Properties

Label 370.2.n.c.359.1
Level $370$
Weight $2$
Character 370.359
Analytic conductor $2.954$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [370,2,Mod(269,370)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("370.269"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(370, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 370 = 2 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 370.n (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,2,4,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.95446487479\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 359.1
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 370.359
Dual form 370.2.n.c.269.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +(1.86603 + 1.23205i) q^{5} +(2.36603 + 1.36603i) q^{7} +1.00000i q^{8} +(-1.50000 - 2.59808i) q^{9} +(-2.23205 - 0.133975i) q^{10} +1.26795 q^{11} +(1.26795 + 0.732051i) q^{13} -2.73205 q^{14} +(-0.500000 - 0.866025i) q^{16} +(-1.50000 + 0.866025i) q^{17} +(2.59808 + 1.50000i) q^{18} +(0.633975 - 1.09808i) q^{19} +(2.00000 - 1.00000i) q^{20} +(-1.09808 + 0.633975i) q^{22} +1.46410i q^{23} +(1.96410 + 4.59808i) q^{25} -1.46410 q^{26} +(2.36603 - 1.36603i) q^{28} +1.73205 q^{29} +7.66025 q^{31} +(0.866025 + 0.500000i) q^{32} +(0.866025 - 1.50000i) q^{34} +(2.73205 + 5.46410i) q^{35} -3.00000 q^{36} +(2.59808 + 5.50000i) q^{37} +1.26795i q^{38} +(-1.23205 + 1.86603i) q^{40} +(-2.96410 + 5.13397i) q^{41} -8.73205i q^{43} +(0.633975 - 1.09808i) q^{44} +(0.401924 - 6.69615i) q^{45} +(-0.732051 - 1.26795i) q^{46} +6.73205i q^{47} +(0.232051 + 0.401924i) q^{49} +(-4.00000 - 3.00000i) q^{50} +(1.26795 - 0.732051i) q^{52} +(-7.26795 + 4.19615i) q^{53} +(2.36603 + 1.56218i) q^{55} +(-1.36603 + 2.36603i) q^{56} +(-1.50000 + 0.866025i) q^{58} +(-4.73205 - 8.19615i) q^{59} +(-3.86603 + 6.69615i) q^{61} +(-6.63397 + 3.83013i) q^{62} -8.19615i q^{63} -1.00000 q^{64} +(1.46410 + 2.92820i) q^{65} +(-7.56218 - 4.36603i) q^{67} +1.73205i q^{68} +(-5.09808 - 3.36603i) q^{70} +(4.56218 - 7.90192i) q^{71} +(2.59808 - 1.50000i) q^{72} -11.8564i q^{73} +(-5.00000 - 3.46410i) q^{74} +(-0.633975 - 1.09808i) q^{76} +(3.00000 + 1.73205i) q^{77} +(7.83013 - 13.5622i) q^{79} +(0.133975 - 2.23205i) q^{80} +(-4.50000 + 7.79423i) q^{81} -5.92820i q^{82} +(-2.19615 + 1.26795i) q^{83} +(-3.86603 - 0.232051i) q^{85} +(4.36603 + 7.56218i) q^{86} +1.26795i q^{88} +(-3.23205 - 5.59808i) q^{89} +(3.00000 + 6.00000i) q^{90} +(2.00000 + 3.46410i) q^{91} +(1.26795 + 0.732051i) q^{92} +(-3.36603 - 5.83013i) q^{94} +(2.53590 - 1.26795i) q^{95} -7.19615i q^{97} +(-0.401924 - 0.232051i) q^{98} +(-1.90192 - 3.29423i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} + 4 q^{5} + 6 q^{7} - 6 q^{9} - 2 q^{10} + 12 q^{11} + 12 q^{13} - 4 q^{14} - 2 q^{16} - 6 q^{17} + 6 q^{19} + 8 q^{20} + 6 q^{22} - 6 q^{25} + 8 q^{26} + 6 q^{28} - 4 q^{31} + 4 q^{35} - 12 q^{36}+ \cdots - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/370\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 1.86603 + 1.23205i 0.834512 + 0.550990i
\(6\) 0 0
\(7\) 2.36603 + 1.36603i 0.894274 + 0.516309i 0.875338 0.483512i \(-0.160639\pi\)
0.0189356 + 0.999821i \(0.493972\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −1.50000 2.59808i −0.500000 0.866025i
\(10\) −2.23205 0.133975i −0.705836 0.0423665i
\(11\) 1.26795 0.382301 0.191151 0.981561i \(-0.438778\pi\)
0.191151 + 0.981561i \(0.438778\pi\)
\(12\) 0 0
\(13\) 1.26795 + 0.732051i 0.351666 + 0.203034i 0.665419 0.746470i \(-0.268253\pi\)
−0.313753 + 0.949505i \(0.601586\pi\)
\(14\) −2.73205 −0.730171
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −1.50000 + 0.866025i −0.363803 + 0.210042i −0.670748 0.741685i \(-0.734027\pi\)
0.306944 + 0.951727i \(0.400693\pi\)
\(18\) 2.59808 + 1.50000i 0.612372 + 0.353553i
\(19\) 0.633975 1.09808i 0.145444 0.251916i −0.784095 0.620641i \(-0.786872\pi\)
0.929538 + 0.368725i \(0.120206\pi\)
\(20\) 2.00000 1.00000i 0.447214 0.223607i
\(21\) 0 0
\(22\) −1.09808 + 0.633975i −0.234111 + 0.135164i
\(23\) 1.46410i 0.305286i 0.988281 + 0.152643i \(0.0487785\pi\)
−0.988281 + 0.152643i \(0.951221\pi\)
\(24\) 0 0
\(25\) 1.96410 + 4.59808i 0.392820 + 0.919615i
\(26\) −1.46410 −0.287134
\(27\) 0 0
\(28\) 2.36603 1.36603i 0.447137 0.258155i
\(29\) 1.73205 0.321634 0.160817 0.986984i \(-0.448587\pi\)
0.160817 + 0.986984i \(0.448587\pi\)
\(30\) 0 0
\(31\) 7.66025 1.37582 0.687911 0.725795i \(-0.258528\pi\)
0.687911 + 0.725795i \(0.258528\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 0.866025 1.50000i 0.148522 0.257248i
\(35\) 2.73205 + 5.46410i 0.461801 + 0.923602i
\(36\) −3.00000 −0.500000
\(37\) 2.59808 + 5.50000i 0.427121 + 0.904194i
\(38\) 1.26795i 0.205689i
\(39\) 0 0
\(40\) −1.23205 + 1.86603i −0.194804 + 0.295045i
\(41\) −2.96410 + 5.13397i −0.462915 + 0.801792i −0.999105 0.0423053i \(-0.986530\pi\)
0.536190 + 0.844097i \(0.319863\pi\)
\(42\) 0 0
\(43\) 8.73205i 1.33163i −0.746119 0.665813i \(-0.768085\pi\)
0.746119 0.665813i \(-0.231915\pi\)
\(44\) 0.633975 1.09808i 0.0955753 0.165541i
\(45\) 0.401924 6.69615i 0.0599153 0.998203i
\(46\) −0.732051 1.26795i −0.107935 0.186949i
\(47\) 6.73205i 0.981971i 0.871168 + 0.490985i \(0.163363\pi\)
−0.871168 + 0.490985i \(0.836637\pi\)
\(48\) 0 0
\(49\) 0.232051 + 0.401924i 0.0331501 + 0.0574177i
\(50\) −4.00000 3.00000i −0.565685 0.424264i
\(51\) 0 0
\(52\) 1.26795 0.732051i 0.175833 0.101517i
\(53\) −7.26795 + 4.19615i −0.998330 + 0.576386i −0.907754 0.419504i \(-0.862204\pi\)
−0.0905760 + 0.995890i \(0.528871\pi\)
\(54\) 0 0
\(55\) 2.36603 + 1.56218i 0.319035 + 0.210644i
\(56\) −1.36603 + 2.36603i −0.182543 + 0.316173i
\(57\) 0 0
\(58\) −1.50000 + 0.866025i −0.196960 + 0.113715i
\(59\) −4.73205 8.19615i −0.616061 1.06705i −0.990197 0.139675i \(-0.955394\pi\)
0.374137 0.927373i \(-0.377939\pi\)
\(60\) 0 0
\(61\) −3.86603 + 6.69615i −0.494994 + 0.857354i −0.999983 0.00577101i \(-0.998163\pi\)
0.504990 + 0.863125i \(0.331496\pi\)
\(62\) −6.63397 + 3.83013i −0.842516 + 0.486427i
\(63\) 8.19615i 1.03262i
\(64\) −1.00000 −0.125000
\(65\) 1.46410 + 2.92820i 0.181599 + 0.363199i
\(66\) 0 0
\(67\) −7.56218 4.36603i −0.923867 0.533395i −0.0390004 0.999239i \(-0.512417\pi\)
−0.884867 + 0.465844i \(0.845751\pi\)
\(68\) 1.73205i 0.210042i
\(69\) 0 0
\(70\) −5.09808 3.36603i −0.609337 0.402317i
\(71\) 4.56218 7.90192i 0.541431 0.937786i −0.457391 0.889266i \(-0.651216\pi\)
0.998822 0.0485203i \(-0.0154506\pi\)
\(72\) 2.59808 1.50000i 0.306186 0.176777i
\(73\) 11.8564i 1.38769i −0.720126 0.693844i \(-0.755916\pi\)
0.720126 0.693844i \(-0.244084\pi\)
\(74\) −5.00000 3.46410i −0.581238 0.402694i
\(75\) 0 0
\(76\) −0.633975 1.09808i −0.0727219 0.125958i
\(77\) 3.00000 + 1.73205i 0.341882 + 0.197386i
\(78\) 0 0
\(79\) 7.83013 13.5622i 0.880958 1.52586i 0.0306808 0.999529i \(-0.490232\pi\)
0.850277 0.526335i \(-0.176434\pi\)
\(80\) 0.133975 2.23205i 0.0149788 0.249551i
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) 5.92820i 0.654661i
\(83\) −2.19615 + 1.26795i −0.241059 + 0.139176i −0.615663 0.788009i \(-0.711112\pi\)
0.374604 + 0.927185i \(0.377779\pi\)
\(84\) 0 0
\(85\) −3.86603 0.232051i −0.419329 0.0251694i
\(86\) 4.36603 + 7.56218i 0.470801 + 0.815451i
\(87\) 0 0
\(88\) 1.26795i 0.135164i
\(89\) −3.23205 5.59808i −0.342597 0.593395i 0.642317 0.766439i \(-0.277973\pi\)
−0.984914 + 0.173044i \(0.944640\pi\)
\(90\) 3.00000 + 6.00000i 0.316228 + 0.632456i
\(91\) 2.00000 + 3.46410i 0.209657 + 0.363137i
\(92\) 1.26795 + 0.732051i 0.132193 + 0.0763216i
\(93\) 0 0
\(94\) −3.36603 5.83013i −0.347179 0.601332i
\(95\) 2.53590 1.26795i 0.260178 0.130089i
\(96\) 0 0
\(97\) 7.19615i 0.730659i −0.930878 0.365329i \(-0.880956\pi\)
0.930878 0.365329i \(-0.119044\pi\)
\(98\) −0.401924 0.232051i −0.0406004 0.0234407i
\(99\) −1.90192 3.29423i −0.191151 0.331082i
\(100\) 4.96410 + 0.598076i 0.496410 + 0.0598076i
\(101\) 0.267949 0.0266619 0.0133310 0.999911i \(-0.495756\pi\)
0.0133310 + 0.999911i \(0.495756\pi\)
\(102\) 0 0
\(103\) 3.80385i 0.374804i −0.982283 0.187402i \(-0.939993\pi\)
0.982283 0.187402i \(-0.0600067\pi\)
\(104\) −0.732051 + 1.26795i −0.0717835 + 0.124333i
\(105\) 0 0
\(106\) 4.19615 7.26795i 0.407566 0.705926i
\(107\) −5.36603 3.09808i −0.518753 0.299502i 0.217671 0.976022i \(-0.430154\pi\)
−0.736424 + 0.676520i \(0.763487\pi\)
\(108\) 0 0
\(109\) −1.40192 2.42820i −0.134280 0.232580i 0.791042 0.611762i \(-0.209539\pi\)
−0.925322 + 0.379182i \(0.876205\pi\)
\(110\) −2.83013 0.169873i −0.269842 0.0161968i
\(111\) 0 0
\(112\) 2.73205i 0.258155i
\(113\) −14.6603 + 8.46410i −1.37912 + 0.796236i −0.992054 0.125816i \(-0.959845\pi\)
−0.387067 + 0.922052i \(0.626512\pi\)
\(114\) 0 0
\(115\) −1.80385 + 2.73205i −0.168210 + 0.254765i
\(116\) 0.866025 1.50000i 0.0804084 0.139272i
\(117\) 4.39230i 0.406069i
\(118\) 8.19615 + 4.73205i 0.754517 + 0.435621i
\(119\) −4.73205 −0.433786
\(120\) 0 0
\(121\) −9.39230 −0.853846
\(122\) 7.73205i 0.700027i
\(123\) 0 0
\(124\) 3.83013 6.63397i 0.343956 0.595749i
\(125\) −2.00000 + 11.0000i −0.178885 + 0.983870i
\(126\) 4.09808 + 7.09808i 0.365086 + 0.632347i
\(127\) −9.46410 + 5.46410i −0.839803 + 0.484861i −0.857197 0.514988i \(-0.827796\pi\)
0.0173941 + 0.999849i \(0.494463\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) 0 0
\(130\) −2.73205 1.80385i −0.239617 0.158208i
\(131\) −1.46410 2.53590i −0.127919 0.221562i 0.794951 0.606674i \(-0.207496\pi\)
−0.922870 + 0.385111i \(0.874163\pi\)
\(132\) 0 0
\(133\) 3.00000 1.73205i 0.260133 0.150188i
\(134\) 8.73205 0.754334
\(135\) 0 0
\(136\) −0.866025 1.50000i −0.0742611 0.128624i
\(137\) 1.73205i 0.147979i 0.997259 + 0.0739895i \(0.0235731\pi\)
−0.997259 + 0.0739895i \(0.976427\pi\)
\(138\) 0 0
\(139\) 5.46410 + 9.46410i 0.463459 + 0.802735i 0.999131 0.0416919i \(-0.0132748\pi\)
−0.535671 + 0.844426i \(0.679941\pi\)
\(140\) 6.09808 + 0.366025i 0.515382 + 0.0309348i
\(141\) 0 0
\(142\) 9.12436i 0.765699i
\(143\) 1.60770 + 0.928203i 0.134442 + 0.0776203i
\(144\) −1.50000 + 2.59808i −0.125000 + 0.216506i
\(145\) 3.23205 + 2.13397i 0.268407 + 0.177217i
\(146\) 5.92820 + 10.2679i 0.490622 + 0.849782i
\(147\) 0 0
\(148\) 6.06218 + 0.500000i 0.498308 + 0.0410997i
\(149\) −11.5885 −0.949363 −0.474682 0.880158i \(-0.657437\pi\)
−0.474682 + 0.880158i \(0.657437\pi\)
\(150\) 0 0
\(151\) 5.26795 9.12436i 0.428700 0.742530i −0.568058 0.822988i \(-0.692305\pi\)
0.996758 + 0.0804588i \(0.0256385\pi\)
\(152\) 1.09808 + 0.633975i 0.0890657 + 0.0514221i
\(153\) 4.50000 + 2.59808i 0.363803 + 0.210042i
\(154\) −3.46410 −0.279145
\(155\) 14.2942 + 9.43782i 1.14814 + 0.758064i
\(156\) 0 0
\(157\) 14.7224 8.50000i 1.17498 0.678374i 0.220131 0.975470i \(-0.429352\pi\)
0.954847 + 0.297097i \(0.0960183\pi\)
\(158\) 15.6603i 1.24586i
\(159\) 0 0
\(160\) 1.00000 + 2.00000i 0.0790569 + 0.158114i
\(161\) −2.00000 + 3.46410i −0.157622 + 0.273009i
\(162\) 9.00000i 0.707107i
\(163\) −7.90192 + 4.56218i −0.618926 + 0.357337i −0.776451 0.630178i \(-0.782982\pi\)
0.157524 + 0.987515i \(0.449649\pi\)
\(164\) 2.96410 + 5.13397i 0.231457 + 0.400896i
\(165\) 0 0
\(166\) 1.26795 2.19615i 0.0984119 0.170454i
\(167\) 15.4641 + 8.92820i 1.19665 + 0.690885i 0.959806 0.280663i \(-0.0905544\pi\)
0.236842 + 0.971548i \(0.423888\pi\)
\(168\) 0 0
\(169\) −5.42820 9.40192i −0.417554 0.723225i
\(170\) 3.46410 1.73205i 0.265684 0.132842i
\(171\) −3.80385 −0.290887
\(172\) −7.56218 4.36603i −0.576611 0.332906i
\(173\) −0.0621778 + 0.0358984i −0.00472729 + 0.00272930i −0.502362 0.864658i \(-0.667535\pi\)
0.497634 + 0.867387i \(0.334202\pi\)
\(174\) 0 0
\(175\) −1.63397 + 13.5622i −0.123517 + 1.02520i
\(176\) −0.633975 1.09808i −0.0477876 0.0827706i
\(177\) 0 0
\(178\) 5.59808 + 3.23205i 0.419594 + 0.242252i
\(179\) 14.9282 1.11579 0.557893 0.829913i \(-0.311610\pi\)
0.557893 + 0.829913i \(0.311610\pi\)
\(180\) −5.59808 3.69615i −0.417256 0.275495i
\(181\) −5.79423 + 10.0359i −0.430682 + 0.745962i −0.996932 0.0782707i \(-0.975060\pi\)
0.566251 + 0.824233i \(0.308393\pi\)
\(182\) −3.46410 2.00000i −0.256776 0.148250i
\(183\) 0 0
\(184\) −1.46410 −0.107935
\(185\) −1.92820 + 13.4641i −0.141764 + 0.989900i
\(186\) 0 0
\(187\) −1.90192 + 1.09808i −0.139082 + 0.0802993i
\(188\) 5.83013 + 3.36603i 0.425206 + 0.245493i
\(189\) 0 0
\(190\) −1.56218 + 2.36603i −0.113332 + 0.171650i
\(191\) −19.3205 −1.39798 −0.698991 0.715130i \(-0.746367\pi\)
−0.698991 + 0.715130i \(0.746367\pi\)
\(192\) 0 0
\(193\) 16.6603i 1.19923i −0.800288 0.599616i \(-0.795320\pi\)
0.800288 0.599616i \(-0.204680\pi\)
\(194\) 3.59808 + 6.23205i 0.258327 + 0.447435i
\(195\) 0 0
\(196\) 0.464102 0.0331501
\(197\) 5.25833 3.03590i 0.374641 0.216299i −0.300843 0.953674i \(-0.597268\pi\)
0.675484 + 0.737375i \(0.263935\pi\)
\(198\) 3.29423 + 1.90192i 0.234111 + 0.135164i
\(199\) −1.80385 −0.127871 −0.0639357 0.997954i \(-0.520365\pi\)
−0.0639357 + 0.997954i \(0.520365\pi\)
\(200\) −4.59808 + 1.96410i −0.325133 + 0.138883i
\(201\) 0 0
\(202\) −0.232051 + 0.133975i −0.0163270 + 0.00942642i
\(203\) 4.09808 + 2.36603i 0.287629 + 0.166062i
\(204\) 0 0
\(205\) −11.8564 + 5.92820i −0.828087 + 0.414044i
\(206\) 1.90192 + 3.29423i 0.132513 + 0.229520i
\(207\) 3.80385 2.19615i 0.264386 0.152643i
\(208\) 1.46410i 0.101517i
\(209\) 0.803848 1.39230i 0.0556033 0.0963077i
\(210\) 0 0
\(211\) 18.0526 1.24279 0.621395 0.783498i \(-0.286566\pi\)
0.621395 + 0.783498i \(0.286566\pi\)
\(212\) 8.39230i 0.576386i
\(213\) 0 0
\(214\) 6.19615 0.423560
\(215\) 10.7583 16.2942i 0.733712 1.11126i
\(216\) 0 0
\(217\) 18.1244 + 10.4641i 1.23036 + 0.710350i
\(218\) 2.42820 + 1.40192i 0.164459 + 0.0949503i
\(219\) 0 0
\(220\) 2.53590 1.26795i 0.170970 0.0854851i
\(221\) −2.53590 −0.170583
\(222\) 0 0
\(223\) 1.07180i 0.0717728i 0.999356 + 0.0358864i \(0.0114255\pi\)
−0.999356 + 0.0358864i \(0.988575\pi\)
\(224\) 1.36603 + 2.36603i 0.0912714 + 0.158087i
\(225\) 9.00000 12.0000i 0.600000 0.800000i
\(226\) 8.46410 14.6603i 0.563024 0.975186i
\(227\) −3.75833 2.16987i −0.249449 0.144020i 0.370063 0.929007i \(-0.379336\pi\)
−0.619512 + 0.784987i \(0.712669\pi\)
\(228\) 0 0
\(229\) −12.7942 + 22.1603i −0.845466 + 1.46439i 0.0397491 + 0.999210i \(0.487344\pi\)
−0.885216 + 0.465181i \(0.845989\pi\)
\(230\) 0.196152 3.26795i 0.0129339 0.215482i
\(231\) 0 0
\(232\) 1.73205i 0.113715i
\(233\) 13.7321i 0.899617i 0.893125 + 0.449808i \(0.148508\pi\)
−0.893125 + 0.449808i \(0.851492\pi\)
\(234\) 2.19615 + 3.80385i 0.143567 + 0.248665i
\(235\) −8.29423 + 12.5622i −0.541056 + 0.819466i
\(236\) −9.46410 −0.616061
\(237\) 0 0
\(238\) 4.09808 2.36603i 0.265639 0.153367i
\(239\) −7.29423 12.6340i −0.471824 0.817224i 0.527656 0.849458i \(-0.323071\pi\)
−0.999480 + 0.0322343i \(0.989738\pi\)
\(240\) 0 0
\(241\) 8.73205 15.1244i 0.562481 0.974245i −0.434798 0.900528i \(-0.643180\pi\)
0.997279 0.0737175i \(-0.0234863\pi\)
\(242\) 8.13397 4.69615i 0.522872 0.301880i
\(243\) 0 0
\(244\) 3.86603 + 6.69615i 0.247497 + 0.428677i
\(245\) −0.0621778 + 1.03590i −0.00397240 + 0.0661811i
\(246\) 0 0
\(247\) 1.60770 0.928203i 0.102295 0.0590602i
\(248\) 7.66025i 0.486427i
\(249\) 0 0
\(250\) −3.76795 10.5263i −0.238306 0.665740i
\(251\) 11.8038 0.745052 0.372526 0.928022i \(-0.378492\pi\)
0.372526 + 0.928022i \(0.378492\pi\)
\(252\) −7.09808 4.09808i −0.447137 0.258155i
\(253\) 1.85641i 0.116711i
\(254\) 5.46410 9.46410i 0.342848 0.593831i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 11.0885 6.40192i 0.691679 0.399341i −0.112562 0.993645i \(-0.535906\pi\)
0.804241 + 0.594304i \(0.202572\pi\)
\(258\) 0 0
\(259\) −1.36603 + 16.5622i −0.0848807 + 1.02912i
\(260\) 3.26795 + 0.196152i 0.202670 + 0.0121649i
\(261\) −2.59808 4.50000i −0.160817 0.278543i
\(262\) 2.53590 + 1.46410i 0.156668 + 0.0904525i
\(263\) −7.85641 4.53590i −0.484447 0.279695i 0.237821 0.971309i \(-0.423567\pi\)
−0.722268 + 0.691614i \(0.756900\pi\)
\(264\) 0 0
\(265\) −18.7321 1.12436i −1.15070 0.0690686i
\(266\) −1.73205 + 3.00000i −0.106199 + 0.183942i
\(267\) 0 0
\(268\) −7.56218 + 4.36603i −0.461934 + 0.266697i
\(269\) 17.8564 1.08872 0.544362 0.838850i \(-0.316772\pi\)
0.544362 + 0.838850i \(0.316772\pi\)
\(270\) 0 0
\(271\) −4.36603 7.56218i −0.265217 0.459370i 0.702403 0.711779i \(-0.252110\pi\)
−0.967620 + 0.252410i \(0.918777\pi\)
\(272\) 1.50000 + 0.866025i 0.0909509 + 0.0525105i
\(273\) 0 0
\(274\) −0.866025 1.50000i −0.0523185 0.0906183i
\(275\) 2.49038 + 5.83013i 0.150176 + 0.351570i
\(276\) 0 0
\(277\) −1.20577 0.696152i −0.0724478 0.0418277i 0.463339 0.886181i \(-0.346651\pi\)
−0.535786 + 0.844354i \(0.679985\pi\)
\(278\) −9.46410 5.46410i −0.567619 0.327715i
\(279\) −11.4904 19.9019i −0.687911 1.19150i
\(280\) −5.46410 + 2.73205i −0.326543 + 0.163271i
\(281\) 1.50000 + 2.59808i 0.0894825 + 0.154988i 0.907293 0.420500i \(-0.138145\pi\)
−0.817810 + 0.575488i \(0.804812\pi\)
\(282\) 0 0
\(283\) 5.02628 + 2.90192i 0.298781 + 0.172501i 0.641895 0.766792i \(-0.278148\pi\)
−0.343114 + 0.939294i \(0.611482\pi\)
\(284\) −4.56218 7.90192i −0.270715 0.468893i
\(285\) 0 0
\(286\) −1.85641 −0.109772
\(287\) −14.0263 + 8.09808i −0.827945 + 0.478014i
\(288\) 3.00000i 0.176777i
\(289\) −7.00000 + 12.1244i −0.411765 + 0.713197i
\(290\) −3.86603 0.232051i −0.227021 0.0136265i
\(291\) 0 0
\(292\) −10.2679 5.92820i −0.600886 0.346922i
\(293\) −24.9904 14.4282i −1.45995 0.842905i −0.460945 0.887429i \(-0.652490\pi\)
−0.999008 + 0.0445239i \(0.985823\pi\)
\(294\) 0 0
\(295\) 1.26795 21.1244i 0.0738229 1.22991i
\(296\) −5.50000 + 2.59808i −0.319681 + 0.151010i
\(297\) 0 0
\(298\) 10.0359 5.79423i 0.581364 0.335651i
\(299\) −1.07180 + 1.85641i −0.0619836 + 0.107359i
\(300\) 0 0
\(301\) 11.9282 20.6603i 0.687530 1.19084i
\(302\) 10.5359i 0.606273i
\(303\) 0 0
\(304\) −1.26795 −0.0727219
\(305\) −15.4641 + 7.73205i −0.885472 + 0.442736i
\(306\) −5.19615 −0.297044
\(307\) 6.87564i 0.392414i −0.980563 0.196207i \(-0.937138\pi\)
0.980563 0.196207i \(-0.0628624\pi\)
\(308\) 3.00000 1.73205i 0.170941 0.0986928i
\(309\) 0 0
\(310\) −17.0981 1.02628i −0.971105 0.0582888i
\(311\) −2.36603 4.09808i −0.134165 0.232381i 0.791113 0.611670i \(-0.209502\pi\)
−0.925278 + 0.379289i \(0.876169\pi\)
\(312\) 0 0
\(313\) −2.42820 + 1.40192i −0.137250 + 0.0792414i −0.567053 0.823681i \(-0.691916\pi\)
0.429803 + 0.902923i \(0.358583\pi\)
\(314\) −8.50000 + 14.7224i −0.479683 + 0.830835i
\(315\) 10.0981 15.2942i 0.568962 0.861732i
\(316\) −7.83013 13.5622i −0.440479 0.762932i
\(317\) −12.4019 + 7.16025i −0.696561 + 0.402160i −0.806065 0.591826i \(-0.798407\pi\)
0.109504 + 0.993986i \(0.465074\pi\)
\(318\) 0 0
\(319\) 2.19615 0.122961
\(320\) −1.86603 1.23205i −0.104314 0.0688737i
\(321\) 0 0
\(322\) 4.00000i 0.222911i
\(323\) 2.19615i 0.122197i
\(324\) 4.50000 + 7.79423i 0.250000 + 0.433013i
\(325\) −0.875644 + 7.26795i −0.0485720 + 0.403153i
\(326\) 4.56218 7.90192i 0.252676 0.437647i
\(327\) 0 0
\(328\) −5.13397 2.96410i −0.283476 0.163665i
\(329\) −9.19615 + 15.9282i −0.507000 + 0.878150i
\(330\) 0 0
\(331\) 10.1962 + 17.6603i 0.560431 + 0.970695i 0.997459 + 0.0712472i \(0.0226979\pi\)
−0.437027 + 0.899448i \(0.643969\pi\)
\(332\) 2.53590i 0.139176i
\(333\) 10.3923 15.0000i 0.569495 0.821995i
\(334\) −17.8564 −0.977059
\(335\) −8.73205 17.4641i −0.477083 0.954166i
\(336\) 0 0
\(337\) 1.03590 + 0.598076i 0.0564290 + 0.0325793i 0.527949 0.849276i \(-0.322961\pi\)
−0.471520 + 0.881855i \(0.656295\pi\)
\(338\) 9.40192 + 5.42820i 0.511397 + 0.295255i
\(339\) 0 0
\(340\) −2.13397 + 3.23205i −0.115731 + 0.175283i
\(341\) 9.71281 0.525978
\(342\) 3.29423 1.90192i 0.178131 0.102844i
\(343\) 17.8564i 0.964155i
\(344\) 8.73205 0.470801
\(345\) 0 0
\(346\) 0.0358984 0.0621778i 0.00192991 0.00334270i
\(347\) 27.7128i 1.48770i −0.668346 0.743851i \(-0.732997\pi\)
0.668346 0.743851i \(-0.267003\pi\)
\(348\) 0 0
\(349\) 16.7942 + 29.0885i 0.898974 + 1.55707i 0.828807 + 0.559534i \(0.189020\pi\)
0.0701672 + 0.997535i \(0.477647\pi\)
\(350\) −5.36603 12.5622i −0.286826 0.671477i
\(351\) 0 0
\(352\) 1.09808 + 0.633975i 0.0585277 + 0.0337910i
\(353\) −11.8923 + 6.86603i −0.632964 + 0.365442i −0.781899 0.623405i \(-0.785749\pi\)
0.148935 + 0.988847i \(0.452415\pi\)
\(354\) 0 0
\(355\) 18.2487 9.12436i 0.968541 0.484271i
\(356\) −6.46410 −0.342597
\(357\) 0 0
\(358\) −12.9282 + 7.46410i −0.683277 + 0.394490i
\(359\) 17.4641 0.921720 0.460860 0.887473i \(-0.347541\pi\)
0.460860 + 0.887473i \(0.347541\pi\)
\(360\) 6.69615 + 0.401924i 0.352918 + 0.0211832i
\(361\) 8.69615 + 15.0622i 0.457692 + 0.792746i
\(362\) 11.5885i 0.609076i
\(363\) 0 0
\(364\) 4.00000 0.209657
\(365\) 14.6077 22.1244i 0.764602 1.15804i
\(366\) 0 0
\(367\) −29.3205 16.9282i −1.53052 0.883645i −0.999338 0.0363862i \(-0.988415\pi\)
−0.531180 0.847259i \(-0.678251\pi\)
\(368\) 1.26795 0.732051i 0.0660964 0.0381608i
\(369\) 17.7846 0.925830
\(370\) −5.06218 12.6244i −0.263170 0.656309i
\(371\) −22.9282 −1.19037
\(372\) 0 0
\(373\) 0.866025 + 0.500000i 0.0448411 + 0.0258890i 0.522253 0.852791i \(-0.325092\pi\)
−0.477412 + 0.878680i \(0.658425\pi\)
\(374\) 1.09808 1.90192i 0.0567802 0.0983461i
\(375\) 0 0
\(376\) −6.73205 −0.347179
\(377\) 2.19615 + 1.26795i 0.113108 + 0.0653027i
\(378\) 0 0
\(379\) 18.2942 + 31.6865i 0.939711 + 1.62763i 0.766009 + 0.642830i \(0.222240\pi\)
0.173702 + 0.984798i \(0.444427\pi\)
\(380\) 0.169873 2.83013i 0.00871430 0.145182i
\(381\) 0 0
\(382\) 16.7321 9.66025i 0.856086 0.494262i
\(383\) −13.4378 7.75833i −0.686641 0.396432i 0.115712 0.993283i \(-0.463085\pi\)
−0.802352 + 0.596851i \(0.796418\pi\)
\(384\) 0 0
\(385\) 3.46410 + 6.92820i 0.176547 + 0.353094i
\(386\) 8.33013 + 14.4282i 0.423992 + 0.734376i
\(387\) −22.6865 + 13.0981i −1.15322 + 0.665813i
\(388\) −6.23205 3.59808i −0.316384 0.182665i
\(389\) −4.13397 + 7.16025i −0.209601 + 0.363039i −0.951589 0.307374i \(-0.900550\pi\)
0.741988 + 0.670413i \(0.233883\pi\)
\(390\) 0 0
\(391\) −1.26795 2.19615i −0.0641229 0.111064i
\(392\) −0.401924 + 0.232051i −0.0203002 + 0.0117203i
\(393\) 0 0
\(394\) −3.03590 + 5.25833i −0.152946 + 0.264911i
\(395\) 31.3205 15.6603i 1.57591 0.787953i
\(396\) −3.80385 −0.191151
\(397\) 0.0717968i 0.00360338i 0.999998 + 0.00180169i \(0.000573496\pi\)
−0.999998 + 0.00180169i \(0.999427\pi\)
\(398\) 1.56218 0.901924i 0.0783049 0.0452094i
\(399\) 0 0
\(400\) 3.00000 4.00000i 0.150000 0.200000i
\(401\) 15.3205 0.765070 0.382535 0.923941i \(-0.375051\pi\)
0.382535 + 0.923941i \(0.375051\pi\)
\(402\) 0 0
\(403\) 9.71281 + 5.60770i 0.483830 + 0.279339i
\(404\) 0.133975 0.232051i 0.00666549 0.0115450i
\(405\) −18.0000 + 9.00000i −0.894427 + 0.447214i
\(406\) −4.73205 −0.234848
\(407\) 3.29423 + 6.97372i 0.163289 + 0.345674i
\(408\) 0 0
\(409\) −1.89230 3.27757i −0.0935685 0.162065i 0.815442 0.578839i \(-0.196494\pi\)
−0.909010 + 0.416774i \(0.863161\pi\)
\(410\) 7.30385 11.0622i 0.360711 0.546322i
\(411\) 0 0
\(412\) −3.29423 1.90192i −0.162295 0.0937011i
\(413\) 25.8564i 1.27231i
\(414\) −2.19615 + 3.80385i −0.107935 + 0.186949i
\(415\) −5.66025 0.339746i −0.277851 0.0166775i
\(416\) 0.732051 + 1.26795i 0.0358917 + 0.0621663i
\(417\) 0 0
\(418\) 1.60770i 0.0786349i
\(419\) 14.0981 + 24.4186i 0.688736 + 1.19293i 0.972247 + 0.233957i \(0.0751675\pi\)
−0.283511 + 0.958969i \(0.591499\pi\)
\(420\) 0 0
\(421\) −16.5167 −0.804973 −0.402486 0.915426i \(-0.631854\pi\)
−0.402486 + 0.915426i \(0.631854\pi\)
\(422\) −15.6340 + 9.02628i −0.761050 + 0.439392i
\(423\) 17.4904 10.0981i 0.850411 0.490985i
\(424\) −4.19615 7.26795i −0.203783 0.352963i
\(425\) −6.92820 5.19615i −0.336067 0.252050i
\(426\) 0 0
\(427\) −18.2942 + 10.5622i −0.885320 + 0.511140i
\(428\) −5.36603 + 3.09808i −0.259377 + 0.149751i
\(429\) 0 0
\(430\) −1.16987 + 19.4904i −0.0564163 + 0.939910i
\(431\) −6.36603 + 11.0263i −0.306641 + 0.531117i −0.977625 0.210354i \(-0.932538\pi\)
0.670985 + 0.741471i \(0.265872\pi\)
\(432\) 0 0
\(433\) 32.3731i 1.55575i 0.628419 + 0.777875i \(0.283702\pi\)
−0.628419 + 0.777875i \(0.716298\pi\)
\(434\) −20.9282 −1.00459
\(435\) 0 0
\(436\) −2.80385 −0.134280
\(437\) 1.60770 + 0.928203i 0.0769065 + 0.0444020i
\(438\) 0 0
\(439\) −16.9282 + 29.3205i −0.807939 + 1.39939i 0.106350 + 0.994329i \(0.466084\pi\)
−0.914289 + 0.405063i \(0.867250\pi\)
\(440\) −1.56218 + 2.36603i −0.0744739 + 0.112796i
\(441\) 0.696152 1.20577i 0.0331501 0.0574177i
\(442\) 2.19615 1.26795i 0.104460 0.0603102i
\(443\) 24.7846i 1.17755i 0.808296 + 0.588776i \(0.200390\pi\)
−0.808296 + 0.588776i \(0.799610\pi\)
\(444\) 0 0
\(445\) 0.866025 14.4282i 0.0410535 0.683962i
\(446\) −0.535898 0.928203i −0.0253755 0.0439517i
\(447\) 0 0
\(448\) −2.36603 1.36603i −0.111784 0.0645386i
\(449\) 21.1244 36.5885i 0.996920 1.72672i 0.430542 0.902571i \(-0.358323\pi\)
0.566378 0.824145i \(-0.308344\pi\)
\(450\) −1.79423 + 14.8923i −0.0845807 + 0.702030i
\(451\) −3.75833 + 6.50962i −0.176973 + 0.306526i
\(452\) 16.9282i 0.796236i
\(453\) 0 0
\(454\) 4.33975 0.203674
\(455\) −0.535898 + 8.92820i −0.0251233 + 0.418561i
\(456\) 0 0
\(457\) 7.62436 + 4.40192i 0.356652 + 0.205913i 0.667611 0.744510i \(-0.267317\pi\)
−0.310959 + 0.950423i \(0.600650\pi\)
\(458\) 25.5885i 1.19567i
\(459\) 0 0
\(460\) 1.46410 + 2.92820i 0.0682641 + 0.136528i
\(461\) −16.8564 29.1962i −0.785081 1.35980i −0.928951 0.370204i \(-0.879288\pi\)
0.143869 0.989597i \(-0.454045\pi\)
\(462\) 0 0
\(463\) 18.1699 + 10.4904i 0.844426 + 0.487529i 0.858766 0.512368i \(-0.171232\pi\)
−0.0143405 + 0.999897i \(0.504565\pi\)
\(464\) −0.866025 1.50000i −0.0402042 0.0696358i
\(465\) 0 0
\(466\) −6.86603 11.8923i −0.318062 0.550900i
\(467\) 14.5359i 0.672641i −0.941748 0.336321i \(-0.890817\pi\)
0.941748 0.336321i \(-0.109183\pi\)
\(468\) −3.80385 2.19615i −0.175833 0.101517i
\(469\) −11.9282 20.6603i −0.550793 0.954002i
\(470\) 0.901924 15.0263i 0.0416026 0.693111i
\(471\) 0 0
\(472\) 8.19615 4.73205i 0.377258 0.217810i
\(473\) 11.0718i 0.509082i
\(474\) 0 0
\(475\) 6.29423 + 0.758330i 0.288799 + 0.0347946i
\(476\) −2.36603 + 4.09808i −0.108447 + 0.187835i
\(477\) 21.8038 + 12.5885i 0.998330 + 0.576386i
\(478\) 12.6340 + 7.29423i 0.577865 + 0.333630i
\(479\) −1.26795 2.19615i −0.0579341 0.100345i 0.835604 0.549333i \(-0.185118\pi\)
−0.893538 + 0.448988i \(0.851785\pi\)
\(480\) 0 0
\(481\) −0.732051 + 8.87564i −0.0333786 + 0.404695i
\(482\) 17.4641i 0.795468i
\(483\) 0 0
\(484\) −4.69615 + 8.13397i −0.213461 + 0.369726i
\(485\) 8.86603 13.4282i 0.402585 0.609743i
\(486\) 0 0
\(487\) 33.4641i 1.51640i 0.652020 + 0.758202i \(0.273922\pi\)
−0.652020 + 0.758202i \(0.726078\pi\)
\(488\) −6.69615 3.86603i −0.303121 0.175007i
\(489\) 0 0
\(490\) −0.464102 0.928203i −0.0209660 0.0419319i
\(491\) −29.6603 −1.33855 −0.669274 0.743015i \(-0.733395\pi\)
−0.669274 + 0.743015i \(0.733395\pi\)
\(492\) 0 0
\(493\) −2.59808 + 1.50000i −0.117011 + 0.0675566i
\(494\) −0.928203 + 1.60770i −0.0417618 + 0.0723336i
\(495\) 0.509619 8.49038i 0.0229057 0.381614i
\(496\) −3.83013 6.63397i −0.171978 0.297874i
\(497\) 21.5885 12.4641i 0.968375 0.559091i
\(498\) 0 0
\(499\) −3.75833 + 6.50962i −0.168246 + 0.291411i −0.937803 0.347167i \(-0.887144\pi\)
0.769557 + 0.638578i \(0.220477\pi\)
\(500\) 8.52628 + 7.23205i 0.381307 + 0.323427i
\(501\) 0 0
\(502\) −10.2224 + 5.90192i −0.456249 + 0.263416i
\(503\) 12.1699 7.02628i 0.542628 0.313286i −0.203515 0.979072i \(-0.565237\pi\)
0.746143 + 0.665785i \(0.231903\pi\)
\(504\) 8.19615 0.365086
\(505\) 0.500000 + 0.330127i 0.0222497 + 0.0146905i
\(506\) −0.928203 1.60770i −0.0412637 0.0714708i
\(507\) 0 0
\(508\) 10.9282i 0.484861i
\(509\) 20.2583 + 35.0885i 0.897935 + 1.55527i 0.830130 + 0.557570i \(0.188266\pi\)
0.0678047 + 0.997699i \(0.478401\pi\)
\(510\) 0 0
\(511\) 16.1962 28.0526i 0.716476 1.24097i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −6.40192 + 11.0885i −0.282377 + 0.489091i
\(515\) 4.68653 7.09808i 0.206513 0.312779i
\(516\) 0 0
\(517\) 8.53590i 0.375408i
\(518\) −7.09808 15.0263i −0.311872 0.660217i
\(519\) 0 0
\(520\) −2.92820 + 1.46410i −0.128410 + 0.0642051i
\(521\) 17.1244 29.6603i 0.750232 1.29944i −0.197479 0.980307i \(-0.563275\pi\)
0.947710 0.319132i \(-0.103391\pi\)
\(522\) 4.50000 + 2.59808i 0.196960 + 0.113715i
\(523\) 10.7321 + 6.19615i 0.469280 + 0.270939i 0.715938 0.698164i \(-0.245999\pi\)
−0.246658 + 0.969102i \(0.579333\pi\)
\(524\) −2.92820 −0.127919
\(525\) 0 0
\(526\) 9.07180 0.395549
\(527\) −11.4904 + 6.63397i −0.500529 + 0.288980i
\(528\) 0 0
\(529\) 20.8564 0.906800
\(530\) 16.7846 8.39230i 0.729077 0.364538i
\(531\) −14.1962 + 24.5885i −0.616061 + 1.06705i
\(532\) 3.46410i 0.150188i
\(533\) −7.51666 + 4.33975i −0.325583 + 0.187975i
\(534\) 0 0
\(535\) −6.19615 12.3923i −0.267883 0.535766i
\(536\) 4.36603 7.56218i 0.188584 0.326636i
\(537\) 0 0
\(538\) −15.4641 + 8.92820i −0.666705 + 0.384922i
\(539\) 0.294229 + 0.509619i 0.0126733 + 0.0219508i
\(540\) 0 0
\(541\) 24.2679 1.04336 0.521680 0.853141i \(-0.325305\pi\)
0.521680 + 0.853141i \(0.325305\pi\)
\(542\) 7.56218 + 4.36603i 0.324823 + 0.187537i
\(543\) 0 0
\(544\) −1.73205 −0.0742611
\(545\) 0.375644 6.25833i 0.0160908 0.268077i
\(546\) 0 0
\(547\) 43.3731i 1.85450i 0.374445 + 0.927249i \(0.377833\pi\)
−0.374445 + 0.927249i \(0.622167\pi\)
\(548\) 1.50000 + 0.866025i 0.0640768 + 0.0369948i
\(549\) 23.1962 0.989988
\(550\) −5.07180 3.80385i −0.216262 0.162197i
\(551\) 1.09808 1.90192i 0.0467796 0.0810247i
\(552\) 0 0
\(553\) 37.0526 21.3923i 1.57564 0.909693i
\(554\) 1.39230 0.0591534
\(555\) 0 0
\(556\) 10.9282 0.463459
\(557\) 13.7942 7.96410i 0.584480 0.337450i −0.178432 0.983952i \(-0.557102\pi\)
0.762912 + 0.646502i \(0.223769\pi\)
\(558\) 19.9019 + 11.4904i 0.842516 + 0.486427i
\(559\) 6.39230 11.0718i 0.270366 0.468287i
\(560\) 3.36603 5.09808i 0.142241 0.215433i
\(561\) 0 0
\(562\) −2.59808 1.50000i −0.109593 0.0632737i
\(563\) 5.85641i 0.246818i −0.992356 0.123409i \(-0.960617\pi\)
0.992356 0.123409i \(-0.0393827\pi\)
\(564\) 0 0
\(565\) −37.7846 2.26795i −1.58961 0.0954133i
\(566\) −5.80385 −0.243954
\(567\) −21.2942 + 12.2942i −0.894274 + 0.516309i
\(568\) 7.90192 + 4.56218i 0.331557 + 0.191425i
\(569\) −43.1051 −1.80706 −0.903530 0.428524i \(-0.859034\pi\)
−0.903530 + 0.428524i \(0.859034\pi\)
\(570\) 0 0
\(571\) 13.1244 + 22.7321i 0.549237 + 0.951307i 0.998327 + 0.0578201i \(0.0184150\pi\)
−0.449090 + 0.893487i \(0.648252\pi\)
\(572\) 1.60770 0.928203i 0.0672211 0.0388101i
\(573\) 0 0
\(574\) 8.09808 14.0263i 0.338007 0.585446i
\(575\) −6.73205 + 2.87564i −0.280746 + 0.119923i
\(576\) 1.50000 + 2.59808i 0.0625000 + 0.108253i
\(577\) 1.73205 1.00000i 0.0721062 0.0416305i −0.463513 0.886090i \(-0.653411\pi\)
0.535620 + 0.844459i \(0.320078\pi\)
\(578\) 14.0000i 0.582323i
\(579\) 0 0
\(580\) 3.46410 1.73205i 0.143839 0.0719195i
\(581\) −6.92820 −0.287430
\(582\) 0 0
\(583\) −9.21539 + 5.32051i −0.381662 + 0.220353i
\(584\) 11.8564 0.490622
\(585\) 5.41154 8.19615i 0.223740 0.338869i
\(586\) 28.8564 1.19205
\(587\) 16.3923 + 9.46410i 0.676583 + 0.390625i 0.798566 0.601907i \(-0.205592\pi\)
−0.121983 + 0.992532i \(0.538925\pi\)
\(588\) 0 0
\(589\) 4.85641 8.41154i 0.200105 0.346592i
\(590\) 9.46410 + 18.9282i 0.389631 + 0.779262i
\(591\) 0 0
\(592\) 3.46410 5.00000i 0.142374 0.205499i
\(593\) 19.7321i 0.810298i 0.914251 + 0.405149i \(0.132780\pi\)
−0.914251 + 0.405149i \(0.867220\pi\)
\(594\) 0 0
\(595\) −8.83013 5.83013i −0.362000 0.239012i
\(596\) −5.79423 + 10.0359i −0.237341 + 0.411086i
\(597\) 0 0
\(598\) 2.14359i 0.0876581i
\(599\) −0.0262794 + 0.0455173i −0.00107375 + 0.00185979i −0.866562 0.499070i \(-0.833675\pi\)
0.865488 + 0.500930i \(0.167008\pi\)
\(600\) 0 0
\(601\) −18.6244 32.2583i −0.759703 1.31584i −0.943002 0.332787i \(-0.892011\pi\)
0.183299 0.983057i \(-0.441322\pi\)
\(602\) 23.8564i 0.972315i
\(603\) 26.1962i 1.06679i
\(604\) −5.26795 9.12436i −0.214350 0.371265i
\(605\) −17.5263 11.5718i −0.712545 0.470460i
\(606\) 0 0
\(607\) 22.9019 13.2224i 0.929560 0.536682i 0.0428879 0.999080i \(-0.486344\pi\)
0.886673 + 0.462398i \(0.153011\pi\)
\(608\) 1.09808 0.633975i 0.0445329 0.0257111i
\(609\) 0 0
\(610\) 9.52628 14.4282i 0.385708 0.584181i
\(611\) −4.92820 + 8.53590i −0.199374 + 0.345325i
\(612\) 4.50000 2.59808i 0.181902 0.105021i
\(613\) −27.9904 + 16.1603i −1.13052 + 0.652707i −0.944066 0.329757i \(-0.893033\pi\)
−0.186455 + 0.982464i \(0.559700\pi\)
\(614\) 3.43782 + 5.95448i 0.138739 + 0.240303i
\(615\) 0 0
\(616\) −1.73205 + 3.00000i −0.0697863 + 0.120873i
\(617\) 28.3923 16.3923i 1.14303 0.659929i 0.195852 0.980634i \(-0.437253\pi\)
0.947179 + 0.320704i \(0.103920\pi\)
\(618\) 0 0
\(619\) −30.4449 −1.22368 −0.611841 0.790981i \(-0.709571\pi\)
−0.611841 + 0.790981i \(0.709571\pi\)
\(620\) 15.3205 7.66025i 0.615286 0.307643i
\(621\) 0 0
\(622\) 4.09808 + 2.36603i 0.164318 + 0.0948690i
\(623\) 17.6603i 0.707543i
\(624\) 0 0
\(625\) −17.2846 + 18.0622i −0.691384 + 0.722487i
\(626\) 1.40192 2.42820i 0.0560321 0.0970505i
\(627\) 0 0
\(628\) 17.0000i 0.678374i
\(629\) −8.66025 6.00000i −0.345307 0.239236i
\(630\) −1.09808 + 18.2942i −0.0437484 + 0.728860i
\(631\) −6.39230 11.0718i −0.254474 0.440761i 0.710279 0.703920i \(-0.248569\pi\)
−0.964752 + 0.263159i \(0.915236\pi\)
\(632\) 13.5622 + 7.83013i 0.539474 + 0.311466i
\(633\) 0 0
\(634\) 7.16025 12.4019i 0.284370 0.492543i
\(635\) −24.3923 1.46410i −0.967979 0.0581011i
\(636\) 0 0
\(637\) 0.679492i 0.0269225i
\(638\) −1.90192 + 1.09808i −0.0752979 + 0.0434733i
\(639\) −27.3731 −1.08286
\(640\) 2.23205 + 0.133975i 0.0882296 + 0.00529581i
\(641\) 14.3564 + 24.8660i 0.567044 + 0.982149i 0.996856 + 0.0792307i \(0.0252464\pi\)
−0.429812 + 0.902918i \(0.641420\pi\)
\(642\) 0 0
\(643\) 39.6603i 1.56405i 0.623248 + 0.782024i \(0.285813\pi\)
−0.623248 + 0.782024i \(0.714187\pi\)
\(644\) 2.00000 + 3.46410i 0.0788110 + 0.136505i
\(645\) 0 0
\(646\) −1.09808 1.90192i −0.0432032 0.0748302i
\(647\) −6.75833 3.90192i −0.265697 0.153400i 0.361233 0.932475i \(-0.382356\pi\)
−0.626931 + 0.779075i \(0.715689\pi\)
\(648\) −7.79423 4.50000i −0.306186 0.176777i
\(649\) −6.00000 10.3923i −0.235521 0.407934i
\(650\) −2.87564 6.73205i −0.112792 0.264053i
\(651\) 0 0
\(652\) 9.12436i 0.357337i
\(653\) 36.6506 + 21.1603i 1.43425 + 0.828065i 0.997441 0.0714896i \(-0.0227753\pi\)
0.436809 + 0.899554i \(0.356109\pi\)
\(654\) 0 0
\(655\) 0.392305 6.53590i 0.0153286 0.255379i
\(656\) 5.92820 0.231457
\(657\) −30.8038 + 17.7846i −1.20177 + 0.693844i
\(658\) 18.3923i 0.717007i
\(659\) −7.26795 + 12.5885i −0.283119 + 0.490377i −0.972151 0.234354i \(-0.924703\pi\)
0.689032 + 0.724731i \(0.258036\pi\)
\(660\) 0 0
\(661\) 19.1340 33.1410i 0.744225 1.28904i −0.206330 0.978482i \(-0.566152\pi\)
0.950556 0.310554i \(-0.100514\pi\)
\(662\) −17.6603 10.1962i −0.686385 0.396285i
\(663\) 0 0
\(664\) −1.26795 2.19615i −0.0492060 0.0852272i
\(665\) 7.73205 + 0.464102i 0.299836 + 0.0179971i
\(666\) −1.50000 + 18.1865i −0.0581238 + 0.704714i
\(667\) 2.53590i 0.0981904i
\(668\) 15.4641 8.92820i 0.598324 0.345443i
\(669\) 0 0
\(670\) 16.2942 + 10.7583i 0.629501 + 0.415631i
\(671\) −4.90192 + 8.49038i −0.189237 + 0.327768i
\(672\) 0 0
\(673\) −33.5885 19.3923i −1.29474 0.747518i −0.315249 0.949009i \(-0.602088\pi\)
−0.979490 + 0.201490i \(0.935422\pi\)
\(674\) −1.19615 −0.0460741
\(675\) 0 0
\(676\) −10.8564 −0.417554
\(677\) 39.0000i 1.49889i −0.662066 0.749446i \(-0.730320\pi\)
0.662066 0.749446i \(-0.269680\pi\)
\(678\) 0 0
\(679\) 9.83013 17.0263i 0.377246 0.653409i
\(680\) 0.232051 3.86603i 0.00889874 0.148255i
\(681\) 0 0
\(682\) −8.41154 + 4.85641i −0.322095 + 0.185961i
\(683\) 13.5622 7.83013i 0.518942 0.299611i −0.217559 0.976047i \(-0.569810\pi\)
0.736502 + 0.676436i \(0.236476\pi\)
\(684\) −1.90192 + 3.29423i −0.0727219 + 0.125958i
\(685\) −2.13397 + 3.23205i −0.0815350 + 0.123490i
\(686\) 8.92820 + 15.4641i 0.340880 + 0.590422i
\(687\) 0 0
\(688\) −7.56218 + 4.36603i −0.288305 + 0.166453i
\(689\) −12.2872 −0.468105
\(690\) 0 0
\(691\) 5.90192 + 10.2224i 0.224520 + 0.388880i 0.956175 0.292795i \(-0.0945853\pi\)
−0.731655 + 0.681675i \(0.761252\pi\)
\(692\) 0.0717968i 0.00272930i
\(693\) 10.3923i 0.394771i
\(694\) 13.8564 + 24.0000i 0.525982 + 0.911028i
\(695\) −1.46410 + 24.3923i −0.0555365 + 0.925253i
\(696\) 0 0
\(697\) 10.2679i 0.388926i
\(698\) −29.0885 16.7942i −1.10101 0.635671i
\(699\) 0 0
\(700\) 10.9282 + 8.19615i 0.413047 + 0.309785i
\(701\) 15.3923 + 26.6603i 0.581359 + 1.00694i 0.995319 + 0.0966485i \(0.0308123\pi\)
−0.413959 + 0.910295i \(0.635854\pi\)
\(702\) 0 0
\(703\) 7.68653 + 0.633975i 0.289903 + 0.0239108i
\(704\) −1.26795 −0.0477876
\(705\) 0 0
\(706\) 6.86603 11.8923i 0.258406 0.447573i
\(707\) 0.633975 + 0.366025i 0.0238431 + 0.0137658i
\(708\) 0 0
\(709\) −1.07180 −0.0402522 −0.0201261 0.999797i \(-0.506407\pi\)
−0.0201261 + 0.999797i \(0.506407\pi\)
\(710\) −11.2417 + 17.0263i −0.421892 + 0.638985i
\(711\) −46.9808 −1.76192
\(712\) 5.59808 3.23205i 0.209797 0.121126i
\(713\) 11.2154i 0.420020i
\(714\) 0 0
\(715\) 1.85641 + 3.71281i 0.0694257 + 0.138851i
\(716\) 7.46410 12.9282i 0.278947 0.483150i
\(717\) 0 0
\(718\) −15.1244 + 8.73205i −0.564436 + 0.325877i
\(719\) 6.19615 + 10.7321i 0.231077 + 0.400238i 0.958125 0.286349i \(-0.0924416\pi\)
−0.727048 + 0.686587i \(0.759108\pi\)
\(720\) −6.00000 + 3.00000i −0.223607 + 0.111803i
\(721\) 5.19615 9.00000i 0.193515 0.335178i
\(722\) −15.0622 8.69615i −0.560556 0.323637i
\(723\) 0 0
\(724\) 5.79423 + 10.0359i 0.215341 + 0.372981i
\(725\) 3.40192 + 7.96410i 0.126344 + 0.295779i
\(726\) 0 0
\(727\) −33.1244 19.1244i −1.22851 0.709283i −0.261795 0.965123i \(-0.584315\pi\)
−0.966719 + 0.255840i \(0.917648\pi\)
\(728\) −3.46410 + 2.00000i −0.128388 + 0.0741249i
\(729\) 27.0000 1.00000
\(730\) −1.58846 + 26.4641i −0.0587914 + 0.979480i
\(731\) 7.56218 + 13.0981i 0.279697 + 0.484450i
\(732\) 0 0
\(733\) 15.1244 + 8.73205i 0.558631 + 0.322526i 0.752596 0.658483i \(-0.228801\pi\)
−0.193965 + 0.981008i \(0.562135\pi\)
\(734\) 33.8564 1.24966
\(735\) 0 0
\(736\) −0.732051 + 1.26795i −0.0269838 + 0.0467372i
\(737\) −9.58846 5.53590i −0.353195 0.203917i
\(738\) −15.4019 + 8.89230i −0.566953 + 0.327330i
\(739\) −30.9282 −1.13771 −0.568856 0.822437i \(-0.692614\pi\)
−0.568856 + 0.822437i \(0.692614\pi\)
\(740\) 10.6962 + 8.40192i 0.393198 + 0.308861i
\(741\) 0 0
\(742\) 19.8564 11.4641i 0.728952 0.420860i
\(743\) −22.2224 12.8301i −0.815262 0.470692i 0.0335179 0.999438i \(-0.489329\pi\)
−0.848780 + 0.528746i \(0.822662\pi\)
\(744\) 0 0
\(745\) −21.6244 14.2776i −0.792255 0.523090i
\(746\) −1.00000 −0.0366126
\(747\) 6.58846 + 3.80385i 0.241059 + 0.139176i
\(748\) 2.19615i 0.0802993i
\(749\) −8.46410 14.6603i −0.309272 0.535674i
\(750\) 0 0
\(751\) 30.1962 1.10187 0.550937 0.834547i \(-0.314271\pi\)
0.550937 + 0.834547i \(0.314271\pi\)
\(752\) 5.83013 3.36603i 0.212603 0.122746i
\(753\) 0 0
\(754\) −2.53590 −0.0923520
\(755\) 21.0718 10.5359i 0.766881 0.383441i
\(756\) 0 0
\(757\) −1.33013 + 0.767949i −0.0483443 + 0.0279116i −0.523977 0.851732i \(-0.675552\pi\)
0.475633 + 0.879644i \(0.342219\pi\)
\(758\) −31.6865 18.2942i −1.15091 0.664476i
\(759\) 0 0
\(760\) 1.26795 + 2.53590i 0.0459934 + 0.0919867i
\(761\) −0.500000 0.866025i −0.0181250 0.0313934i 0.856821 0.515615i \(-0.172436\pi\)
−0.874946 + 0.484221i \(0.839103\pi\)
\(762\) 0 0
\(763\) 7.66025i 0.277320i
\(764\) −9.66025 + 16.7321i −0.349496 + 0.605344i
\(765\) 5.19615 + 10.3923i 0.187867 + 0.375735i
\(766\) 15.5167 0.560640
\(767\) 13.8564i 0.500326i
\(768\) 0 0
\(769\) 3.60770 0.130097 0.0650484 0.997882i \(-0.479280\pi\)
0.0650484 + 0.997882i \(0.479280\pi\)
\(770\) −6.46410 4.26795i −0.232950 0.153806i
\(771\) 0 0
\(772\) −14.4282 8.33013i −0.519282 0.299808i
\(773\) 35.3827 + 20.4282i 1.27263 + 0.734751i 0.975482 0.220081i \(-0.0706321\pi\)
0.297145 + 0.954832i \(0.403965\pi\)
\(774\) 13.0981 22.6865i 0.470801 0.815451i
\(775\) 15.0455 + 35.2224i 0.540451 + 1.26523i
\(776\) 7.19615 0.258327
\(777\) 0 0
\(778\) 8.26795i 0.296420i
\(779\) 3.75833 + 6.50962i 0.134656 + 0.233231i
\(780\) 0 0
\(781\) 5.78461 10.0192i 0.206990 0.358517i
\(782\) 2.19615 + 1.26795i 0.0785343 + 0.0453418i
\(783\) 0 0
\(784\) 0.232051 0.401924i 0.00828753 0.0143544i
\(785\) 37.9449 + 2.27757i 1.35431 + 0.0812899i
\(786\) 0 0
\(787\) 45.5692i 1.62437i −0.583402 0.812184i \(-0.698279\pi\)
0.583402 0.812184i \(-0.301721\pi\)
\(788\) 6.07180i 0.216299i
\(789\) 0 0
\(790\) −19.2942 + 29.2224i −0.686458 + 1.03969i
\(791\) −46.2487 −1.64441
\(792\) 3.29423 1.90192i 0.117055 0.0675819i
\(793\) −9.80385 + 5.66025i −0.348145 + 0.201002i
\(794\) −0.0358984 0.0621778i −0.00127399 0.00220661i
\(795\) 0 0
\(796\) −0.901924 + 1.56218i −0.0319678 + 0.0553699i
\(797\) 22.9808 13.2679i 0.814020 0.469975i −0.0343297 0.999411i \(-0.510930\pi\)
0.848350 + 0.529436i \(0.177596\pi\)
\(798\) 0 0
\(799\) −5.83013 10.0981i −0.206255 0.357244i
\(800\) −0.598076 + 4.96410i −0.0211452 + 0.175507i
\(801\) −9.69615 + 16.7942i −0.342597 + 0.593395i
\(802\) −13.2679 + 7.66025i −0.468508 + 0.270493i
\(803\) 15.0333i 0.530514i
\(804\) 0 0
\(805\) −8.00000 + 4.00000i −0.281963 + 0.140981i
\(806\) −11.2154 −0.395045
\(807\) 0 0
\(808\) 0.267949i 0.00942642i
\(809\) 5.66025 9.80385i 0.199004 0.344685i −0.749202 0.662342i \(-0.769563\pi\)
0.948206 + 0.317657i \(0.102896\pi\)
\(810\) 11.0885 16.7942i 0.389609 0.590089i
\(811\) 20.1962 34.9808i 0.709183 1.22834i −0.255978 0.966683i \(-0.582397\pi\)
0.965161 0.261658i \(-0.0842693\pi\)
\(812\) 4.09808 2.36603i 0.143814 0.0830312i
\(813\) 0 0
\(814\) −6.33975 4.39230i −0.222208 0.153950i
\(815\) −20.3660 1.22243i −0.713391 0.0428199i
\(816\) 0 0
\(817\) −9.58846 5.53590i −0.335458 0.193677i
\(818\) 3.27757 + 1.89230i 0.114597 + 0.0661629i
\(819\) 6.00000 10.3923i 0.209657 0.363137i
\(820\) −0.794229 + 13.2321i −0.0277357 + 0.462083i
\(821\) −14.0000 + 24.2487i −0.488603 + 0.846286i −0.999914 0.0131101i \(-0.995827\pi\)
0.511311 + 0.859396i \(0.329160\pi\)
\(822\) 0 0
\(823\) 44.4449 25.6603i 1.54925 0.894460i 0.551052 0.834471i \(-0.314227\pi\)
0.998199 0.0599890i \(-0.0191066\pi\)
\(824\) 3.80385 0.132513
\(825\) 0 0
\(826\) 12.9282 + 22.3923i 0.449830 + 0.779128i
\(827\) −44.7846 25.8564i −1.55731 0.899115i −0.997513 0.0704882i \(-0.977544\pi\)
−0.559801 0.828627i \(-0.689122\pi\)
\(828\) 4.39230i 0.152643i
\(829\) −22.4641 38.9090i −0.780210 1.35136i −0.931819 0.362924i \(-0.881779\pi\)
0.151608 0.988441i \(-0.451555\pi\)
\(830\) 5.07180 2.53590i 0.176045 0.0880223i
\(831\) 0 0
\(832\) −1.26795 0.732051i −0.0439582 0.0253793i
\(833\) −0.696152 0.401924i −0.0241203 0.0139258i
\(834\) 0 0
\(835\) 17.8564 + 35.7128i 0.617946 + 1.23589i
\(836\) −0.803848 1.39230i −0.0278016 0.0481539i
\(837\) 0 0
\(838\) −24.4186 14.0981i −0.843526 0.487010i
\(839\) −26.1962 45.3731i −0.904392 1.56645i −0.821732 0.569874i \(-0.806992\pi\)
−0.0826598 0.996578i \(-0.526341\pi\)
\(840\) 0 0
\(841\) −26.0000 −0.896552
\(842\) 14.3038 8.25833i 0.492943 0.284601i
\(843\) 0 0
\(844\) 9.02628 15.6340i 0.310697 0.538144i
\(845\) 1.45448 24.2321i 0.0500357 0.833608i
\(846\) −10.0981 + 17.4904i −0.347179 + 0.601332i
\(847\) −22.2224 12.8301i −0.763572 0.440848i
\(848\) 7.26795 + 4.19615i 0.249582 + 0.144096i
\(849\) 0 0
\(850\) 8.59808 + 1.03590i 0.294912 + 0.0355310i
\(851\) −8.05256 + 3.80385i −0.276038 + 0.130394i
\(852\) 0 0
\(853\) −45.7750 + 26.4282i −1.56731 + 0.904884i −0.570824 + 0.821072i \(0.693376\pi\)
−0.996482 + 0.0838122i \(0.973290\pi\)
\(854\) 10.5622 18.2942i 0.361430 0.626016i
\(855\) −7.09808 4.68653i −0.242749 0.160276i
\(856\) 3.09808 5.36603i 0.105890 0.183407i
\(857\) 32.5167i 1.11075i −0.831601 0.555374i \(-0.812575\pi\)
0.831601 0.555374i \(-0.187425\pi\)
\(858\) 0 0
\(859\) −38.0526 −1.29834 −0.649168 0.760645i \(-0.724883\pi\)
−0.649168 + 0.760645i \(0.724883\pi\)
\(860\) −8.73205 17.4641i −0.297760 0.595521i
\(861\) 0 0
\(862\) 12.7321i 0.433655i
\(863\) −15.8038 + 9.12436i −0.537969 + 0.310597i −0.744256 0.667895i \(-0.767196\pi\)
0.206286 + 0.978492i \(0.433862\pi\)
\(864\) 0 0
\(865\) −0.160254 0.00961894i −0.00544880 0.000327054i
\(866\) −16.1865 28.0359i −0.550041 0.952699i
\(867\) 0 0
\(868\) 18.1244 10.4641i 0.615181 0.355175i
\(869\) 9.92820 17.1962i 0.336791 0.583340i
\(870\) 0 0
\(871\) −6.39230 11.0718i −0.216595 0.375154i
\(872\) 2.42820 1.40192i 0.0822293 0.0474751i
\(873\) −18.6962 + 10.7942i −0.632769 + 0.365329i
\(874\) −1.85641 −0.0627939
\(875\) −19.7583 + 23.2942i −0.667953 + 0.787489i
\(876\) 0 0
\(877\) 27.1051i 0.915275i 0.889139 + 0.457637i \(0.151304\pi\)
−0.889139 + 0.457637i \(0.848696\pi\)
\(878\) 33.8564i 1.14260i
\(879\) 0 0
\(880\) 0.169873 2.83013i 0.00572642 0.0954036i
\(881\) −8.76795 + 15.1865i −0.295400 + 0.511647i −0.975078 0.221863i \(-0.928786\pi\)
0.679678 + 0.733511i \(0.262119\pi\)
\(882\) 1.39230i 0.0468813i
\(883\) 17.6603 + 10.1962i 0.594315 + 0.343128i 0.766802 0.641884i \(-0.221847\pi\)
−0.172487 + 0.985012i \(0.555180\pi\)
\(884\) −1.26795 + 2.19615i −0.0426457 + 0.0738646i
\(885\) 0 0
\(886\) −12.3923 21.4641i −0.416328 0.721101i
\(887\) 5.46410i 0.183467i 0.995784 + 0.0917333i \(0.0292407\pi\)
−0.995784 + 0.0917333i \(0.970759\pi\)
\(888\) 0 0
\(889\) −29.8564 −1.00135
\(890\) 6.46410 + 12.9282i 0.216677 + 0.433354i
\(891\) −5.70577 + 9.88269i −0.191151 + 0.331082i
\(892\) 0.928203 + 0.535898i 0.0310785 + 0.0179432i
\(893\) 7.39230 + 4.26795i 0.247374 + 0.142821i
\(894\) 0 0
\(895\) 27.8564 + 18.3923i 0.931137 + 0.614787i
\(896\) 2.73205 0.0912714
\(897\) 0 0
\(898\) 42.2487i 1.40986i
\(899\) 13.2679 0.442511
\(900\) −5.89230 13.7942i −0.196410 0.459808i
\(901\) 7.26795 12.5885i 0.242130 0.419382i
\(902\) 7.51666i 0.250277i
\(903\) 0 0
\(904\) −8.46410 14.6603i −0.281512 0.487593i
\(905\) −23.1769 + 11.5885i −0.770427 + 0.385213i
\(906\) 0 0
\(907\) −2.83013 1.63397i −0.0939728 0.0542552i 0.452277 0.891877i \(-0.350612\pi\)
−0.546250 + 0.837622i \(0.683945\pi\)
\(908\) −3.75833 + 2.16987i −0.124725 + 0.0720098i
\(909\) −0.401924 0.696152i −0.0133310 0.0230899i
\(910\) −4.00000 8.00000i −0.132599 0.265197i
\(911\) 18.9282 0.627119 0.313560 0.949568i \(-0.398478\pi\)
0.313560 + 0.949568i \(0.398478\pi\)
\(912\) 0 0
\(913\) −2.78461 + 1.60770i −0.0921571 + 0.0532069i
\(914\) −8.80385 −0.291205
\(915\) 0 0
\(916\) 12.7942 + 22.1603i 0.422733 + 0.732195i
\(917\) 8.00000i 0.264183i
\(918\) 0 0
\(919\) 55.0333 1.81538 0.907691 0.419639i \(-0.137843\pi\)
0.907691 + 0.419639i \(0.137843\pi\)
\(920\) −2.73205 1.80385i −0.0900730 0.0594711i
\(921\) 0 0
\(922\) 29.1962 + 16.8564i 0.961524 + 0.555136i
\(923\) 11.5692 6.67949i 0.380805 0.219858i
\(924\) 0 0
\(925\) −20.1865 + 22.7487i −0.663729 + 0.747973i
\(926\) −20.9808 −0.689471
\(927\) −9.88269 + 5.70577i −0.324590 + 0.187402i
\(928\) 1.50000 + 0.866025i 0.0492399 + 0.0284287i
\(929\) 14.7679 25.5788i 0.484521 0.839214i −0.515321 0.856997i \(-0.672327\pi\)
0.999842 + 0.0177827i \(0.00566070\pi\)
\(930\) 0 0
\(931\) 0.588457 0.0192859
\(932\) 11.8923 + 6.86603i 0.389545 + 0.224904i
\(933\) 0 0
\(934\) 7.26795 + 12.5885i 0.237815 + 0.411907i
\(935\) −4.90192 0.294229i −0.160310 0.00962231i
\(936\) 4.39230 0.143567
\(937\) −31.7487 + 18.3301i −1.03719 + 0.598819i −0.919035 0.394177i \(-0.871030\pi\)
−0.118150 + 0.992996i \(0.537697\pi\)
\(938\) 20.6603 + 11.9282i 0.674581 + 0.389470i
\(939\) 0 0
\(940\) 6.73205 + 13.4641i 0.219575 + 0.439151i
\(941\) 9.33013 + 16.1603i 0.304153 + 0.526809i 0.977072 0.212907i \(-0.0682931\pi\)
−0.672919 + 0.739716i \(0.734960\pi\)
\(942\) 0 0
\(943\) −7.51666 4.33975i −0.244776 0.141322i
\(944\) −4.73205 + 8.19615i −0.154015 + 0.266762i
\(945\) 0 0
\(946\) 5.53590 + 9.58846i 0.179988 + 0.311748i
\(947\) −11.0718 + 6.39230i −0.359785 + 0.207722i −0.668986 0.743275i \(-0.733272\pi\)
0.309201 + 0.950997i \(0.399938\pi\)
\(948\) 0 0
\(949\) 8.67949 15.0333i 0.281748 0.488002i
\(950\) −5.83013 + 2.49038i −0.189154 + 0.0807986i
\(951\) 0 0
\(952\) 4.73205i 0.153367i
\(953\) 11.1962 6.46410i 0.362679 0.209393i −0.307576 0.951523i \(-0.599518\pi\)
0.670255 + 0.742131i \(0.266185\pi\)
\(954\) −25.1769 −0.815133
\(955\) −36.0526 23.8038i −1.16663 0.770274i
\(956\) −14.5885 −0.471824
\(957\) 0 0
\(958\) 2.19615 + 1.26795i 0.0709545 + 0.0409656i
\(959\) −2.36603 + 4.09808i −0.0764029 + 0.132334i
\(960\) 0 0
\(961\) 27.6795 0.892887
\(962\) −3.80385 8.05256i −0.122641 0.259625i
\(963\) 18.5885i 0.599005i
\(964\) −8.73205 15.1244i −0.281240 0.487123i
\(965\) 20.5263 31.0885i 0.660764 1.00077i
\(966\) 0 0
\(967\) 10.1436 + 5.85641i 0.326196 + 0.188329i 0.654151 0.756364i \(-0.273026\pi\)
−0.327955 + 0.944693i \(0.606359\pi\)
\(968\) 9.39230i 0.301880i
\(969\) 0 0
\(970\) −0.964102 + 16.0622i −0.0309554 + 0.515725i
\(971\) 13.3205 + 23.0718i 0.427475 + 0.740409i 0.996648 0.0818089i \(-0.0260697\pi\)
−0.569173 + 0.822218i \(0.692736\pi\)
\(972\) 0 0
\(973\) 29.8564i 0.957152i
\(974\) −16.7321 28.9808i −0.536129 0.928604i
\(975\) 0 0
\(976\) 7.73205 0.247497
\(977\) 24.3731 14.0718i 0.779763 0.450197i −0.0565830 0.998398i \(-0.518021\pi\)
0.836346 + 0.548201i \(0.184687\pi\)
\(978\) 0 0
\(979\) −4.09808 7.09808i −0.130975 0.226855i
\(980\) 0.866025 + 0.571797i 0.0276642 + 0.0182654i
\(981\) −4.20577 + 7.28461i −0.134280 + 0.232580i
\(982\) 25.6865 14.8301i 0.819690 0.473248i
\(983\) 32.3660 18.6865i 1.03232 0.596008i 0.114669 0.993404i \(-0.463419\pi\)
0.917647 + 0.397396i \(0.130086\pi\)
\(984\) 0 0
\(985\) 13.5526 + 0.813467i 0.431820 + 0.0259192i
\(986\) 1.50000 2.59808i 0.0477697 0.0827396i
\(987\) 0 0
\(988\) 1.85641i 0.0590602i
\(989\) 12.7846 0.406527
\(990\) 3.80385 + 7.60770i 0.120894 + 0.241788i
\(991\) 19.2679 0.612067 0.306033 0.952021i \(-0.400998\pi\)
0.306033 + 0.952021i \(0.400998\pi\)
\(992\) 6.63397 + 3.83013i 0.210629 + 0.121607i
\(993\) 0 0
\(994\) −12.4641 + 21.5885i −0.395337 + 0.684744i
\(995\) −3.36603 2.22243i −0.106710 0.0704558i
\(996\) 0 0
\(997\) 10.7321 6.19615i 0.339887 0.196234i −0.320335 0.947304i \(-0.603795\pi\)
0.660222 + 0.751070i \(0.270462\pi\)
\(998\) 7.51666i 0.237936i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 370.2.n.c.359.1 yes 4
5.4 even 2 370.2.n.a.359.2 yes 4
37.10 even 3 370.2.n.a.269.2 4
185.84 even 6 inner 370.2.n.c.269.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
370.2.n.a.269.2 4 37.10 even 3
370.2.n.a.359.2 yes 4 5.4 even 2
370.2.n.c.269.1 yes 4 185.84 even 6 inner
370.2.n.c.359.1 yes 4 1.1 even 1 trivial