[N,k,chi] = [37,4,Mod(1,37)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(37, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("37.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(37\)
\(-1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{4} + 6T_{2}^{3} - T_{2}^{2} - 16T_{2} + 6 \)
T2^4 + 6*T2^3 - T2^2 - 16*T2 + 6
acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(37))\).
$p$
$F_p(T)$
$2$
\( T^{4} + 6 T^{3} - T^{2} - 16 T + 6 \)
T^4 + 6*T^3 - T^2 - 16*T + 6
$3$
\( T^{4} + 11 T^{3} + 6 T^{2} - 89 T + 23 \)
T^4 + 11*T^3 + 6*T^2 - 89*T + 23
$5$
\( T^{4} + 29 T^{3} + 125 T^{2} + \cdots - 8592 \)
T^4 + 29*T^3 + 125*T^2 - 1672*T - 8592
$7$
\( T^{4} + 32 T^{3} - 967 T^{2} + \cdots - 265324 \)
T^4 + 32*T^3 - 967*T^2 - 39618*T - 265324
$11$
\( T^{4} + 11 T^{3} - 1432 T^{2} + \cdots + 169317 \)
T^4 + 11*T^3 - 1432*T^2 - 18301*T + 169317
$13$
\( T^{4} + 45 T^{3} - 4635 T^{2} + \cdots - 4630592 \)
T^4 + 45*T^3 - 4635*T^2 - 307600*T - 4630592
$17$
\( T^{4} + 56 T^{3} + 344 T^{2} + \cdots - 1776 \)
T^4 + 56*T^3 + 344*T^2 - 8224*T - 1776
$19$
\( T^{4} + 144 T^{3} + \cdots - 115380208 \)
T^4 + 144*T^3 - 13640*T^2 - 2961344*T - 115380208
$23$
\( T^{4} + 275 T^{3} + \cdots - 93600684 \)
T^4 + 275*T^3 + 12461*T^2 - 1528864*T - 93600684
$29$
\( T^{4} + 29 T^{3} - 24515 T^{2} + \cdots - 20921868 \)
T^4 + 29*T^3 - 24515*T^2 - 1763168*T - 20921868
$31$
\( T^{4} - 111 T^{3} + \cdots + 443578864 \)
T^4 - 111*T^3 - 40665*T^2 + 2426408*T + 443578864
$37$
\( (T - 37)^{4} \)
(T - 37)^4
$41$
\( T^{4} + 9 T^{3} - 55962 T^{2} + \cdots + 239475447 \)
T^4 + 9*T^3 - 55962*T^2 - 2562219*T + 239475447
$43$
\( T^{4} + 190 T^{3} + \cdots + 118152128 \)
T^4 + 190*T^3 - 41956*T^2 - 1558016*T + 118152128
$47$
\( T^{4} + 472 T^{3} + \cdots - 4884453612 \)
T^4 + 472*T^3 - 140511*T^2 - 63380002*T - 4884453612
$53$
\( T^{4} - 318 T^{3} - 4891 T^{2} + \cdots + 1515396 \)
T^4 - 318*T^3 - 4891*T^2 + 133348*T + 1515396
$59$
\( T^{4} + 1530 T^{3} + \cdots - 19839940416 \)
T^4 + 1530*T^3 + 687780*T^2 + 45543168*T - 19839940416
$61$
\( T^{4} + 31 T^{3} + \cdots - 1974966496 \)
T^4 + 31*T^3 - 404631*T^2 + 76291616*T - 1974966496
$67$
\( T^{4} + 5 T^{3} + \cdots + 3584880464 \)
T^4 + 5*T^3 - 234035*T^2 - 31714408*T + 3584880464
$71$
\( T^{4} - 390 T^{3} + \cdots - 21095220732 \)
T^4 - 390*T^3 - 548443*T^2 + 225705452*T - 21095220732
$73$
\( T^{4} + 967 T^{3} + \cdots - 10092864749 \)
T^4 + 967*T^3 - 141322*T^2 - 240493869*T - 10092864749
$79$
\( T^{4} - 17 T^{3} + \cdots - 29390715884 \)
T^4 - 17*T^3 - 653187*T^2 + 266725624*T - 29390715884
$83$
\( T^{4} + 3138 T^{3} + \cdots - 146330370096 \)
T^4 + 3138*T^3 + 3026753*T^2 + 725722108*T - 146330370096
$89$
\( T^{4} - 224 T^{3} + \cdots - 212866753728 \)
T^4 - 224*T^3 - 1689756*T^2 + 1237975760*T - 212866753728
$97$
\( T^{4} + 2532 T^{3} + \cdots + 3402009472 \)
T^4 + 2532*T^3 + 1996596*T^2 + 487325120*T + 3402009472
show more
show less