gp: [N,k,chi] = [372,2,Mod(43,372)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("372.43");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(372, base_ring=CyclotomicField(30))
chi = DirichletCharacter(H, H._module([15, 0, 19]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [128,0,-16]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{7}^{128} + 52 T_{7}^{126} - 160 T_{7}^{125} + 761 T_{7}^{124} - 8224 T_{7}^{123} + \cdots + 35\!\cdots\!01 \)
T7^128 + 52*T7^126 - 160*T7^125 + 761*T7^124 - 8224*T7^123 - 11016*T7^122 - 139290*T7^121 - 558784*T7^120 + 1697652*T7^119 - 11574940*T7^118 + 124866644*T7^117 - 148967597*T7^116 + 3306576546*T7^115 + 2871608962*T7^114 + 42529508406*T7^113 + 150430416215*T7^112 - 630998203322*T7^111 + 754069692892*T7^110 - 42690430709566*T7^109 - 30795459755700*T7^108 - 696458789664616*T7^107 - 127932954785338*T7^106 - 1900917702792260*T7^105 + 3152191630491931*T7^104 + 159301873130566270*T7^103 + 143602380590320530*T7^102 + 5032964853182102090*T7^101 + 4617840665237839300*T7^100 + 68135392795893136004*T7^99 - 6037295455663040472*T7^98 - 239753571740330247942*T7^97 - 2773653954902104388609*T7^96 - 21284774611711527894446*T7^95 - 40776699294536797908442*T7^94 - 266820376372472288404494*T7^93 + 161385958220987009999494*T7^92 - 356034708036292446499552*T7^91 + 11171801605434756211638552*T7^90 + 27164954598758668757826946*T7^89 + 146356241703104477789938398*T7^88 + 392746457394057022479482858*T7^87 + 861286350663807183666038048*T7^86 + 2077167196501310174588200296*T7^85 - 6497485091881511826044124638*T7^84 - 31357723227130129701624077778*T7^83 - 233551777609380629417466396972*T7^82 - 724469012694860107775656907570*T7^81 - 2314767544294810371806133641123*T7^80 - 4436891728070776895216635175574*T7^79 - 1446852351846952000932651890304*T7^78 + 25843215314053231108871139025500*T7^77 + 184434631407667993798933109857649*T7^76 + 590256677280138272988150862532418*T7^75 + 1834116575333888940212534440327530*T7^74 + 3742680986010726106968927303417312*T7^73 + 6255208070758378240966689741658534*T7^72 + 4450916461432973002528290611309302*T7^71 - 22764630077182102485320409545091852*T7^70 - 89947192108860580553922162087314840*T7^69 - 338922946606695751732070672363475793*T7^68 - 707839715836046404383757706708609422*T7^67 - 1541179189009814108241707404170376904*T7^66 - 2453898272765436073901773622438215744*T7^65 - 1872254904703186107926463815169415483*T7^64 - 701481045287514853017085209448592568*T7^63 + 19064712606250707109381136590093242346*T7^62 + 46291868205088439394451504817684180862*T7^61 + 148855035910523997260150376215519569712*T7^60 + 325451070823063811949721437469429105734*T7^59 + 605391839260416204509779200490072405690*T7^58 + 1317434865883427735950668368934174353314*T7^57 + 1639413729886714178473888762323195162462*T7^56 + 3391295743758691425103719509262266191466*T7^55 + 3003794414313324568614101962658845082358*T7^54 + 4567633716241516120913456661634309464960*T7^53 + 3868229460475628269590741056304584418514*T7^52 - 2912292022174499104461059773932615129486*T7^51 + 6685407151962728967062631187991545490520*T7^50 - 31365279394841843825996707814661885050938*T7^49 + 24108421975023528225710473127540419312900*T7^48 - 80416216445308212440465531650509012576774*T7^47 + 55105705330908359885138246511211405541436*T7^46 - 81903529769600842716786402996622617976538*T7^45 - 23905902305363199039659064887982760349935*T7^44 + 209675382416112373635528866603525217327448*T7^43 - 548815673602345462735646706214649636790942*T7^42 + 1127704730205394796126215112378504833619358*T7^41 - 1721262501187371709536937215340587102183554*T7^40 + 2448910603763938609228758553960372949825378*T7^39 - 2628705583845899310594407761231603621022484*T7^38 + 2168317878753439265087428180375509690814644*T7^37 - 48084996877948549574162769778076604575113*T7^36 - 4292296278101317951364618780550101740049198*T7^35 + 11866707633194142873406441983281721437463700*T7^34 - 23340614963947718225931435037701818429003410*T7^33 + 38075160470943174168316044437695224586996080*T7^32 - 54446071023878802760312866988188670998538332*T7^31 + 68733948039561706868230264129991155832756392*T7^30 - 77772743196764068239068658077364676434575756*T7^29 + 79018339028469228007406209318251498075253642*T7^28 - 73097518451003393866941904758505986327631534*T7^27 + 62323157517668331698085507926417435762802968*T7^26 - 49204818163493690824066997532713035414030620*T7^25 + 34693852193597331131084279948907123009233697*T7^24 - 18526885085556581997017847681218647294484638*T7^23 + 2240627186532582540342655912211394433755526*T7^22 + 10996834254499087976830990366668733928299110*T7^21 - 17727981114699890725885397080921646463985343*T7^20 + 17758912562168361005037137402362902676788286*T7^19 - 13718575882030977272236432066479628908397788*T7^18 + 9083511056152225674899119797755446893405920*T7^17 - 5531053388977993041275543551638707941327691*T7^16 + 2990265538501909463424150055802362457071716*T7^15 - 891933012560549802305198134213116637516022*T7^14 - 833189264961244262673181070570026873807416*T7^13 + 1858092746558515260256878196666830898253176*T7^12 - 2039107868867930375978808399368543833075792*T7^11 + 1618484327195798816877148906960683693280798*T7^10 - 1009503690805815979960416981489256446678982*T7^9 + 509789793577276300163158657321803614301289*T7^8 - 210682499924995586761962922566059311560936*T7^7 + 71293062192108988804796174303501540874468*T7^6 - 19603322412475192401699942796663110195980*T7^5 + 4310775355774544978540159570137204359268*T7^4 - 735115415250629076083878018020439527476*T7^3 + 92415292064067150060355425682937660058*T7^2 - 7853019180283459335493822880110137626*T7 + 350825868924780682176541792513218001
acting on \(S_{2}^{\mathrm{new}}(372, [\chi])\).