1381 −0.451964
\(846\) 1.27215 0.0840927i 0.0437374 0.00289117i
\(847\) 83.8502i 2.88113i
\(848\) 5.11744 + 18.9297i 0.175733 + 0.650049i
\(849\) 1.00958i 0.0346488i
\(850\) 4.45664 0.294597i 0.152862 0.0101046i
\(851\) 33.4504i 1.14667i
\(852\) −0.728872 5.48907i −0.0249707 0.188052i
\(853\) 4.95354 0.169606 0.0848030 0.996398i \(-0.472974\pi\)
0.0848030 + 0.996398i \(0.472974\pi\)
\(854\) 1.06870 + 16.1672i 0.0365701 + 0.553231i
\(855\) 2.10008i 0.0718211i
\(856\) 21.8972 4.39368i 0.748432 0.150173i
\(857\) 3.47072 0.118558 0.0592788 0.998241i \(-0.481120\pi\)
0.0592788 + 0.998241i \(0.481120\pi\)
\(858\) −34.1643 + 2.25836i −1.16635 + 0.0770992i
\(859\) 19.3251 0.659364 0.329682 0.944092i \(-0.393058\pi\)
0.329682 + 0.944092i \(0.393058\pi\)
\(860\) −32.5083 + 4.31664i −1.10852 + 0.147196i
\(861\) 13.2055i 0.450042i
\(862\) 50.7500 3.35472i 1.72855 0.114262i
\(863\) −14.9941 −0.510406 −0.255203 0.966887i \(-0.582142\pi\)
−0.255203 + 0.966887i \(0.582142\pi\)
\(864\) 1.83325 + 5.35156i 0.0623684 + 0.182064i
\(865\) 42.5750 1.44759
\(866\) 43.8586 2.89918i 1.49037 0.0985181i
\(867\) 12.7724 0.433775
\(868\) −36.4209 36.0467i −1.23621 1.22351i
\(869\) −38.1217 −1.29319
\(870\) 13.7833 0.911115i 0.467297 0.0308897i
\(871\) −43.2681 −1.46609
\(872\) 6.91396 + 34.4578i 0.234136 + 1.16689i
\(873\) −0.960609 −0.0325117
\(874\) −11.5192 + 0.761455i −0.389644 + 0.0257566i
\(875\) 55.9790i 1.89243i
\(876\) −1.30518 9.82922i −0.0440981 0.332099i
\(877\) −14.0223 −0.473500 −0.236750 0.971571i \(-0.576082\pi\)
−0.236750 + 0.971571i \(0.576082\pi\)
\(878\) −17.6609 + 1.16744i −0.596027 + 0.0393991i
\(879\) 23.2804 0.785227
\(880\) 38.8491 10.5024i 1.30960 0.354037i
\(881\) 15.4622i 0.520933i −0.965483 0.260467i \(-0.916124\pi\)
0.965483 0.260467i \(-0.0838764\pi\)
\(882\) −1.32236 20.0045i −0.0445260 0.673587i
\(883\) 5.82313 0.195964 0.0979820 0.995188i \(-0.468761\pi\)
0.0979820 + 0.995188i \(0.468761\pi\)
\(884\) 18.2572 2.42430i 0.614056 0.0815380i
\(885\) 23.2417i 0.781262i
\(886\) 42.4711 2.80746i 1.42684 0.0943185i
\(887\) 4.05371i 0.136110i 0.997682 + 0.0680551i \(0.0216794\pi\)
−0.997682 + 0.0680551i \(0.978321\pi\)
\(888\) 12.8223 2.57280i 0.430290 0.0863377i
\(889\) 22.0487i 0.739491i
\(890\) 31.4666 2.08004i 1.05476 0.0697230i
\(891\) 5.40568 0.181097
\(892\) 22.2011 2.94800i 0.743348 0.0987063i
\(893\) −1.01722 −0.0340401
\(894\) −0.324312 4.90617i −0.0108466 0.164087i
\(895\) 34.0466 1.13805
\(896\) −46.6037 + 23.2088i −1.55692 + 0.775350i
\(897\) 32.4014i 1.08185i
\(898\) −29.9303 + 1.97848i −0.998786 + 0.0660227i
\(899\) 17.8816 + 23.1094i 0.596385 + 0.770742i
\(900\) 3.04530 0.404373i 0.101510 0.0134791i
\(901\) −10.0796 −0.335802
\(902\) 1.44700 + 21.8902i 0.0481799 + 0.728863i
\(903\) 40.5411i 1.34912i
\(904\) −3.02358 15.0689i −0.100563 0.501184i
\(905\) 13.1748i 0.437944i
\(906\) −1.82107 27.5490i −0.0605010 0.915255i
\(907\) 13.0481i 0.433255i 0.976254 + 0.216627i \(0.0695056\pi\)
−0.976254 + 0.216627i \(0.930494\pi\)
\(908\) −4.86023 36.6019i −0.161292 1.21468i
\(909\) 4.68761 0.155478
\(910\) 3.57813 + 54.1296i 0.118614 + 1.79438i
\(911\) 56.4537 1.87039 0.935197 0.354129i \(-0.115223\pi\)
0.935197 + 0.354129i \(0.115223\pi\)
\(912\) −1.17787 4.35703i −0.0390033 0.144276i
\(913\) −75.6246 −2.50281
\(914\) −16.4227 + 1.08559i −0.543215 + 0.0359081i
\(915\) 4.63373i 0.153187i
\(916\) 6.87067 + 51.7424i 0.227013 + 1.70962i
\(917\) 39.2759 1.29700
\(918\) −2.90143 + 0.191793i −0.0957616 + 0.00633012i
\(919\) 23.4228i 0.772648i 0.922363 + 0.386324i \(0.126255\pi\)
−0.922363 + 0.386324i \(0.873745\pi\)
\(920\) 7.49221 + 37.3397i 0.247011 + 1.23105i
\(921\) 20.8616i 0.687412i
\(922\) 40.1305 2.65274i 1.32163 0.0873635i
\(923\) −12.3999 −0.408148
\(924\) 6.54879 + 49.3183i 0.215439 + 1.62245i
\(925\) 7.10213i 0.233516i
\(926\) −2.28722 34.6008i −0.0751626 1.13705i
\(927\) 13.0594i 0.428927i
\(928\) 28.0852 9.62095i 0.921941 0.315823i
\(929\) 39.8933i 1.30886i −0.756123 0.654429i \(-0.772909\pi\)
0.756123 0.654429i \(-0.227091\pi\)
\(930\) −9.71332 10.9735i −0.318512 0.359837i
\(931\) 15.9958i 0.524242i
\(932\) −22.6966 + 3.01379i −0.743452 + 0.0987201i
\(933\) 7.18365i 0.235182i
\(934\) 25.4427 1.68183i 0.832509 0.0550313i
\(935\) 20.6863i 0.676514i
\(936\) 12.4202 2.49212i 0.405967 0.0814574i
\(937\) −28.1073 −0.918224 −0.459112 0.888378i \(-0.651832\pi\)
−0.459112 + 0.888378i \(0.651832\pi\)
\(938\) 4.14692 + 62.7344i 0.135402 + 2.04835i
\(939\) 7.17232i 0.234060i
\(940\) 0.441717 + 3.32654i 0.0144072 + 0.108500i
\(941\) 31.4892i 1.02652i −0.858233 0.513260i \(-0.828438\pi\)
0.858233 0.513260i \(-0.171562\pi\)
\(942\) −0.529753 8.01406i −0.0172603 0.261112i
\(943\) −20.7606 −0.676057
\(944\) −13.0356 48.2196i −0.424274 1.56941i
\(945\) 8.56470i 0.278610i
\(946\) 4.44232 + 67.2031i 0.144432 + 2.18496i
\(947\) 12.5383 0.407439 0.203720 0.979029i \(-0.434697\pi\)
0.203720 + 0.979029i \(0.434697\pi\)
\(948\) 13.9816 1.85656i 0.454101 0.0602983i
\(949\) −22.2044 −0.720786
\(950\) −2.44574 + 0.161670i −0.0793503 + 0.00524528i
\(951\) 9.65687 0.313146
\(952\) −5.26480 26.2387i −0.170633 0.850401i
\(953\) 13.9299i 0.451235i 0.974216 + 0.225618i \(0.0724400\pi\)
−0.974216 + 0.225618i \(0.927560\pi\)
\(954\) −6.91782 + 0.457288i −0.223973 + 0.0148052i
\(955\) 21.8289i 0.706367i
\(956\) −28.9262 + 3.84100i −0.935540 + 0.124227i
\(957\) 28.3692i 0.917045i
\(958\) −6.35228 + 0.419904i −0.205233 + 0.0135665i
\(959\) −4.91660 −0.158765
\(960\) −13.7369 + 5.74388i −0.443357 + 0.185383i
\(961\) 7.78064 30.0077i 0.250988 0.967990i
\(962\) −1.93169 29.2224i −0.0622801 0.942169i
\(963\) 7.89615i 0.254450i
\(964\) −7.06710 53.2217i −0.227616 1.71416i
\(965\) 27.4020 0.882100
\(966\) −46.9787 + 3.10543i −1.51151 + 0.0999154i
\(967\) −17.5397 −0.564038 −0.282019 0.959409i \(-0.591004\pi\)
−0.282019 + 0.959409i \(0.591004\pi\)
\(968\) −10.1390 50.5305i −0.325879 1.62411i
\(969\) 2.32002 0.0745297
\(970\) −0.166772 2.52292i −0.00535473 0.0810060i
\(971\) 25.4120i 0.815509i −0.913092 0.407755i \(-0.866312\pi\)
0.913092 0.407755i \(-0.133688\pi\)
\(972\) −1.98260 + 0.263261i −0.0635918 + 0.00844411i
\(973\) 82.0039i 2.62892i
\(974\) 3.78911 + 57.3214i 0.121411 + 1.83670i
\(975\) 6.87939i 0.220317i
\(976\) 2.59893 + 9.61361i 0.0831897 + 0.307724i
\(977\) −58.3772 −1.86765 −0.933825 0.357729i \(-0.883551\pi\)
−0.933825 + 0.357729i \(0.883551\pi\)
\(978\) −20.1365 + 1.33108i −0.643895 + 0.0425633i
\(979\) 64.7655i 2.06992i
\(980\) 52.3097 6.94600i 1.67097 0.221882i
\(981\) −12.4255 −0.396715
\(982\) −0.406051 6.14270i −0.0129576 0.196022i
\(983\) 0.225941 0.00720640 0.00360320 0.999994i \(-0.498853\pi\)
0.00360320 + 0.999994i \(0.498853\pi\)
\(984\) −1.59678 7.95801i −0.0509034 0.253692i
\(985\) 21.8296i 0.695549i
\(986\) 1.00654 + 15.2268i 0.0320547 + 0.484921i
\(987\) −4.14852 −0.132049
\(988\) −10.0193 + 1.33042i −0.318756 + 0.0423263i
\(989\) −63.7352 −2.02666
\(990\) 0.938484 + 14.1973i 0.0298270 + 0.451220i
\(991\) 44.9992 1.42945 0.714723 0.699408i \(-0.246553\pi\)
0.714723 + 0.699408i \(0.246553\pi\)
\(992\) −26.3070 17.3189i −0.835247 0.549875i
\(993\) 23.0630 0.731881
\(994\) 1.18844 + 17.9786i 0.0376950 + 0.570247i
\(995\) 8.20421 0.260091
\(996\) 27.7362 3.68298i 0.878856 0.116700i
\(997\) 4.59144 0.145412 0.0727062 0.997353i \(-0.476836\pi\)
0.0727062 + 0.997353i \(0.476836\pi\)
\(998\) −0.948623 14.3507i −0.0300281 0.454263i
\(999\) 4.62374i 0.146289i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 372.2.g.b.247.10 yes 16
3.2 odd 2 1116.2.g.i.991.7 16
4.3 odd 2 372.2.g.a.247.9 16
12.11 even 2 1116.2.g.j.991.8 16
31.30 odd 2 372.2.g.a.247.10 yes 16
93.92 even 2 1116.2.g.j.991.7 16
124.123 even 2 inner 372.2.g.b.247.9 yes 16
372.371 odd 2 1116.2.g.i.991.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
372.2.g.a.247.9 16 4.3 odd 2
372.2.g.a.247.10 yes 16 31.30 odd 2
372.2.g.b.247.9 yes 16 124.123 even 2 inner
372.2.g.b.247.10 yes 16 1.1 even 1 trivial
1116.2.g.i.991.7 16 3.2 odd 2
1116.2.g.i.991.8 16 372.371 odd 2
1116.2.g.j.991.7 16 93.92 even 2
1116.2.g.j.991.8 16 12.11 even 2