Properties

Label 37.4.a.a
Level $37$
Weight $4$
Character orbit 37.a
Self dual yes
Analytic conductor $2.183$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [37,4,Mod(1,37)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(37, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("37.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 37 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 37.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.18307067021\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.21208.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 8x^{2} + 13x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{3} + \beta_{2} - 2) q^{2} + (\beta_{3} - 2 \beta_{2} - 2) q^{3} + (6 \beta_{3} - 3 \beta_{2} - \beta_1 + 4) q^{4} + ( - \beta_{3} + 2 \beta_{2} + 4 \beta_1 - 9) q^{5} + ( - 2 \beta_{3} - \beta_{2} - 7) q^{6} + (\beta_{2} - 13 \beta_1 - 5) q^{7} + ( - 20 \beta_{3} + \beta_{2} + 9 \beta_1 - 30) q^{8} + ( - 3 \beta_{3} + 15 \beta_{2} + 3 \beta_1 - 5) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta_{3} + \beta_{2} - 2) q^{2} + (\beta_{3} - 2 \beta_{2} - 2) q^{3} + (6 \beta_{3} - 3 \beta_{2} - \beta_1 + 4) q^{4} + ( - \beta_{3} + 2 \beta_{2} + 4 \beta_1 - 9) q^{5} + ( - 2 \beta_{3} - \beta_{2} - 7) q^{6} + (\beta_{2} - 13 \beta_1 - 5) q^{7} + ( - 20 \beta_{3} + \beta_{2} + 9 \beta_1 - 30) q^{8} + ( - 3 \beta_{3} + 15 \beta_{2} + 3 \beta_1 - 5) q^{9} + (13 \beta_{3} - 6 \beta_{2} + 25) q^{10} + (5 \beta_{3} + 9 \beta_{2} + \beta_1 - 4) q^{11} + (7 \beta_{3} + 7 \beta_{2} - 5 \beta_1 + 37) q^{12} + ( - 17 \beta_{3} - 13 \beta_{2} + 19 \beta_1 - 17) q^{13} + (5 \beta_{3} - 18 \beta_{2} + \beta_1 + 26) q^{14} + ( - 8 \beta_{3} - 5 \beta_{2} - 19 \beta_1) q^{15} + (62 \beta_{3} - 17 \beta_{2} - 31 \beta_1 + 122) q^{16} + (8 \beta_{2} - 8 \beta_1 - 14) q^{17} + (17 \beta_{3} - 5 \beta_{2} + 9 \beta_1 + 67) q^{18} + ( - 20 \beta_{3} - 36 \beta_{2} + 40 \beta_1 - 42) q^{19} + ( - 69 \beta_{3} + 22 \beta_{2} - 12 \beta_1 - 61) q^{20} + ( - 4 \beta_{3} + 43 \beta_{2} + 49 \beta_1 + 3) q^{21} + ( - 16 \beta_{3} + 2 \beta_{2} + 19 \beta_1 + 9) q^{22} + (41 \beta_{3} - 9 \beta_{2} - 29 \beta_1 - 49) q^{23} + ( - 49 \beta_{3} + 47 \beta_{2} + 21 \beta_1 - 27) q^{24} + (3 \beta_{3} + 11 \beta_{2} - 69 \beta_1 + 38) q^{25} + (85 \beta_{3} - 15 \beta_{2} - 47 \beta_1 + 61) q^{26} + ( - 20 \beta_{3} - 32 \beta_{2} - 48 \beta_1 - 53) q^{27} + ( - 46 \beta_{3} + 24 \beta_{2} + 96 \beta_1 - 92) q^{28} + (51 \beta_{3} - 15 \beta_{2} + \beta_1 + 9) q^{29} + (32 \beta_{3} - 27 \beta_{2} - 21 \beta_1 + 44) q^{30} + (55 \beta_{3} + 16 \beta_{2} + 10 \beta_1 + 35) q^{31} + ( - 210 \beta_{3} + 145 \beta_{2} + 35 \beta_1 - 334) q^{32} + (10 \beta_{3} - 54 \beta_{2} - 46 \beta_1 - 35) q^{33} + (14 \beta_{3} - 22 \beta_{2} + 8 \beta_1 + 60) q^{34} + (56 \beta_{3} - 98 \beta_{2} + 126 \beta_1 - 152) q^{35} + ( - 111 \beta_{3} - 27 \beta_{2} + 5 \beta_1 - 203) q^{36} + 37 q^{37} + (122 \beta_{3} - 22 \beta_{2} - 76 \beta_1 + 36) q^{38} + ( - 47 \beta_{3} + 72 \beta_{2} + 14 \beta_1 + 57) q^{39} + (233 \beta_{3} - 94 \beta_{2} - 116 \beta_1 + 345) q^{40} + ( - 45 \beta_{3} - 54 \beta_{2} + 24 \beta_1 - 6) q^{41} + (13 \beta_{3} + 48 \beta_{2} + 35 \beta_1 + 94) q^{42} + (10 \beta_{3} + 60 \beta_{2} - 72 \beta_1 - 42) q^{43} + (15 \beta_{3} - 60 \beta_{2} - 38 \beta_1 + 81) q^{44} + (14 \beta_{3} + 41 \beta_{2} + 7 \beta_1 + 246) q^{45} + ( - 115 \beta_{3} - 37 \beta_{2} + 73 \beta_1 - 105) q^{46} + ( - 8 \beta_{3} + 71 \beta_{2} + 125 \beta_1 - 169) q^{47} + (167 \beta_{3} - 111 \beta_{2} - 11 \beta_1 + 123) q^{48} + ( - 170 \beta_{3} + 109 \beta_{2} - 37 \beta_1 + 336) q^{49} + ( - 50 \beta_{3} - 28 \beta_{2} + 17 \beta_1 + 11) q^{50} + ( - 6 \beta_{3} + 4 \beta_{2} + 8 \beta_1 - 28) q^{51} + ( - 265 \beta_{3} + 203 \beta_{2} + 3 \beta_1 - 409) q^{52} + (70 \beta_{3} - 25 \beta_{2} - 15 \beta_1 + 107) q^{53} + (133 \beta_{3} - 121 \beta_{2} - 72 \beta_1 + 158) q^{54} + ( - 69 \beta_{3} + 51 \beta_{2} - 25 \beta_1 + 171) q^{55} + (236 \beta_{3} + 102 \beta_{2} - 76 \beta_1 + 182) q^{56} + ( - 98 \beta_{3} + 200 \beta_{2} + 8 \beta_1 + 256) q^{57} + ( - 213 \beta_{3} + 61 \beta_{2} + 87 \beta_1 - 319) q^{58} + ( - 54 \beta_{3} - 6 \beta_{2} - 114 \beta_1 - 366) q^{59} + ( - 108 \beta_{3} + 95 \beta_{2} + 189 \beta_1 - 308) q^{60} + (5 \beta_{3} - 202 \beta_{2} + 12 \beta_1 + 41) q^{61} + ( - 255 \beta_{3} + 100 \beta_{2} + 126 \beta_1 - 307) q^{62} + (42 \beta_{3} - 434 \beta_{2} + 38 \beta_1 - 188) q^{63} + (678 \beta_{3} - 373 \beta_{2} - 27 \beta_1 + 1142) q^{64} + (158 \beta_{3} - 25 \beta_{2} - 231 \beta_1 + 246) q^{65} + ( - 5 \beta_{3} - 71 \beta_{2} - 34 \beta_1 - 96) q^{66} + ( - 69 \beta_{3} + 90 \beta_{2} + 128 \beta_1 - 73) q^{67} + ( - 116 \beta_{3} + 18 \beta_{2} + 70 \beta_1 - 152) q^{68} + ( - 17 \beta_{3} + 198 \beta_{2} + 20 \beta_1 + 325) q^{69} + ( - 72 \beta_{3} + 30 \beta_{2} + 14 \beta_1 - 396) q^{70} + (62 \beta_{3} + 163 \beta_{2} - 267 \beta_1 + 139) q^{71} + (511 \beta_{3} - 269 \beta_{2} - 321 \beta_1 + 339) q^{72} + (217 \beta_{3} - \beta_{2} + 3 \beta_1 - 188) q^{73} + ( - 37 \beta_{3} + 37 \beta_{2} - 74) q^{74} + (52 \beta_{3} + 62 \beta_{2} + 234 \beta_1 - 141) q^{75} + ( - 364 \beta_{3} + 370 \beta_{2} - 98 \beta_1 - 336) q^{76} + ( - 26 \beta_{3} - 341 \beta_{2} + 213 \beta_1 - 237) q^{77} + (131 \beta_{3} + 24 \beta_{2} - 22 \beta_1 + 323) q^{78} + ( - 267 \beta_{3} + 111 \beta_{2} + 27 \beta_1 - 97) q^{79} + ( - 725 \beta_{3} + 286 \beta_{2} + 468 \beta_1 - 1533) q^{80} + ( - 24 \beta_{3} + 57 \beta_{2} + 267 \beta_1 + 385) q^{81} + (186 \beta_{3} - 27 \beta_{2} - 144 \beta_1 + 51) q^{82} + ( - 114 \beta_{3} - 35 \beta_{2} - 189 \beta_1 - 757) q^{83} + ( - 114 \beta_{3} - 202 \beta_{2} - 318 \beta_1 - 168) q^{84} + (38 \beta_{3} - 60 \beta_{2} + 56 \beta_1 + 86) q^{85} + (2 \beta_{3} - 104 \beta_{2} + 80 \beta_1 + 286) q^{86} + (45 \beta_{3} + 18 \beta_{2} - 112 \beta_1 + 291) q^{87} + ( - 13 \beta_{3} + 42 \beta_{2} - 182 \beta_1 - 451) q^{88} + (188 \beta_{3} - 182 \beta_{2} + 362 \beta_1 + 58) q^{89} + ( - 302 \beta_{3} + 267 \beta_{2} + 69 \beta_1 - 446) q^{90} + (362 \beta_{3} + 372 \beta_{2} - 112 \beta_1 - 342) q^{91} + (237 \beta_{3} - 75 \beta_{2} - 35 \beta_1 + 993) q^{92} + (106 \beta_{3} - 251 \beta_{2} - 253 \beta_1 + 38) q^{93} + (201 \beta_{3} - 52 \beta_{2} + 55 \beta_1 + 466) q^{94} + (158 \beta_{3} - 12 \beta_{2} - 616 \beta_1 + 542) q^{95} + ( - 399 \beta_{3} - 97 \beta_{2} + 55 \beta_1 - 1187) q^{96} + ( - 80 \beta_{3} - 74 \beta_{2} - 122 \beta_1 - 604) q^{97} + (344 \beta_{3} + 129 \beta_{2} - 231 \beta_1 + 542) q^{98} + ( - 214 \beta_{3} + 279 \beta_{2} + 289 \beta_1 + 596) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{2} - 11 q^{3} + 6 q^{4} - 29 q^{5} - 27 q^{6} - 32 q^{7} - 90 q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 6 q^{2} - 11 q^{3} + 6 q^{4} - 29 q^{5} - 27 q^{6} - 32 q^{7} - 90 q^{8} + q^{9} + 81 q^{10} - 11 q^{11} + 143 q^{12} - 45 q^{13} + 82 q^{14} - 16 q^{15} + 378 q^{16} - 56 q^{17} + 255 q^{18} - 144 q^{19} - 165 q^{20} + 108 q^{21} + 73 q^{22} - 275 q^{23} + 9 q^{24} + 91 q^{25} + 97 q^{26} - 272 q^{27} - 202 q^{28} - 29 q^{29} + 96 q^{30} + 111 q^{31} - 946 q^{32} - 250 q^{33} + 212 q^{34} - 636 q^{35} - 723 q^{36} + 148 q^{37} - 76 q^{38} + 361 q^{39} + 937 q^{40} - 9 q^{41} + 446 q^{42} - 190 q^{43} + 211 q^{44} + 1018 q^{45} - 269 q^{46} - 472 q^{47} + 203 q^{48} + 1586 q^{49} + 83 q^{50} - 94 q^{51} - 1165 q^{52} + 318 q^{53} + 306 q^{54} + 779 q^{55} + 518 q^{56} + 1330 q^{57} - 915 q^{58} - 1530 q^{59} - 840 q^{60} - 31 q^{61} - 747 q^{62} - 1190 q^{63} + 3490 q^{64} + 570 q^{65} - 484 q^{66} - 5 q^{67} - 404 q^{68} + 1535 q^{69} - 1468 q^{70} + 390 q^{71} + 255 q^{72} - 967 q^{73} - 222 q^{74} - 320 q^{75} - 708 q^{76} - 1050 q^{77} + 1163 q^{78} + 17 q^{79} - 4653 q^{80} + 1888 q^{81} - 153 q^{82} - 3138 q^{83} - 1078 q^{84} + 302 q^{85} + 1118 q^{86} + 1025 q^{87} - 1931 q^{88} + 224 q^{89} - 1146 q^{90} - 1470 q^{91} + 3625 q^{92} - 458 q^{93} + 1666 q^{94} + 1382 q^{95} - 4391 q^{96} - 2532 q^{97} + 1722 q^{98} + 3166 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 8x^{2} + 13x - 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{3} + \nu^{2} - 6\nu + 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 7\nu + 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{3} + \beta_{2} - \beta _1 + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 7\beta _1 - 5 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.280359
1.54469
−3.07664
2.25158
−5.64104 2.22256 23.8213 −12.1011 −12.5375 −9.22618 −89.2487 −22.0602 68.2629
1.2 −2.06923 0.265551 −3.71830 −5.08678 −0.549486 −27.2773 24.2478 −26.9295 10.5257
1.3 0.389055 −4.19207 −7.84864 −19.1145 −1.63095 34.7993 −6.16599 −9.42651 −7.43658
1.4 1.32121 −9.29603 −6.25440 7.30237 −12.2820 −30.2958 −18.8331 59.4162 9.64798
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(37\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 37.4.a.a 4
3.b odd 2 1 333.4.a.e 4
4.b odd 2 1 592.4.a.f 4
5.b even 2 1 925.4.a.a 4
7.b odd 2 1 1813.4.a.b 4
8.b even 2 1 2368.4.a.l 4
8.d odd 2 1 2368.4.a.g 4
37.b even 2 1 1369.4.a.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
37.4.a.a 4 1.a even 1 1 trivial
333.4.a.e 4 3.b odd 2 1
592.4.a.f 4 4.b odd 2 1
925.4.a.a 4 5.b even 2 1
1369.4.a.c 4 37.b even 2 1
1813.4.a.b 4 7.b odd 2 1
2368.4.a.g 4 8.d odd 2 1
2368.4.a.l 4 8.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 6T_{2}^{3} - T_{2}^{2} - 16T_{2} + 6 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(37))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 6 T^{3} - T^{2} - 16 T + 6 \) Copy content Toggle raw display
$3$ \( T^{4} + 11 T^{3} + 6 T^{2} - 89 T + 23 \) Copy content Toggle raw display
$5$ \( T^{4} + 29 T^{3} + 125 T^{2} + \cdots - 8592 \) Copy content Toggle raw display
$7$ \( T^{4} + 32 T^{3} - 967 T^{2} + \cdots - 265324 \) Copy content Toggle raw display
$11$ \( T^{4} + 11 T^{3} - 1432 T^{2} + \cdots + 169317 \) Copy content Toggle raw display
$13$ \( T^{4} + 45 T^{3} - 4635 T^{2} + \cdots - 4630592 \) Copy content Toggle raw display
$17$ \( T^{4} + 56 T^{3} + 344 T^{2} + \cdots - 1776 \) Copy content Toggle raw display
$19$ \( T^{4} + 144 T^{3} + \cdots - 115380208 \) Copy content Toggle raw display
$23$ \( T^{4} + 275 T^{3} + \cdots - 93600684 \) Copy content Toggle raw display
$29$ \( T^{4} + 29 T^{3} - 24515 T^{2} + \cdots - 20921868 \) Copy content Toggle raw display
$31$ \( T^{4} - 111 T^{3} + \cdots + 443578864 \) Copy content Toggle raw display
$37$ \( (T - 37)^{4} \) Copy content Toggle raw display
$41$ \( T^{4} + 9 T^{3} - 55962 T^{2} + \cdots + 239475447 \) Copy content Toggle raw display
$43$ \( T^{4} + 190 T^{3} + \cdots + 118152128 \) Copy content Toggle raw display
$47$ \( T^{4} + 472 T^{3} + \cdots - 4884453612 \) Copy content Toggle raw display
$53$ \( T^{4} - 318 T^{3} - 4891 T^{2} + \cdots + 1515396 \) Copy content Toggle raw display
$59$ \( T^{4} + 1530 T^{3} + \cdots - 19839940416 \) Copy content Toggle raw display
$61$ \( T^{4} + 31 T^{3} + \cdots - 1974966496 \) Copy content Toggle raw display
$67$ \( T^{4} + 5 T^{3} + \cdots + 3584880464 \) Copy content Toggle raw display
$71$ \( T^{4} - 390 T^{3} + \cdots - 21095220732 \) Copy content Toggle raw display
$73$ \( T^{4} + 967 T^{3} + \cdots - 10092864749 \) Copy content Toggle raw display
$79$ \( T^{4} - 17 T^{3} + \cdots - 29390715884 \) Copy content Toggle raw display
$83$ \( T^{4} + 3138 T^{3} + \cdots - 146330370096 \) Copy content Toggle raw display
$89$ \( T^{4} - 224 T^{3} + \cdots - 212866753728 \) Copy content Toggle raw display
$97$ \( T^{4} + 2532 T^{3} + \cdots + 3402009472 \) Copy content Toggle raw display
show more
show less