Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [370,2,Mod(21,370)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(370, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([0, 11]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("370.21");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 370 = 2 \cdot 5 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 370.w (of order \(18\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.95446487479\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{18})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
21.1 | −0.342020 | + | 0.939693i | −2.79539 | + | 1.01744i | −0.766044 | − | 0.642788i | 0.984808 | + | 0.173648i | − | 2.97480i | 0.125624 | − | 0.712447i | 0.866025 | − | 0.500000i | 4.48091 | − | 3.75993i | −0.500000 | + | 0.866025i | |
21.2 | −0.342020 | + | 0.939693i | −1.18324 | + | 0.430663i | −0.766044 | − | 0.642788i | 0.984808 | + | 0.173648i | − | 1.25917i | 0.165700 | − | 0.939732i | 0.866025 | − | 0.500000i | −1.08356 | + | 0.909211i | −0.500000 | + | 0.866025i | |
21.3 | −0.342020 | + | 0.939693i | 1.67405 | − | 0.609304i | −0.766044 | − | 0.642788i | 0.984808 | + | 0.173648i | 1.78149i | 0.521989 | − | 2.96035i | 0.866025 | − | 0.500000i | 0.133056 | − | 0.111647i | −0.500000 | + | 0.866025i | ||
21.4 | −0.342020 | + | 0.939693i | 3.24427 | − | 1.18082i | −0.766044 | − | 0.642788i | 0.984808 | + | 0.173648i | 3.45248i | −0.802595 | + | 4.55174i | 0.866025 | − | 0.500000i | 6.83285 | − | 5.73344i | −0.500000 | + | 0.866025i | ||
21.5 | 0.342020 | − | 0.939693i | −2.52763 | + | 0.919981i | −0.766044 | − | 0.642788i | −0.984808 | − | 0.173648i | 2.68984i | 0.420839 | − | 2.38669i | −0.866025 | + | 0.500000i | 3.24439 | − | 2.72237i | −0.500000 | + | 0.866025i | ||
21.6 | 0.342020 | − | 0.939693i | −0.384909 | + | 0.140095i | −0.766044 | − | 0.642788i | −0.984808 | − | 0.173648i | 0.409612i | −0.723927 | + | 4.10559i | −0.866025 | + | 0.500000i | −2.16961 | + | 1.82051i | −0.500000 | + | 0.866025i | ||
21.7 | 0.342020 | − | 0.939693i | 0.815392 | − | 0.296779i | −0.766044 | − | 0.642788i | −0.984808 | − | 0.173648i | − | 0.867722i | 0.629880 | − | 3.57223i | −0.866025 | + | 0.500000i | −1.72135 | + | 1.44438i | −0.500000 | + | 0.866025i | |
21.8 | 0.342020 | − | 0.939693i | 3.03684 | − | 1.10532i | −0.766044 | − | 0.642788i | −0.984808 | − | 0.173648i | − | 3.23173i | 0.130401 | − | 0.739542i | −0.866025 | + | 0.500000i | 5.70251 | − | 4.78497i | −0.500000 | + | 0.866025i | |
41.1 | −0.984808 | − | 0.173648i | −0.396937 | − | 2.25114i | 0.939693 | + | 0.342020i | 0.642788 | + | 0.766044i | 2.28587i | −1.58779 | + | 1.33231i | −0.866025 | − | 0.500000i | −2.09099 | + | 0.761058i | −0.500000 | − | 0.866025i | ||
41.2 | −0.984808 | − | 0.173648i | −0.240758 | − | 1.36541i | 0.939693 | + | 0.342020i | 0.642788 | + | 0.766044i | 1.38647i | 2.42202 | − | 2.03232i | −0.866025 | − | 0.500000i | 1.01271 | − | 0.368596i | −0.500000 | − | 0.866025i | ||
41.3 | −0.984808 | − | 0.173648i | 0.105668 | + | 0.599271i | 0.939693 | + | 0.342020i | 0.642788 | + | 0.766044i | − | 0.608515i | −2.12489 | + | 1.78299i | −0.866025 | − | 0.500000i | 2.47112 | − | 0.899413i | −0.500000 | − | 0.866025i | |
41.4 | −0.984808 | − | 0.173648i | 0.358379 | + | 2.03247i | 0.939693 | + | 0.342020i | 0.642788 | + | 0.766044i | − | 2.06382i | 3.75435 | − | 3.15027i | −0.866025 | − | 0.500000i | −1.18341 | + | 0.430725i | −0.500000 | − | 0.866025i | |
41.5 | 0.984808 | + | 0.173648i | −0.568495 | − | 3.22410i | 0.939693 | + | 0.342020i | −0.642788 | − | 0.766044i | − | 3.27383i | 2.50060 | − | 2.09825i | 0.866025 | + | 0.500000i | −7.25253 | + | 2.63970i | −0.500000 | − | 0.866025i | |
41.6 | 0.984808 | + | 0.173648i | −0.192543 | − | 1.09196i | 0.939693 | + | 0.342020i | −0.642788 | − | 0.766044i | − | 1.10881i | −0.750891 | + | 0.630073i | 0.866025 | + | 0.500000i | 1.66377 | − | 0.605561i | −0.500000 | − | 0.866025i | |
41.7 | 0.984808 | + | 0.173648i | 0.168670 | + | 0.956577i | 0.939693 | + | 0.342020i | −0.642788 | − | 0.766044i | 0.971334i | 2.87596 | − | 2.41322i | 0.866025 | + | 0.500000i | 1.93249 | − | 0.703368i | −0.500000 | − | 0.866025i | ||
41.8 | 0.984808 | + | 0.173648i | 0.418719 | + | 2.37467i | 0.939693 | + | 0.342020i | −0.642788 | − | 0.766044i | 2.41131i | −3.20998 | + | 2.69349i | 0.866025 | + | 0.500000i | −2.64467 | + | 0.962583i | −0.500000 | − | 0.866025i | ||
141.1 | −0.342020 | − | 0.939693i | −2.79539 | − | 1.01744i | −0.766044 | + | 0.642788i | 0.984808 | − | 0.173648i | 2.97480i | 0.125624 | + | 0.712447i | 0.866025 | + | 0.500000i | 4.48091 | + | 3.75993i | −0.500000 | − | 0.866025i | ||
141.2 | −0.342020 | − | 0.939693i | −1.18324 | − | 0.430663i | −0.766044 | + | 0.642788i | 0.984808 | − | 0.173648i | 1.25917i | 0.165700 | + | 0.939732i | 0.866025 | + | 0.500000i | −1.08356 | − | 0.909211i | −0.500000 | − | 0.866025i | ||
141.3 | −0.342020 | − | 0.939693i | 1.67405 | + | 0.609304i | −0.766044 | + | 0.642788i | 0.984808 | − | 0.173648i | − | 1.78149i | 0.521989 | + | 2.96035i | 0.866025 | + | 0.500000i | 0.133056 | + | 0.111647i | −0.500000 | − | 0.866025i | |
141.4 | −0.342020 | − | 0.939693i | 3.24427 | + | 1.18082i | −0.766044 | + | 0.642788i | 0.984808 | − | 0.173648i | − | 3.45248i | −0.802595 | − | 4.55174i | 0.866025 | + | 0.500000i | 6.83285 | + | 5.73344i | −0.500000 | − | 0.866025i | |
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
37.h | even | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 370.2.w.b | ✓ | 48 |
37.h | even | 18 | 1 | inner | 370.2.w.b | ✓ | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
370.2.w.b | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
370.2.w.b | ✓ | 48 | 37.h | even | 18 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{48} - 12 T_{3}^{46} - 20 T_{3}^{45} + 90 T_{3}^{44} + 450 T_{3}^{43} + 1006 T_{3}^{42} + \cdots + 71464259584 \) acting on \(S_{2}^{\mathrm{new}}(370, [\chi])\).