Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [370,2,Mod(17,370)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(370, base_ring=CyclotomicField(36))
chi = DirichletCharacter(H, H._module([9, 7]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("370.17");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 370 = 2 \cdot 5 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 370.ba (of order \(36\), degree \(12\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.95446487479\) |
Analytic rank: | \(0\) |
Dimension: | \(108\) |
Relative dimension: | \(9\) over \(\Q(\zeta_{36})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{36}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
17.1 | 0.173648 | + | 0.984808i | −2.53220 | + | 1.77306i | −0.939693 | + | 0.342020i | 0.871338 | − | 2.05931i | −2.18584 | − | 2.18584i | −0.146400 | − | 1.67336i | −0.500000 | − | 0.866025i | 2.24221 | − | 6.16042i | 2.17933 | + | 0.500504i |
17.2 | 0.173648 | + | 0.984808i | −1.63791 | + | 1.14688i | −0.939693 | + | 0.342020i | 0.410879 | + | 2.19799i | −1.41388 | − | 1.41388i | 0.220613 | + | 2.52162i | −0.500000 | − | 0.866025i | 0.341368 | − | 0.937902i | −2.09325 | + | 0.786315i |
17.3 | 0.173648 | + | 0.984808i | −0.564256 | + | 0.395097i | −0.939693 | + | 0.342020i | −0.642179 | − | 2.14187i | −0.487076 | − | 0.487076i | 0.0586844 | + | 0.670766i | −0.500000 | − | 0.866025i | −0.863776 | + | 2.37321i | 1.99782 | − | 1.00435i |
17.4 | 0.173648 | + | 0.984808i | −0.243511 | + | 0.170508i | −0.939693 | + | 0.342020i | −2.06463 | − | 0.858671i | −0.210203 | − | 0.210203i | −0.339652 | − | 3.88224i | −0.500000 | − | 0.866025i | −0.995836 | + | 2.73604i | 0.487107 | − | 2.18237i |
17.5 | 0.173648 | + | 0.984808i | −0.0137859 | + | 0.00965302i | −0.939693 | + | 0.342020i | 1.95959 | − | 1.07704i | −0.0119003 | − | 0.0119003i | 0.106751 | + | 1.22016i | −0.500000 | − | 0.866025i | −1.02596 | + | 2.81881i | 1.40096 | + | 1.74279i |
17.6 | 0.173648 | + | 0.984808i | 0.562923 | − | 0.394163i | −0.939693 | + | 0.342020i | −1.69379 | + | 1.45982i | 0.485925 | + | 0.485925i | 0.0264970 | + | 0.302862i | −0.500000 | − | 0.866025i | −0.864543 | + | 2.37531i | −1.73177 | − | 1.41456i |
17.7 | 0.173648 | + | 0.984808i | 1.77919 | − | 1.24580i | −0.939693 | + | 0.342020i | 2.01987 | + | 0.959232i | 1.53583 | + | 1.53583i | 0.336121 | + | 3.84188i | −0.500000 | − | 0.866025i | 0.587426 | − | 1.61394i | −0.593912 | + | 2.15575i |
17.8 | 0.173648 | + | 0.984808i | 2.02303 | − | 1.41654i | −0.939693 | + | 0.342020i | 0.955671 | + | 2.02156i | 1.74632 | + | 1.74632i | −0.403702 | − | 4.61433i | −0.500000 | − | 0.866025i | 1.06001 | − | 2.91234i | −1.82489 | + | 1.29219i |
17.9 | 0.173648 | + | 0.984808i | 2.40138 | − | 1.68147i | −0.939693 | + | 0.342020i | −1.06638 | − | 1.96541i | 2.07292 | + | 2.07292i | −0.0272851 | − | 0.311870i | −0.500000 | − | 0.866025i | 1.91325 | − | 5.25661i | 1.75038 | − | 1.39147i |
87.1 | 0.173648 | − | 0.984808i | −1.87571 | + | 2.67879i | −0.939693 | − | 0.342020i | −0.0437468 | − | 2.23564i | 2.31238 | + | 2.31238i | 1.88452 | + | 0.164874i | −0.500000 | + | 0.866025i | −2.63158 | − | 7.23020i | −2.20927 | − | 0.345133i |
87.2 | 0.173648 | − | 0.984808i | −1.44027 | + | 2.05692i | −0.939693 | − | 0.342020i | −0.949056 | + | 2.02467i | 1.77557 | + | 1.77557i | 1.60039 | + | 0.140016i | −0.500000 | + | 0.866025i | −1.13048 | − | 3.10597i | 1.82911 | + | 1.28622i |
87.3 | 0.173648 | − | 0.984808i | −0.691427 | + | 0.987459i | −0.939693 | − | 0.342020i | 0.955840 | − | 2.02148i | 0.852393 | + | 0.852393i | −4.04593 | − | 0.353973i | −0.500000 | + | 0.866025i | 0.529055 | + | 1.45357i | −1.82479 | − | 1.29234i |
87.4 | 0.173648 | − | 0.984808i | −0.513008 | + | 0.732652i | −0.939693 | − | 0.342020i | −2.23092 | − | 0.151579i | 0.632438 | + | 0.632438i | 1.16632 | + | 0.102040i | −0.500000 | + | 0.866025i | 0.752459 | + | 2.06736i | −0.536672 | + | 2.17071i |
87.5 | 0.173648 | − | 0.984808i | −0.0375421 | + | 0.0536157i | −0.939693 | − | 0.342020i | 0.0386192 | + | 2.23573i | 0.0462820 | + | 0.0462820i | −4.08757 | − | 0.357616i | −0.500000 | + | 0.866025i | 1.02460 | + | 2.81505i | 2.20847 | + | 0.350199i |
87.6 | 0.173648 | − | 0.984808i | 0.0934022 | − | 0.133392i | −0.939693 | − | 0.342020i | 1.80470 | − | 1.32024i | −0.115147 | − | 0.115147i | 3.25079 | + | 0.284408i | −0.500000 | + | 0.866025i | 1.01699 | + | 2.79416i | −0.986802 | − | 2.00654i |
87.7 | 0.173648 | − | 0.984808i | 0.131617 | − | 0.187969i | −0.939693 | − | 0.342020i | 0.561282 | + | 2.16448i | −0.162258 | − | 0.162258i | 2.06533 | + | 0.180693i | −0.500000 | + | 0.866025i | 1.00805 | + | 2.76960i | 2.22906 | − | 0.176897i |
87.8 | 0.173648 | − | 0.984808i | 1.38744 | − | 1.98147i | −0.939693 | − | 0.342020i | −0.695479 | − | 2.12516i | −1.71044 | − | 1.71044i | −0.612411 | − | 0.0535790i | −0.500000 | + | 0.866025i | −0.975177 | − | 2.67928i | −2.21364 | + | 0.315883i |
87.9 | 0.173648 | − | 0.984808i | 1.70273 | − | 2.43175i | −0.939693 | − | 0.342020i | 1.99318 | + | 1.01353i | −2.09913 | − | 2.09913i | −0.705781 | − | 0.0617478i | −0.500000 | + | 0.866025i | −1.98806 | − | 5.46214i | 1.34424 | − | 1.78690i |
113.1 | 0.766044 | − | 0.642788i | −3.32389 | + | 0.290803i | 0.173648 | − | 0.984808i | −1.51072 | − | 1.64855i | −2.35932 | + | 2.35932i | −1.26501 | + | 2.71282i | −0.500000 | − | 0.866025i | 8.00925 | − | 1.41225i | −2.21695 | − | 0.291792i |
113.2 | 0.766044 | − | 0.642788i | −2.16486 | + | 0.189401i | 0.173648 | − | 0.984808i | −0.482801 | + | 2.18332i | −1.53664 | + | 1.53664i | 0.959205 | − | 2.05702i | −0.500000 | − | 0.866025i | 1.69633 | − | 0.299109i | 1.03357 | + | 1.98286i |
See next 80 embeddings (of 108 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
185.z | even | 36 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 370.2.ba.a | ✓ | 108 |
5.c | odd | 4 | 1 | 370.2.bd.a | yes | 108 | |
37.i | odd | 36 | 1 | 370.2.bd.a | yes | 108 | |
185.z | even | 36 | 1 | inner | 370.2.ba.a | ✓ | 108 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
370.2.ba.a | ✓ | 108 | 1.a | even | 1 | 1 | trivial |
370.2.ba.a | ✓ | 108 | 185.z | even | 36 | 1 | inner |
370.2.bd.a | yes | 108 | 5.c | odd | 4 | 1 | |
370.2.bd.a | yes | 108 | 37.i | odd | 36 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{108} + 6 T_{3}^{107} + 18 T_{3}^{106} + 34 T_{3}^{105} + 69 T_{3}^{104} + 348 T_{3}^{103} + \cdots + 1494904896 \) acting on \(S_{2}^{\mathrm{new}}(370, [\chi])\).