Properties

Label 369.2.ba.a.350.6
Level $369$
Weight $2$
Character 369.350
Analytic conductor $2.946$
Analytic rank $0$
Dimension $112$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [369,2,Mod(17,369)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("369.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(369, base_ring=CyclotomicField(40)) chi = DirichletCharacter(H, H._module([20, 33])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 369 = 3^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 369.ba (of order \(40\), degree \(16\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [112,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.94647983459\)
Analytic rank: \(0\)
Dimension: \(112\)
Relative dimension: \(7\) over \(\Q(\zeta_{40})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{40}]$

Embedding invariants

Embedding label 350.6
Character \(\chi\) \(=\) 369.350
Dual form 369.2.ba.a.233.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.875527 + 1.71832i) q^{2} +(-1.01050 + 1.39084i) q^{4} +(-0.638617 - 4.03207i) q^{5} +(-2.63642 - 3.08685i) q^{7} +(0.534921 + 0.0847232i) q^{8} +(6.36925 - 4.62753i) q^{10} +(1.94834 - 3.17941i) q^{11} +(0.113432 + 1.44129i) q^{13} +(2.99594 - 7.23283i) q^{14} +(1.38526 + 4.26339i) q^{16} +(0.183896 + 0.765982i) q^{17} +(-0.404807 + 5.14355i) q^{19} +(6.25327 + 3.18620i) q^{20} +(7.16906 + 0.564217i) q^{22} +(0.857484 - 2.63907i) q^{23} +(-11.0945 + 3.60481i) q^{25} +(-2.37728 + 1.45680i) q^{26} +(6.95741 - 0.547560i) q^{28} +(1.75959 - 7.32921i) q^{29} +(-2.54909 - 3.50853i) q^{31} +(-5.34711 + 5.34711i) q^{32} +(-1.15520 + 0.986630i) q^{34} +(-10.7627 + 12.6015i) q^{35} +(6.42194 + 4.66581i) q^{37} +(-9.19269 + 3.80774i) q^{38} -2.21094i q^{40} +(-1.01566 + 6.32206i) q^{41} +(7.71558 - 3.93129i) q^{43} +(2.45323 + 5.92262i) q^{44} +(5.28551 - 0.837142i) q^{46} +(4.04102 + 3.45136i) q^{47} +(-1.48290 + 9.36266i) q^{49} +(-15.9077 - 15.9077i) q^{50} +(-2.11922 - 1.29866i) q^{52} +(6.53557 + 1.56905i) q^{53} +(-14.0638 - 5.82543i) q^{55} +(-1.14875 - 1.87459i) q^{56} +(14.1345 - 3.39339i) q^{58} +(9.78002 + 3.17772i) q^{59} +(-2.45194 + 4.81220i) q^{61} +(3.79697 - 7.45197i) q^{62} +(-5.34280 - 1.73598i) q^{64} +(5.73893 - 1.37780i) q^{65} +(-2.32815 - 3.79919i) q^{67} +(-1.25118 - 0.518257i) q^{68} +(-31.0766 - 7.46082i) q^{70} +(-5.35944 - 3.28427i) q^{71} +(5.83964 + 5.83964i) q^{73} +(-2.39477 + 15.1200i) q^{74} +(-6.74478 - 5.76059i) q^{76} +(-14.9510 + 2.36801i) q^{77} +(-3.90560 - 9.42896i) q^{79} +(16.3057 - 8.30814i) q^{80} +(-11.7526 + 3.78991i) q^{82} -1.50640i q^{83} +(2.97105 - 1.23065i) q^{85} +(13.5104 + 9.81589i) q^{86} +(1.31158 - 1.53566i) q^{88} +(5.47445 - 4.67562i) q^{89} +(4.14999 - 4.14999i) q^{91} +(2.80402 + 3.85940i) q^{92} +(-2.39251 + 9.96552i) q^{94} +(20.9977 - 1.65255i) q^{95} +(-10.7394 + 6.58113i) q^{97} +(-17.3864 + 5.64917i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 112 q - 4 q^{5} + 24 q^{8} - 12 q^{11} - 4 q^{13} - 4 q^{14} + 28 q^{16} - 4 q^{17} + 88 q^{20} + 8 q^{22} + 24 q^{23} - 60 q^{26} + 8 q^{29} + 48 q^{32} - 152 q^{35} + 8 q^{37} - 56 q^{38} + 12 q^{41}+ \cdots + 60 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/369\mathbb{Z}\right)^\times\).

\(n\) \(83\) \(334\)
\(\chi(n)\) \(-1\) \(e\left(\frac{29}{40}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.875527 + 1.71832i 0.619091 + 1.21503i 0.961324 + 0.275420i \(0.0888168\pi\)
−0.342233 + 0.939615i \(0.611183\pi\)
\(3\) 0 0
\(4\) −1.01050 + 1.39084i −0.505251 + 0.695418i
\(5\) −0.638617 4.03207i −0.285598 1.80320i −0.546097 0.837722i \(-0.683887\pi\)
0.260498 0.965474i \(-0.416113\pi\)
\(6\) 0 0
\(7\) −2.63642 3.08685i −0.996473 1.16672i −0.985995 0.166775i \(-0.946665\pi\)
−0.0104785 0.999945i \(-0.503335\pi\)
\(8\) 0.534921 + 0.0847232i 0.189123 + 0.0299542i
\(9\) 0 0
\(10\) 6.36925 4.62753i 2.01414 1.46335i
\(11\) 1.94834 3.17941i 0.587447 0.958627i −0.411439 0.911437i \(-0.634974\pi\)
0.998886 0.0471893i \(-0.0150264\pi\)
\(12\) 0 0
\(13\) 0.113432 + 1.44129i 0.0314603 + 0.399741i 0.992406 + 0.123005i \(0.0392530\pi\)
−0.960946 + 0.276737i \(0.910747\pi\)
\(14\) 2.99594 7.23283i 0.800698 1.93306i
\(15\) 0 0
\(16\) 1.38526 + 4.26339i 0.346315 + 1.06585i
\(17\) 0.183896 + 0.765982i 0.0446013 + 0.185778i 0.990224 0.139489i \(-0.0445459\pi\)
−0.945622 + 0.325267i \(0.894546\pi\)
\(18\) 0 0
\(19\) −0.404807 + 5.14355i −0.0928690 + 1.18001i 0.757143 + 0.653249i \(0.226595\pi\)
−0.850012 + 0.526763i \(0.823405\pi\)
\(20\) 6.25327 + 3.18620i 1.39827 + 0.712456i
\(21\) 0 0
\(22\) 7.16906 + 0.564217i 1.52845 + 0.120292i
\(23\) 0.857484 2.63907i 0.178798 0.550283i −0.820989 0.570944i \(-0.806577\pi\)
0.999787 + 0.0206612i \(0.00657715\pi\)
\(24\) 0 0
\(25\) −11.0945 + 3.60481i −2.21889 + 0.720962i
\(26\) −2.37728 + 1.45680i −0.466223 + 0.285702i
\(27\) 0 0
\(28\) 6.95741 0.547560i 1.31483 0.103479i
\(29\) 1.75959 7.32921i 0.326747 1.36100i −0.531193 0.847251i \(-0.678256\pi\)
0.857940 0.513749i \(-0.171744\pi\)
\(30\) 0 0
\(31\) −2.54909 3.50853i −0.457831 0.630150i 0.516226 0.856452i \(-0.327336\pi\)
−0.974057 + 0.226302i \(0.927336\pi\)
\(32\) −5.34711 + 5.34711i −0.945245 + 0.945245i
\(33\) 0 0
\(34\) −1.15520 + 0.986630i −0.198114 + 0.169206i
\(35\) −10.7627 + 12.6015i −1.81924 + 2.13005i
\(36\) 0 0
\(37\) 6.42194 + 4.66581i 1.05576 + 0.767055i 0.973299 0.229540i \(-0.0737220\pi\)
0.0824610 + 0.996594i \(0.473722\pi\)
\(38\) −9.19269 + 3.80774i −1.49125 + 0.617696i
\(39\) 0 0
\(40\) 2.21094i 0.349581i
\(41\) −1.01566 + 6.32206i −0.158620 + 0.987340i
\(42\) 0 0
\(43\) 7.71558 3.93129i 1.17662 0.599516i 0.247349 0.968926i \(-0.420440\pi\)
0.929266 + 0.369411i \(0.120440\pi\)
\(44\) 2.45323 + 5.92262i 0.369838 + 0.892868i
\(45\) 0 0
\(46\) 5.28551 0.837142i 0.779306 0.123430i
\(47\) 4.04102 + 3.45136i 0.589443 + 0.503432i 0.893405 0.449252i \(-0.148309\pi\)
−0.303962 + 0.952684i \(0.598309\pi\)
\(48\) 0 0
\(49\) −1.48290 + 9.36266i −0.211843 + 1.33752i
\(50\) −15.9077 15.9077i −2.24969 2.24969i
\(51\) 0 0
\(52\) −2.11922 1.29866i −0.293883 0.180091i
\(53\) 6.53557 + 1.56905i 0.897730 + 0.215526i 0.655949 0.754805i \(-0.272269\pi\)
0.241780 + 0.970331i \(0.422269\pi\)
\(54\) 0 0
\(55\) −14.0638 5.82543i −1.89637 0.785501i
\(56\) −1.14875 1.87459i −0.153508 0.250502i
\(57\) 0 0
\(58\) 14.1345 3.39339i 1.85595 0.445574i
\(59\) 9.78002 + 3.17772i 1.27325 + 0.413704i 0.866198 0.499701i \(-0.166557\pi\)
0.407052 + 0.913405i \(0.366557\pi\)
\(60\) 0 0
\(61\) −2.45194 + 4.81220i −0.313939 + 0.616139i −0.993023 0.117921i \(-0.962377\pi\)
0.679084 + 0.734060i \(0.262377\pi\)
\(62\) 3.79697 7.45197i 0.482215 0.946401i
\(63\) 0 0
\(64\) −5.34280 1.73598i −0.667851 0.216998i
\(65\) 5.73893 1.37780i 0.711827 0.170895i
\(66\) 0 0
\(67\) −2.32815 3.79919i −0.284428 0.464145i 0.678235 0.734845i \(-0.262745\pi\)
−0.962664 + 0.270700i \(0.912745\pi\)
\(68\) −1.25118 0.518257i −0.151728 0.0628479i
\(69\) 0 0
\(70\) −31.0766 7.46082i −3.71436 0.891739i
\(71\) −5.35944 3.28427i −0.636048 0.389771i 0.166769 0.985996i \(-0.446667\pi\)
−0.802817 + 0.596225i \(0.796667\pi\)
\(72\) 0 0
\(73\) 5.83964 + 5.83964i 0.683479 + 0.683479i 0.960782 0.277304i \(-0.0894408\pi\)
−0.277304 + 0.960782i \(0.589441\pi\)
\(74\) −2.39477 + 15.1200i −0.278386 + 1.75766i
\(75\) 0 0
\(76\) −6.74478 5.76059i −0.773680 0.660785i
\(77\) −14.9510 + 2.36801i −1.70383 + 0.269859i
\(78\) 0 0
\(79\) −3.90560 9.42896i −0.439415 1.06084i −0.976151 0.217091i \(-0.930343\pi\)
0.536737 0.843750i \(-0.319657\pi\)
\(80\) 16.3057 8.30814i 1.82303 0.928879i
\(81\) 0 0
\(82\) −11.7526 + 3.78991i −1.29785 + 0.418525i
\(83\) 1.50640i 0.165349i −0.996577 0.0826743i \(-0.973654\pi\)
0.996577 0.0826743i \(-0.0263461\pi\)
\(84\) 0 0
\(85\) 2.97105 1.23065i 0.322256 0.133483i
\(86\) 13.5104 + 9.81589i 1.45686 + 1.05847i
\(87\) 0 0
\(88\) 1.31158 1.53566i 0.139815 0.163702i
\(89\) 5.47445 4.67562i 0.580291 0.495615i −0.310166 0.950682i \(-0.600385\pi\)
0.890457 + 0.455067i \(0.150385\pi\)
\(90\) 0 0
\(91\) 4.14999 4.14999i 0.435037 0.435037i
\(92\) 2.80402 + 3.85940i 0.292339 + 0.402370i
\(93\) 0 0
\(94\) −2.39251 + 9.96552i −0.246768 + 1.02786i
\(95\) 20.9977 1.65255i 2.15432 0.169548i
\(96\) 0 0
\(97\) −10.7394 + 6.58113i −1.09042 + 0.668213i −0.946930 0.321439i \(-0.895834\pi\)
−0.143494 + 0.989651i \(0.545834\pi\)
\(98\) −17.3864 + 5.64917i −1.75629 + 0.570653i
\(99\) 0 0
\(100\) 6.19728 19.0733i 0.619728 1.90733i
\(101\) −15.7216 1.23731i −1.56435 0.123117i −0.733531 0.679656i \(-0.762129\pi\)
−0.830822 + 0.556538i \(0.812129\pi\)
\(102\) 0 0
\(103\) 7.13518 + 3.63556i 0.703051 + 0.358222i 0.768690 0.639621i \(-0.220909\pi\)
−0.0656397 + 0.997843i \(0.520909\pi\)
\(104\) −0.0614334 + 0.780585i −0.00602404 + 0.0765427i
\(105\) 0 0
\(106\) 3.02594 + 12.6039i 0.293905 + 1.22420i
\(107\) 0.747103 + 2.29935i 0.0722252 + 0.222286i 0.980653 0.195757i \(-0.0627162\pi\)
−0.908427 + 0.418043i \(0.862716\pi\)
\(108\) 0 0
\(109\) −0.494063 + 1.19277i −0.0473227 + 0.114247i −0.945773 0.324828i \(-0.894694\pi\)
0.898451 + 0.439075i \(0.144694\pi\)
\(110\) −2.30332 29.2665i −0.219613 2.79045i
\(111\) 0 0
\(112\) 9.50834 15.5162i 0.898453 1.46614i
\(113\) −0.0271475 + 0.0197238i −0.00255382 + 0.00185546i −0.589061 0.808088i \(-0.700502\pi\)
0.586508 + 0.809944i \(0.300502\pi\)
\(114\) 0 0
\(115\) −11.1885 1.77208i −1.04333 0.165248i
\(116\) 8.41566 + 9.85347i 0.781375 + 0.914872i
\(117\) 0 0
\(118\) 3.10233 + 19.5874i 0.285593 + 1.80316i
\(119\) 1.87965 2.58711i 0.172307 0.237160i
\(120\) 0 0
\(121\) −1.31869 2.58807i −0.119881 0.235279i
\(122\) −10.4156 −0.942987
\(123\) 0 0
\(124\) 7.45565 0.669537
\(125\) 12.3533 + 24.2447i 1.10491 + 2.16851i
\(126\) 0 0
\(127\) 4.93402 6.79110i 0.437824 0.602612i −0.531903 0.846805i \(-0.678523\pi\)
0.969727 + 0.244193i \(0.0785230\pi\)
\(128\) 0.671104 + 4.23718i 0.0593177 + 0.374517i
\(129\) 0 0
\(130\) 7.39208 + 8.65502i 0.648329 + 0.759095i
\(131\) −19.7274 3.12451i −1.72359 0.272990i −0.785369 0.619028i \(-0.787527\pi\)
−0.938220 + 0.346039i \(0.887527\pi\)
\(132\) 0 0
\(133\) 16.9446 12.3110i 1.46929 1.06750i
\(134\) 4.48986 7.32679i 0.387865 0.632939i
\(135\) 0 0
\(136\) 0.0334734 + 0.425320i 0.00287032 + 0.0364709i
\(137\) −3.42976 + 8.28018i −0.293024 + 0.707423i 0.706976 + 0.707238i \(0.250059\pi\)
−1.00000 0.000185484i \(0.999941\pi\)
\(138\) 0 0
\(139\) −2.07446 6.38453i −0.175953 0.541529i 0.823722 0.566993i \(-0.191894\pi\)
−0.999676 + 0.0254645i \(0.991894\pi\)
\(140\) −6.65092 27.7031i −0.562106 2.34134i
\(141\) 0 0
\(142\) 0.951086 12.0847i 0.0798134 1.01412i
\(143\) 4.80344 + 2.44748i 0.401684 + 0.204668i
\(144\) 0 0
\(145\) −30.6756 2.41422i −2.54747 0.200490i
\(146\) −4.92160 + 15.1471i −0.407315 + 1.25359i
\(147\) 0 0
\(148\) −12.9788 + 4.21705i −1.06685 + 0.346640i
\(149\) 8.15422 4.99691i 0.668020 0.409363i −0.146729 0.989177i \(-0.546875\pi\)
0.814749 + 0.579814i \(0.196875\pi\)
\(150\) 0 0
\(151\) 0.0972035 0.00765008i 0.00791031 0.000622555i −0.0745033 0.997221i \(-0.523737\pi\)
0.0824136 + 0.996598i \(0.473737\pi\)
\(152\) −0.652318 + 2.71710i −0.0529100 + 0.220386i
\(153\) 0 0
\(154\) −17.1590 23.6173i −1.38271 1.90314i
\(155\) −12.5187 + 12.5187i −1.00553 + 1.00553i
\(156\) 0 0
\(157\) −13.8516 + 11.8304i −1.10548 + 0.944168i −0.998743 0.0501199i \(-0.984040\pi\)
−0.106735 + 0.994287i \(0.534040\pi\)
\(158\) 12.7825 14.9664i 1.01692 1.19066i
\(159\) 0 0
\(160\) 24.9747 + 18.1452i 1.97442 + 1.43450i
\(161\) −10.4071 + 4.31076i −0.820194 + 0.339735i
\(162\) 0 0
\(163\) 12.8455i 1.00613i 0.864247 + 0.503067i \(0.167795\pi\)
−0.864247 + 0.503067i \(0.832205\pi\)
\(164\) −7.76662 7.80107i −0.606471 0.609161i
\(165\) 0 0
\(166\) 2.58847 1.31889i 0.200904 0.102366i
\(167\) −4.43182 10.6994i −0.342945 0.827942i −0.997415 0.0718543i \(-0.977108\pi\)
0.654470 0.756088i \(-0.272892\pi\)
\(168\) 0 0
\(169\) 10.7755 1.70667i 0.828885 0.131282i
\(170\) 4.71589 + 4.02775i 0.361692 + 0.308914i
\(171\) 0 0
\(172\) −2.32883 + 14.7037i −0.177572 + 1.12115i
\(173\) 9.05474 + 9.05474i 0.688419 + 0.688419i 0.961882 0.273463i \(-0.0881692\pi\)
−0.273463 + 0.961882i \(0.588169\pi\)
\(174\) 0 0
\(175\) 40.3772 + 24.7432i 3.05223 + 1.87041i
\(176\) 16.2540 + 3.90224i 1.22519 + 0.294143i
\(177\) 0 0
\(178\) 12.8272 + 5.31322i 0.961442 + 0.398242i
\(179\) −6.69658 10.9278i −0.500526 0.816784i 0.498210 0.867056i \(-0.333991\pi\)
−0.998736 + 0.0502728i \(0.983991\pi\)
\(180\) 0 0
\(181\) 11.3268 2.71932i 0.841913 0.202125i 0.210521 0.977589i \(-0.432484\pi\)
0.631392 + 0.775464i \(0.282484\pi\)
\(182\) 10.7644 + 3.49757i 0.797912 + 0.259257i
\(183\) 0 0
\(184\) 0.682277 1.33904i 0.0502981 0.0987156i
\(185\) 14.7117 28.8734i 1.08163 2.12281i
\(186\) 0 0
\(187\) 2.79366 + 0.907715i 0.204293 + 0.0663787i
\(188\) −8.88373 + 2.13279i −0.647912 + 0.155550i
\(189\) 0 0
\(190\) 21.2237 + 34.6339i 1.53973 + 2.51260i
\(191\) 19.2551 + 7.97573i 1.39325 + 0.577103i 0.947991 0.318298i \(-0.103111\pi\)
0.445260 + 0.895401i \(0.353111\pi\)
\(192\) 0 0
\(193\) −3.36942 0.808927i −0.242536 0.0582279i 0.110355 0.993892i \(-0.464801\pi\)
−0.352891 + 0.935664i \(0.614801\pi\)
\(194\) −20.7111 12.6918i −1.48697 0.911219i
\(195\) 0 0
\(196\) −11.5235 11.5235i −0.823104 0.823104i
\(197\) −0.663321 + 4.18804i −0.0472596 + 0.298386i −0.999985 0.00544669i \(-0.998266\pi\)
0.952726 + 0.303832i \(0.0982663\pi\)
\(198\) 0 0
\(199\) 7.12004 + 6.08109i 0.504726 + 0.431077i 0.865002 0.501769i \(-0.167317\pi\)
−0.360275 + 0.932846i \(0.617317\pi\)
\(200\) −6.24008 + 0.988331i −0.441240 + 0.0698856i
\(201\) 0 0
\(202\) −11.6386 28.0980i −0.818886 1.97696i
\(203\) −27.2632 + 13.8913i −1.91350 + 0.974978i
\(204\) 0 0
\(205\) 26.1396 + 0.0578384i 1.82567 + 0.00403961i
\(206\) 15.4436i 1.07600i
\(207\) 0 0
\(208\) −5.98764 + 2.48016i −0.415168 + 0.171968i
\(209\) 15.5647 + 11.3084i 1.07664 + 0.782222i
\(210\) 0 0
\(211\) −3.71497 + 4.34967i −0.255749 + 0.299444i −0.873395 0.487013i \(-0.838087\pi\)
0.617646 + 0.786456i \(0.288087\pi\)
\(212\) −8.78650 + 7.50438i −0.603459 + 0.515403i
\(213\) 0 0
\(214\) −3.29690 + 3.29690i −0.225372 + 0.225372i
\(215\) −20.7785 28.5992i −1.41708 1.95045i
\(216\) 0 0
\(217\) −4.10982 + 17.1186i −0.278993 + 1.16209i
\(218\) −2.48213 + 0.195348i −0.168111 + 0.0132306i
\(219\) 0 0
\(220\) 22.3137 13.6739i 1.50439 0.921892i
\(221\) −1.08314 + 0.351934i −0.0728599 + 0.0236736i
\(222\) 0 0
\(223\) 1.03403 3.18243i 0.0692440 0.213111i −0.910446 0.413627i \(-0.864262\pi\)
0.979690 + 0.200516i \(0.0642618\pi\)
\(224\) 30.6030 + 2.40851i 2.04475 + 0.160925i
\(225\) 0 0
\(226\) −0.0576602 0.0293793i −0.00383550 0.00195428i
\(227\) −0.168994 + 2.14728i −0.0112165 + 0.142520i −0.999976 0.00699857i \(-0.997772\pi\)
0.988759 + 0.149518i \(0.0477723\pi\)
\(228\) 0 0
\(229\) 3.25487 + 13.5575i 0.215088 + 0.895906i 0.970586 + 0.240755i \(0.0773949\pi\)
−0.755498 + 0.655151i \(0.772605\pi\)
\(230\) −6.75083 20.7769i −0.445137 1.36999i
\(231\) 0 0
\(232\) 1.56219 3.77147i 0.102563 0.247609i
\(233\) 0.552169 + 7.01597i 0.0361738 + 0.459632i 0.988153 + 0.153470i \(0.0490448\pi\)
−0.951980 + 0.306162i \(0.900955\pi\)
\(234\) 0 0
\(235\) 11.3354 18.4978i 0.739443 1.20666i
\(236\) −14.3024 + 10.3913i −0.931007 + 0.676416i
\(237\) 0 0
\(238\) 6.09116 + 0.964745i 0.394831 + 0.0625352i
\(239\) −10.6063 12.4183i −0.686062 0.803275i 0.302651 0.953102i \(-0.402128\pi\)
−0.988712 + 0.149827i \(0.952128\pi\)
\(240\) 0 0
\(241\) −1.10303 6.96427i −0.0710526 0.448608i −0.997408 0.0719571i \(-0.977076\pi\)
0.926355 0.376651i \(-0.122924\pi\)
\(242\) 3.29258 4.53185i 0.211655 0.291318i
\(243\) 0 0
\(244\) −4.21529 8.27298i −0.269857 0.529623i
\(245\) 38.6979 2.47232
\(246\) 0 0
\(247\) −7.45926 −0.474621
\(248\) −1.06631 2.09275i −0.0677108 0.132890i
\(249\) 0 0
\(250\) −30.8445 + 42.4537i −1.95077 + 2.68501i
\(251\) −1.59177 10.0500i −0.100472 0.634352i −0.985611 0.169027i \(-0.945937\pi\)
0.885140 0.465325i \(-0.154063\pi\)
\(252\) 0 0
\(253\) −6.71999 7.86809i −0.422482 0.494663i
\(254\) 15.9891 + 2.53243i 1.00325 + 0.158899i
\(255\) 0 0
\(256\) −15.7830 + 11.4670i −0.986436 + 0.716688i
\(257\) −9.10323 + 14.8551i −0.567844 + 0.926637i 0.431851 + 0.901945i \(0.357860\pi\)
−0.999695 + 0.0246919i \(0.992140\pi\)
\(258\) 0 0
\(259\) −2.52826 32.1246i −0.157099 1.99613i
\(260\) −3.88291 + 9.37418i −0.240808 + 0.581362i
\(261\) 0 0
\(262\) −11.9030 36.6335i −0.735367 2.26323i
\(263\) −2.92469 12.1822i −0.180344 0.751186i −0.987074 0.160266i \(-0.948765\pi\)
0.806730 0.590920i \(-0.201235\pi\)
\(264\) 0 0
\(265\) 2.15280 27.3539i 0.132245 1.68034i
\(266\) 35.9897 + 18.3377i 2.20667 + 1.12435i
\(267\) 0 0
\(268\) 7.63665 + 0.601017i 0.466482 + 0.0367130i
\(269\) 8.12133 24.9949i 0.495166 1.52396i −0.321531 0.946899i \(-0.604198\pi\)
0.816698 0.577066i \(-0.195802\pi\)
\(270\) 0 0
\(271\) −27.6408 + 8.98105i −1.67906 + 0.545560i −0.984729 0.174096i \(-0.944300\pi\)
−0.694331 + 0.719655i \(0.744300\pi\)
\(272\) −3.01094 + 1.84511i −0.182565 + 0.111876i
\(273\) 0 0
\(274\) −17.2308 + 1.35610i −1.04095 + 0.0819248i
\(275\) −10.1547 + 42.2972i −0.612349 + 2.55062i
\(276\) 0 0
\(277\) 18.8391 + 25.9298i 1.13193 + 1.55797i 0.784350 + 0.620318i \(0.212997\pi\)
0.347580 + 0.937650i \(0.387003\pi\)
\(278\) 9.15442 9.15442i 0.549045 0.549045i
\(279\) 0 0
\(280\) −6.82486 + 5.82898i −0.407863 + 0.348348i
\(281\) −1.56547 + 1.83293i −0.0933883 + 0.109344i −0.805132 0.593095i \(-0.797906\pi\)
0.711744 + 0.702439i \(0.247906\pi\)
\(282\) 0 0
\(283\) 13.5408 + 9.83794i 0.804914 + 0.584805i 0.912352 0.409407i \(-0.134264\pi\)
−0.107437 + 0.994212i \(0.534264\pi\)
\(284\) 9.98360 4.13534i 0.592418 0.245387i
\(285\) 0 0
\(286\) 10.3967i 0.614768i
\(287\) 22.1930 13.5324i 1.31001 0.798793i
\(288\) 0 0
\(289\) 14.5942 7.43612i 0.858482 0.437419i
\(290\) −22.7089 54.8242i −1.33351 3.21939i
\(291\) 0 0
\(292\) −14.0230 + 2.22102i −0.820631 + 0.129975i
\(293\) −14.8214 12.6587i −0.865877 0.739529i 0.100969 0.994890i \(-0.467806\pi\)
−0.966846 + 0.255361i \(0.917806\pi\)
\(294\) 0 0
\(295\) 6.56710 41.4631i 0.382351 2.41407i
\(296\) 3.03993 + 3.03993i 0.176692 + 0.176692i
\(297\) 0 0
\(298\) 15.7255 + 9.63662i 0.910956 + 0.558234i
\(299\) 3.90092 + 0.936528i 0.225596 + 0.0541608i
\(300\) 0 0
\(301\) −32.4768 13.4523i −1.87193 0.775380i
\(302\) 0.0982496 + 0.160329i 0.00565363 + 0.00922589i
\(303\) 0 0
\(304\) −22.4898 + 5.39931i −1.28988 + 0.309672i
\(305\) 20.9690 + 6.81324i 1.20068 + 0.390125i
\(306\) 0 0
\(307\) 4.39490 8.62549i 0.250830 0.492282i −0.730918 0.682465i \(-0.760908\pi\)
0.981749 + 0.190182i \(0.0609080\pi\)
\(308\) 11.8145 23.1873i 0.673194 1.32122i
\(309\) 0 0
\(310\) −32.4717 10.5507i −1.84427 0.599239i
\(311\) −4.64347 + 1.11480i −0.263307 + 0.0632145i −0.362949 0.931809i \(-0.618230\pi\)
0.0996421 + 0.995023i \(0.468230\pi\)
\(312\) 0 0
\(313\) 2.44954 + 3.99729i 0.138456 + 0.225940i 0.914351 0.404922i \(-0.132701\pi\)
−0.775895 + 0.630862i \(0.782701\pi\)
\(314\) −32.4558 13.4436i −1.83159 0.758669i
\(315\) 0 0
\(316\) 17.0607 + 4.09592i 0.959742 + 0.230414i
\(317\) 8.56344 + 5.24768i 0.480971 + 0.294739i 0.741771 0.670654i \(-0.233986\pi\)
−0.260800 + 0.965393i \(0.583986\pi\)
\(318\) 0 0
\(319\) −19.8742 19.8742i −1.11274 1.11274i
\(320\) −3.58760 + 22.6512i −0.200553 + 1.26624i
\(321\) 0 0
\(322\) −16.5190 14.1085i −0.920565 0.786237i
\(323\) −4.01431 + 0.635805i −0.223362 + 0.0353771i
\(324\) 0 0
\(325\) −6.45404 15.5814i −0.358006 0.864302i
\(326\) −22.0726 + 11.2465i −1.22249 + 0.622889i
\(327\) 0 0
\(328\) −1.07892 + 3.29575i −0.0595736 + 0.181978i
\(329\) 21.5733i 1.18937i
\(330\) 0 0
\(331\) −12.7580 + 5.28452i −0.701240 + 0.290463i −0.704674 0.709531i \(-0.748907\pi\)
0.00343395 + 0.999994i \(0.498907\pi\)
\(332\) 2.09515 + 1.52222i 0.114986 + 0.0835425i
\(333\) 0 0
\(334\) 14.5047 16.9829i 0.793664 0.929261i
\(335\) −13.8318 + 11.8135i −0.755712 + 0.645439i
\(336\) 0 0
\(337\) 23.6790 23.6790i 1.28987 1.28987i 0.355013 0.934861i \(-0.384476\pi\)
0.934861 0.355013i \(-0.115524\pi\)
\(338\) 12.3669 + 17.0215i 0.672668 + 0.925848i
\(339\) 0 0
\(340\) −1.29062 + 5.37582i −0.0699938 + 0.291545i
\(341\) −16.1215 + 1.26879i −0.873030 + 0.0687090i
\(342\) 0 0
\(343\) 8.58179 5.25893i 0.463373 0.283955i
\(344\) 4.46030 1.44924i 0.240483 0.0781377i
\(345\) 0 0
\(346\) −7.63126 + 23.4866i −0.410259 + 1.26265i
\(347\) −18.0150 1.41781i −0.967097 0.0761122i −0.414937 0.909850i \(-0.636196\pi\)
−0.552160 + 0.833738i \(0.686196\pi\)
\(348\) 0 0
\(349\) 6.09637 + 3.10626i 0.326331 + 0.166274i 0.609479 0.792802i \(-0.291379\pi\)
−0.283148 + 0.959076i \(0.591379\pi\)
\(350\) −7.16534 + 91.0443i −0.383004 + 4.86652i
\(351\) 0 0
\(352\) 6.58264 + 27.4187i 0.350856 + 1.46142i
\(353\) 6.47746 + 19.9356i 0.344761 + 1.06106i 0.961712 + 0.274062i \(0.0883675\pi\)
−0.616951 + 0.787001i \(0.711632\pi\)
\(354\) 0 0
\(355\) −9.81977 + 23.7070i −0.521179 + 1.25824i
\(356\) 0.971083 + 12.3388i 0.0514673 + 0.653954i
\(357\) 0 0
\(358\) 12.9144 21.0745i 0.682550 1.11382i
\(359\) −17.9660 + 13.0531i −0.948209 + 0.688914i −0.950383 0.311084i \(-0.899308\pi\)
0.00217363 + 0.999998i \(0.499308\pi\)
\(360\) 0 0
\(361\) −7.52621 1.19203i −0.396116 0.0627386i
\(362\) 14.5896 + 17.0822i 0.766810 + 0.897819i
\(363\) 0 0
\(364\) 1.57838 + 9.96552i 0.0827298 + 0.522335i
\(365\) 19.8166 27.2751i 1.03725 1.42765i
\(366\) 0 0
\(367\) 15.5523 + 30.5231i 0.811822 + 1.59329i 0.804971 + 0.593314i \(0.202181\pi\)
0.00685075 + 0.999977i \(0.497819\pi\)
\(368\) 12.4392 0.648439
\(369\) 0 0
\(370\) 62.4942 3.24892
\(371\) −12.3871 24.3110i −0.643105 1.26217i
\(372\) 0 0
\(373\) −11.9255 + 16.4140i −0.617478 + 0.849886i −0.997166 0.0752287i \(-0.976031\pi\)
0.379688 + 0.925115i \(0.376031\pi\)
\(374\) 0.886181 + 5.59513i 0.0458233 + 0.289317i
\(375\) 0 0
\(376\) 1.86922 + 2.18857i 0.0963975 + 0.112867i
\(377\) 10.7631 + 1.70471i 0.554327 + 0.0877968i
\(378\) 0 0
\(379\) −23.4307 + 17.0234i −1.20355 + 0.874433i −0.994630 0.103499i \(-0.966996\pi\)
−0.208924 + 0.977932i \(0.566996\pi\)
\(380\) −18.9198 + 30.8742i −0.970563 + 1.58382i
\(381\) 0 0
\(382\) 3.15353 + 40.0694i 0.161349 + 2.05013i
\(383\) 1.62586 3.92517i 0.0830775 0.200567i −0.876882 0.480706i \(-0.840381\pi\)
0.959959 + 0.280139i \(0.0903805\pi\)
\(384\) 0 0
\(385\) 19.0959 + 58.7712i 0.973219 + 2.99526i
\(386\) −1.56003 6.49798i −0.0794033 0.330739i
\(387\) 0 0
\(388\) 1.69894 21.5870i 0.0862504 1.09592i
\(389\) −17.6556 8.99596i −0.895173 0.456114i −0.0550341 0.998484i \(-0.517527\pi\)
−0.840139 + 0.542371i \(0.817527\pi\)
\(390\) 0 0
\(391\) 2.17917 + 0.171504i 0.110205 + 0.00867333i
\(392\) −1.58647 + 4.88265i −0.0801288 + 0.246611i
\(393\) 0 0
\(394\) −7.77715 + 2.52695i −0.391807 + 0.127306i
\(395\) −35.5240 + 21.7692i −1.78741 + 1.09532i
\(396\) 0 0
\(397\) −32.6770 + 2.57174i −1.64001 + 0.129072i −0.864627 0.502415i \(-0.832445\pi\)
−0.775387 + 0.631487i \(0.782445\pi\)
\(398\) −4.21546 + 17.5587i −0.211302 + 0.880136i
\(399\) 0 0
\(400\) −30.7375 42.3065i −1.53687 2.11532i
\(401\) −6.58967 + 6.58967i −0.329072 + 0.329072i −0.852234 0.523161i \(-0.824752\pi\)
0.523161 + 0.852234i \(0.324752\pi\)
\(402\) 0 0
\(403\) 4.76765 4.07196i 0.237493 0.202839i
\(404\) 17.6076 20.6158i 0.876009 1.02567i
\(405\) 0 0
\(406\) −47.7393 34.6847i −2.36926 1.72137i
\(407\) 27.3466 11.3273i 1.35552 0.561476i
\(408\) 0 0
\(409\) 29.5663i 1.46196i −0.682399 0.730980i \(-0.739063\pi\)
0.682399 0.730980i \(-0.260937\pi\)
\(410\) 22.7865 + 44.9668i 1.12535 + 2.22075i
\(411\) 0 0
\(412\) −12.2666 + 6.25013i −0.604331 + 0.307922i
\(413\) −15.9751 38.5673i −0.786083 1.89777i
\(414\) 0 0
\(415\) −6.07390 + 0.962011i −0.298156 + 0.0472233i
\(416\) −8.31326 7.10020i −0.407591 0.348116i
\(417\) 0 0
\(418\) −5.80416 + 36.6460i −0.283891 + 1.79242i
\(419\) −5.36794 5.36794i −0.262241 0.262241i 0.563723 0.825964i \(-0.309369\pi\)
−0.825964 + 0.563723i \(0.809369\pi\)
\(420\) 0 0
\(421\) 16.8482 + 10.3246i 0.821132 + 0.503190i 0.868501 0.495687i \(-0.165084\pi\)
−0.0473693 + 0.998877i \(0.515084\pi\)
\(422\) −10.7267 2.57525i −0.522166 0.125361i
\(423\) 0 0
\(424\) 3.36308 + 1.39303i 0.163326 + 0.0676517i
\(425\) −4.80145 7.83526i −0.232905 0.380066i
\(426\) 0 0
\(427\) 21.3189 5.11821i 1.03169 0.247688i
\(428\) −3.95296 1.28440i −0.191074 0.0620836i
\(429\) 0 0
\(430\) 30.9504 60.7435i 1.49256 2.92931i
\(431\) 10.4239 20.4580i 0.502101 0.985428i −0.491328 0.870975i \(-0.663488\pi\)
0.993429 0.114454i \(-0.0365117\pi\)
\(432\) 0 0
\(433\) 15.6137 + 5.07321i 0.750348 + 0.243803i 0.659131 0.752028i \(-0.270924\pi\)
0.0912172 + 0.995831i \(0.470924\pi\)
\(434\) −33.0135 + 7.92585i −1.58470 + 0.380453i
\(435\) 0 0
\(436\) −1.15970 1.89246i −0.0555396 0.0906324i
\(437\) 13.2271 + 5.47883i 0.632736 + 0.262088i
\(438\) 0 0
\(439\) −13.6416 3.27507i −0.651080 0.156310i −0.105566 0.994412i \(-0.533665\pi\)
−0.545514 + 0.838102i \(0.683665\pi\)
\(440\) −7.02949 4.30768i −0.335118 0.205360i
\(441\) 0 0
\(442\) −1.55305 1.55305i −0.0738712 0.0738712i
\(443\) 0.212895 1.34417i 0.0101150 0.0638634i −0.982115 0.188284i \(-0.939707\pi\)
0.992230 + 0.124421i \(0.0397073\pi\)
\(444\) 0 0
\(445\) −22.3485 19.0874i −1.05942 0.904831i
\(446\) 6.37375 1.00950i 0.301806 0.0478014i
\(447\) 0 0
\(448\) 8.72716 + 21.0692i 0.412320 + 0.995427i
\(449\) −22.1959 + 11.3094i −1.04749 + 0.533721i −0.891021 0.453962i \(-0.850010\pi\)
−0.156466 + 0.987683i \(0.550010\pi\)
\(450\) 0 0
\(451\) 18.1215 + 15.5467i 0.853310 + 0.732067i
\(452\) 0.0576887i 0.00271345i
\(453\) 0 0
\(454\) −3.83766 + 1.58961i −0.180110 + 0.0746042i
\(455\) −19.3833 14.0828i −0.908703 0.660211i
\(456\) 0 0
\(457\) −3.90751 + 4.57511i −0.182786 + 0.214014i −0.844232 0.535978i \(-0.819943\pi\)
0.661446 + 0.749993i \(0.269943\pi\)
\(458\) −20.4464 + 17.4629i −0.955397 + 0.815987i
\(459\) 0 0
\(460\) 13.7707 13.7707i 0.642061 0.642061i
\(461\) −10.6494 14.6576i −0.495991 0.682673i 0.485488 0.874243i \(-0.338642\pi\)
−0.981479 + 0.191570i \(0.938642\pi\)
\(462\) 0 0
\(463\) 6.45070 26.8691i 0.299789 1.24871i −0.595546 0.803321i \(-0.703064\pi\)
0.895336 0.445392i \(-0.146936\pi\)
\(464\) 33.6848 2.65105i 1.56378 0.123072i
\(465\) 0 0
\(466\) −11.5722 + 7.09148i −0.536074 + 0.328506i
\(467\) 5.66892 1.84194i 0.262326 0.0852350i −0.174901 0.984586i \(-0.555961\pi\)
0.437227 + 0.899351i \(0.355961\pi\)
\(468\) 0 0
\(469\) −5.58956 + 17.2029i −0.258102 + 0.794357i
\(470\) 41.7096 + 3.28261i 1.92392 + 0.151416i
\(471\) 0 0
\(472\) 4.96231 + 2.52842i 0.228409 + 0.116380i
\(473\) 2.53344 32.1905i 0.116488 1.48012i
\(474\) 0 0
\(475\) −14.0504 58.5243i −0.644678 2.68528i
\(476\) 1.69886 + 5.22856i 0.0778672 + 0.239651i
\(477\) 0 0
\(478\) 12.0526 29.0975i 0.551272 1.33089i
\(479\) −1.48202 18.8308i −0.0677151 0.860402i −0.933175 0.359423i \(-0.882973\pi\)
0.865460 0.500979i \(-0.167027\pi\)
\(480\) 0 0
\(481\) −5.99632 + 9.78511i −0.273409 + 0.446163i
\(482\) 11.0011 7.99277i 0.501087 0.364061i
\(483\) 0 0
\(484\) 4.93211 + 0.781169i 0.224187 + 0.0355077i
\(485\) 33.3940 + 39.0993i 1.51634 + 1.77541i
\(486\) 0 0
\(487\) −0.428035 2.70251i −0.0193961 0.122462i 0.976090 0.217365i \(-0.0697461\pi\)
−0.995487 + 0.0949024i \(0.969746\pi\)
\(488\) −1.71930 + 2.36641i −0.0778290 + 0.107122i
\(489\) 0 0
\(490\) 33.8811 + 66.4954i 1.53059 + 3.00395i
\(491\) 8.65222 0.390469 0.195235 0.980757i \(-0.437453\pi\)
0.195235 + 0.980757i \(0.437453\pi\)
\(492\) 0 0
\(493\) 5.93762 0.267417
\(494\) −6.53078 12.8174i −0.293834 0.576681i
\(495\) 0 0
\(496\) 11.4271 15.7280i 0.513091 0.706209i
\(497\) 3.99169 + 25.2025i 0.179052 + 1.13049i
\(498\) 0 0
\(499\) −13.7968 16.1540i −0.617631 0.723153i 0.360124 0.932905i \(-0.382734\pi\)
−0.977755 + 0.209752i \(0.932734\pi\)
\(500\) −46.2034 7.31790i −2.06628 0.327266i
\(501\) 0 0
\(502\) 15.8755 11.5342i 0.708559 0.514798i
\(503\) 1.86946 3.05068i 0.0833551 0.136023i −0.808246 0.588845i \(-0.799583\pi\)
0.891601 + 0.452822i \(0.149583\pi\)
\(504\) 0 0
\(505\) 5.05112 + 64.1806i 0.224772 + 2.85600i
\(506\) 7.63636 18.4358i 0.339478 0.819572i
\(507\) 0 0
\(508\) 4.45947 + 13.7248i 0.197857 + 0.608941i
\(509\) 3.10720 + 12.9424i 0.137724 + 0.573663i 0.997964 + 0.0637737i \(0.0203136\pi\)
−0.860240 + 0.509889i \(0.829686\pi\)
\(510\) 0 0
\(511\) 2.63036 33.4219i 0.116360 1.47850i
\(512\) −25.8776 13.1853i −1.14364 0.582713i
\(513\) 0 0
\(514\) −33.4960 2.63619i −1.47744 0.116277i
\(515\) 10.1022 31.0913i 0.445155 1.37005i
\(516\) 0 0
\(517\) 18.8466 6.12362i 0.828870 0.269316i
\(518\) 52.9868 32.4703i 2.32811 1.42666i
\(519\) 0 0
\(520\) 3.18661 0.250791i 0.139742 0.0109979i
\(521\) 4.37498 18.2231i 0.191671 0.798368i −0.790818 0.612051i \(-0.790345\pi\)
0.982490 0.186317i \(-0.0596553\pi\)
\(522\) 0 0
\(523\) 4.48685 + 6.17563i 0.196196 + 0.270041i 0.895769 0.444521i \(-0.146626\pi\)
−0.699572 + 0.714562i \(0.746626\pi\)
\(524\) 24.2802 24.2802i 1.06069 1.06069i
\(525\) 0 0
\(526\) 18.3723 15.6914i 0.801068 0.684177i
\(527\) 2.21870 2.59776i 0.0966481 0.113160i
\(528\) 0 0
\(529\) 12.3780 + 8.99315i 0.538174 + 0.391006i
\(530\) 48.8875 20.2499i 2.12354 0.879599i
\(531\) 0 0
\(532\) 36.0075i 1.56112i
\(533\) −9.22711 0.746736i −0.399671 0.0323447i
\(534\) 0 0
\(535\) 8.79401 4.48077i 0.380198 0.193721i
\(536\) −0.923495 2.22951i −0.0398889 0.0963004i
\(537\) 0 0
\(538\) 50.0596 7.92866i 2.15822 0.341829i
\(539\) 26.8785 + 22.9564i 1.15774 + 0.988803i
\(540\) 0 0
\(541\) −6.05368 + 38.2214i −0.260268 + 1.64327i 0.417997 + 0.908449i \(0.362732\pi\)
−0.678264 + 0.734818i \(0.737268\pi\)
\(542\) −39.6326 39.6326i −1.70237 1.70237i
\(543\) 0 0
\(544\) −5.07911 3.11248i −0.217765 0.133447i
\(545\) 5.12486 + 1.23037i 0.219525 + 0.0527033i
\(546\) 0 0
\(547\) −24.9293 10.3261i −1.06590 0.441510i −0.220358 0.975419i \(-0.570723\pi\)
−0.845542 + 0.533909i \(0.820723\pi\)
\(548\) −8.05059 13.1374i −0.343904 0.561201i
\(549\) 0 0
\(550\) −81.5708 + 19.5834i −3.47819 + 0.835040i
\(551\) 36.9859 + 12.0174i 1.57565 + 0.511960i
\(552\) 0 0
\(553\) −18.8090 + 36.9147i −0.799839 + 1.56977i
\(554\) −28.0615 + 55.0738i −1.19222 + 2.33986i
\(555\) 0 0
\(556\) 10.9761 + 3.56635i 0.465490 + 0.151247i
\(557\) 4.87587 1.17059i 0.206597 0.0495996i −0.128826 0.991667i \(-0.541121\pi\)
0.335423 + 0.942068i \(0.391121\pi\)
\(558\) 0 0
\(559\) 6.54131 + 10.6744i 0.276668 + 0.451481i
\(560\) −68.6346 28.4294i −2.90034 1.20136i
\(561\) 0 0
\(562\) −4.52018 1.08520i −0.190672 0.0457763i
\(563\) 28.6170 + 17.5365i 1.20606 + 0.739075i 0.972418 0.233247i \(-0.0749350\pi\)
0.233644 + 0.972322i \(0.424935\pi\)
\(564\) 0 0
\(565\) 0.0968647 + 0.0968647i 0.00407513 + 0.00407513i
\(566\) −5.04941 + 31.8807i −0.212243 + 1.34005i
\(567\) 0 0
\(568\) −2.58862 2.21089i −0.108616 0.0927670i
\(569\) −26.7269 + 4.23313i −1.12045 + 0.177462i −0.689061 0.724703i \(-0.741977\pi\)
−0.431391 + 0.902165i \(0.641977\pi\)
\(570\) 0 0
\(571\) −11.9136 28.7620i −0.498569 1.20365i −0.950255 0.311474i \(-0.899177\pi\)
0.451686 0.892177i \(-0.350823\pi\)
\(572\) −8.25792 + 4.20762i −0.345281 + 0.175929i
\(573\) 0 0
\(574\) 42.6836 + 26.2866i 1.78158 + 1.09718i
\(575\) 32.3701i 1.34993i
\(576\) 0 0
\(577\) −17.0983 + 7.08237i −0.711813 + 0.294843i −0.709055 0.705153i \(-0.750878\pi\)
−0.00275859 + 0.999996i \(0.500878\pi\)
\(578\) 25.5552 + 18.5670i 1.06296 + 0.772284i
\(579\) 0 0
\(580\) 34.3555 40.2251i 1.42653 1.67026i
\(581\) −4.65003 + 3.97150i −0.192916 + 0.164765i
\(582\) 0 0
\(583\) 17.7222 17.7222i 0.733978 0.733978i
\(584\) 2.62900 + 3.61850i 0.108789 + 0.149735i
\(585\) 0 0
\(586\) 8.77511 36.5510i 0.362496 1.50991i
\(587\) 29.2557 2.30248i 1.20751 0.0950334i 0.541323 0.840815i \(-0.317924\pi\)
0.666191 + 0.745782i \(0.267924\pi\)
\(588\) 0 0
\(589\) 19.0782 11.6911i 0.786103 0.481725i
\(590\) 76.9964 25.0177i 3.16989 1.02996i
\(591\) 0 0
\(592\) −10.9961 + 33.8426i −0.451938 + 1.39092i
\(593\) 6.42778 + 0.505877i 0.263957 + 0.0207739i 0.209747 0.977756i \(-0.432736\pi\)
0.0542102 + 0.998530i \(0.482736\pi\)
\(594\) 0 0
\(595\) −11.6318 5.92669i −0.476857 0.242971i
\(596\) −1.28997 + 16.3906i −0.0528391 + 0.671384i
\(597\) 0 0
\(598\) 1.80611 + 7.52298i 0.0738572 + 0.307637i
\(599\) 9.31216 + 28.6599i 0.380485 + 1.17101i 0.939703 + 0.341991i \(0.111101\pi\)
−0.559218 + 0.829020i \(0.688899\pi\)
\(600\) 0 0
\(601\) 4.51679 10.9045i 0.184244 0.444803i −0.804589 0.593832i \(-0.797615\pi\)
0.988833 + 0.149028i \(0.0476145\pi\)
\(602\) −5.31893 67.5834i −0.216783 2.75450i
\(603\) 0 0
\(604\) −0.0875843 + 0.142925i −0.00356375 + 0.00581552i
\(605\) −9.59313 + 6.96982i −0.390016 + 0.283363i
\(606\) 0 0
\(607\) 24.6902 + 3.91054i 1.00214 + 0.158724i 0.635881 0.771787i \(-0.280637\pi\)
0.366263 + 0.930511i \(0.380637\pi\)
\(608\) −25.3386 29.6677i −1.02762 1.20319i
\(609\) 0 0
\(610\) 6.65160 + 41.9966i 0.269316 + 1.70039i
\(611\) −4.51602 + 6.21576i −0.182698 + 0.251463i
\(612\) 0 0
\(613\) −17.7323 34.8016i −0.716202 1.40562i −0.905775 0.423758i \(-0.860711\pi\)
0.189574 0.981867i \(-0.439289\pi\)
\(614\) 18.6692 0.753427
\(615\) 0 0
\(616\) −8.19823 −0.330316
\(617\) 4.37096 + 8.57849i 0.175968 + 0.345357i 0.962098 0.272705i \(-0.0879182\pi\)
−0.786130 + 0.618062i \(0.787918\pi\)
\(618\) 0 0
\(619\) −7.78254 + 10.7117i −0.312807 + 0.430541i −0.936254 0.351324i \(-0.885732\pi\)
0.623447 + 0.781865i \(0.285732\pi\)
\(620\) −4.76131 30.0617i −0.191219 1.20731i
\(621\) 0 0
\(622\) −5.98107 7.00293i −0.239819 0.280792i
\(623\) −28.8659 4.57191i −1.15649 0.183170i
\(624\) 0 0
\(625\) 42.6796 31.0085i 1.70718 1.24034i
\(626\) −4.72398 + 7.70883i −0.188808 + 0.308107i
\(627\) 0 0
\(628\) −2.45706 31.2199i −0.0980474 1.24581i
\(629\) −2.39296 + 5.77711i −0.0954135 + 0.230349i
\(630\) 0 0
\(631\) 3.12230 + 9.60946i 0.124297 + 0.382547i 0.993772 0.111430i \(-0.0355430\pi\)
−0.869475 + 0.493976i \(0.835543\pi\)
\(632\) −1.29034 5.37464i −0.0513269 0.213792i
\(633\) 0 0
\(634\) −1.51967 + 19.3092i −0.0603537 + 0.766866i
\(635\) −30.5331 15.5574i −1.21167 0.617377i
\(636\) 0 0
\(637\) −13.6625 1.07526i −0.541328 0.0426034i
\(638\) 16.7499 51.5507i 0.663133 2.04091i
\(639\) 0 0
\(640\) 16.6560 5.41187i 0.658387 0.213923i
\(641\) 13.4689 8.25377i 0.531991 0.326004i −0.230427 0.973090i \(-0.574012\pi\)
0.762418 + 0.647085i \(0.224012\pi\)
\(642\) 0 0
\(643\) −6.60119 + 0.519525i −0.260326 + 0.0204881i −0.207950 0.978139i \(-0.566679\pi\)
−0.0523754 + 0.998627i \(0.516679\pi\)
\(644\) 4.52083 18.8306i 0.178145 0.742029i
\(645\) 0 0
\(646\) −4.60716 6.34121i −0.181266 0.249491i
\(647\) 26.4040 26.4040i 1.03805 1.03805i 0.0388000 0.999247i \(-0.487646\pi\)
0.999247 0.0388000i \(-0.0123535\pi\)
\(648\) 0 0
\(649\) 29.1581 24.9033i 1.14455 0.977542i
\(650\) 21.1232 24.7321i 0.828519 0.970071i
\(651\) 0 0
\(652\) −17.8659 12.9804i −0.699684 0.508350i
\(653\) −43.5209 + 18.0270i −1.70311 + 0.705450i −0.999984 0.00561962i \(-0.998211\pi\)
−0.703122 + 0.711069i \(0.748211\pi\)
\(654\) 0 0
\(655\) 81.5375i 3.18593i
\(656\) −28.3604 + 4.42754i −1.10729 + 0.172866i
\(657\) 0 0
\(658\) 37.0697 18.8880i 1.44513 0.736330i
\(659\) 17.0670 + 41.2033i 0.664835 + 1.60505i 0.790134 + 0.612934i \(0.210011\pi\)
−0.125299 + 0.992119i \(0.539989\pi\)
\(660\) 0 0
\(661\) −33.2403 + 5.26475i −1.29290 + 0.204775i −0.764723 0.644359i \(-0.777124\pi\)
−0.528177 + 0.849135i \(0.677124\pi\)
\(662\) −20.2504 17.2955i −0.787055 0.672208i
\(663\) 0 0
\(664\) 0.127627 0.805804i 0.00495288 0.0312712i
\(665\) −60.4599 60.4599i −2.34454 2.34454i
\(666\) 0 0
\(667\) −17.8334 10.9284i −0.690514 0.423147i
\(668\) 19.3594 + 4.64779i 0.749039 + 0.179828i
\(669\) 0 0
\(670\) −32.4094 13.4244i −1.25209 0.518631i
\(671\) 10.5227 + 17.1715i 0.406225 + 0.662899i
\(672\) 0 0
\(673\) −14.3214 + 3.43825i −0.552048 + 0.132535i −0.499866 0.866103i \(-0.666617\pi\)
−0.0521817 + 0.998638i \(0.516617\pi\)
\(674\) 61.4196 + 19.9564i 2.36579 + 0.768693i
\(675\) 0 0
\(676\) −8.51496 + 16.7116i −0.327499 + 0.642752i
\(677\) −7.47586 + 14.6722i −0.287321 + 0.563898i −0.988881 0.148712i \(-0.952487\pi\)
0.701560 + 0.712610i \(0.252487\pi\)
\(678\) 0 0
\(679\) 48.6286 + 15.8004i 1.86620 + 0.606364i
\(680\) 1.69354 0.406584i 0.0649445 0.0155918i
\(681\) 0 0
\(682\) −16.2950 26.5911i −0.623969 1.01823i
\(683\) −7.82395 3.24079i −0.299375 0.124005i 0.227940 0.973675i \(-0.426801\pi\)
−0.527315 + 0.849670i \(0.676801\pi\)
\(684\) 0 0
\(685\) 35.5766 + 8.54118i 1.35931 + 0.326342i
\(686\) 16.5501 + 10.1419i 0.631886 + 0.387220i
\(687\) 0 0
\(688\) 27.4487 + 27.4487i 1.04647 + 1.04647i
\(689\) −1.52011 + 9.59761i −0.0579117 + 0.365640i
\(690\) 0 0
\(691\) 2.80945 + 2.39949i 0.106876 + 0.0912810i 0.701281 0.712885i \(-0.252612\pi\)
−0.594404 + 0.804166i \(0.702612\pi\)
\(692\) −21.7435 + 3.44383i −0.826563 + 0.130915i
\(693\) 0 0
\(694\) −13.3364 32.1969i −0.506242 1.22218i
\(695\) −24.4181 + 12.4416i −0.926231 + 0.471938i
\(696\) 0 0
\(697\) −5.02936 + 0.384624i −0.190501 + 0.0145687i
\(698\) 13.1951i 0.499443i
\(699\) 0 0
\(700\) −75.2150 + 31.1551i −2.84286 + 1.17755i
\(701\) −12.6755 9.20926i −0.478745 0.347829i 0.322094 0.946708i \(-0.395613\pi\)
−0.800840 + 0.598879i \(0.795613\pi\)
\(702\) 0 0
\(703\) −26.5985 + 31.1428i −1.00318 + 1.17457i
\(704\) −15.9290 + 13.6047i −0.600347 + 0.512745i
\(705\) 0 0
\(706\) −28.5845 + 28.5845i −1.07579 + 1.07579i
\(707\) 37.6292 + 51.7922i 1.41519 + 1.94785i
\(708\) 0 0
\(709\) 2.84446 11.8480i 0.106826 0.444963i −0.893163 0.449734i \(-0.851519\pi\)
0.999989 + 0.00477134i \(0.00151877\pi\)
\(710\) −49.3337 + 3.88265i −1.85146 + 0.145713i
\(711\) 0 0
\(712\) 3.32453 2.03728i 0.124592 0.0763501i
\(713\) −11.4450 + 3.71872i −0.428620 + 0.139267i
\(714\) 0 0
\(715\) 6.80083 20.9308i 0.254337 0.782768i
\(716\) 21.9657 + 1.72874i 0.820897 + 0.0646060i
\(717\) 0 0
\(718\) −38.1590 19.4430i −1.42408 0.725606i
\(719\) −1.43551 + 18.2399i −0.0535354 + 0.680232i 0.910337 + 0.413868i \(0.135822\pi\)
−0.963872 + 0.266364i \(0.914178\pi\)
\(720\) 0 0
\(721\) −7.58892 31.6101i −0.282626 1.17722i
\(722\) −4.54110 13.9761i −0.169002 0.520136i
\(723\) 0 0
\(724\) −7.66360 + 18.5016i −0.284815 + 0.687605i
\(725\) 6.89873 + 87.6567i 0.256212 + 3.25549i
\(726\) 0 0
\(727\) 8.85263 14.4462i 0.328326 0.535779i −0.645300 0.763929i \(-0.723268\pi\)
0.973626 + 0.228150i \(0.0732677\pi\)
\(728\) 2.57152 1.86832i 0.0953067 0.0692444i
\(729\) 0 0
\(730\) 64.2173 + 10.1710i 2.37679 + 0.376447i
\(731\) 4.43016 + 5.18705i 0.163855 + 0.191850i
\(732\) 0 0
\(733\) −1.91594 12.0968i −0.0707670 0.446805i −0.997475 0.0710223i \(-0.977374\pi\)
0.926708 0.375783i \(-0.122626\pi\)
\(734\) −38.8319 + 53.4475i −1.43331 + 1.97278i
\(735\) 0 0
\(736\) 9.52632 + 18.6965i 0.351145 + 0.689160i
\(737\) −16.6152 −0.612028
\(738\) 0 0
\(739\) −4.00130 −0.147190 −0.0735951 0.997288i \(-0.523447\pi\)
−0.0735951 + 0.997288i \(0.523447\pi\)
\(740\) 25.2919 + 49.6382i 0.929749 + 1.82474i
\(741\) 0 0
\(742\) 30.9289 42.5699i 1.13543 1.56279i
\(743\) −1.26831 8.00783i −0.0465300 0.293779i 0.953440 0.301584i \(-0.0975154\pi\)
−0.999970 + 0.00780549i \(0.997515\pi\)
\(744\) 0 0
\(745\) −25.3553 29.6873i −0.928947 1.08766i
\(746\) −38.6456 6.12086i −1.41492 0.224101i
\(747\) 0 0
\(748\) −4.08548 + 2.96828i −0.149380 + 0.108531i
\(749\) 5.12806 8.36824i 0.187375 0.305769i
\(750\) 0 0
\(751\) 2.15473 + 27.3784i 0.0786272 + 0.999054i 0.902052 + 0.431628i \(0.142061\pi\)
−0.823425 + 0.567426i \(0.807939\pi\)
\(752\) −9.11663 + 22.0095i −0.332449 + 0.802603i
\(753\) 0 0
\(754\) 6.49415 + 19.9869i 0.236503 + 0.727881i
\(755\) −0.0929215 0.387046i −0.00338176 0.0140860i
\(756\) 0 0
\(757\) 0.567945 7.21643i 0.0206423 0.262285i −0.977933 0.208920i \(-0.933005\pi\)
0.998575 0.0533655i \(-0.0169948\pi\)
\(758\) −49.7658 25.3570i −1.80758 0.921006i
\(759\) 0 0
\(760\) 11.3721 + 0.895005i 0.412510 + 0.0324652i
\(761\) 0.958629 2.95036i 0.0347503 0.106950i −0.932177 0.362003i \(-0.882093\pi\)
0.966927 + 0.255053i \(0.0820929\pi\)
\(762\) 0 0
\(763\) 4.98447 1.61955i 0.180450 0.0586318i
\(764\) −30.5503 + 18.7212i −1.10527 + 0.677310i
\(765\) 0 0
\(766\) 8.16818 0.642850i 0.295128 0.0232271i
\(767\) −3.47064 + 14.4563i −0.125318 + 0.521986i
\(768\) 0 0
\(769\) 5.90303 + 8.12483i 0.212869 + 0.292989i 0.902077 0.431574i \(-0.142042\pi\)
−0.689209 + 0.724563i \(0.742042\pi\)
\(770\) −84.2687 + 84.2687i −3.03683 + 3.03683i
\(771\) 0 0
\(772\) 4.52989 3.86889i 0.163034 0.139245i
\(773\) 27.8064 32.5572i 1.00013 1.17100i 0.0148760 0.999889i \(-0.495265\pi\)
0.985252 0.171110i \(-0.0547354\pi\)
\(774\) 0 0
\(775\) 40.9284 + 29.7363i 1.47019 + 1.06816i
\(776\) −6.30232 + 2.61051i −0.226240 + 0.0937118i
\(777\) 0 0
\(778\) 38.2141i 1.37004i
\(779\) −32.1067 7.78332i −1.15034 0.278866i
\(780\) 0 0
\(781\) −20.8840 + 10.6410i −0.747290 + 0.380763i
\(782\) 1.61322 + 3.89466i 0.0576886 + 0.139273i
\(783\) 0 0
\(784\) −41.9709 + 6.64754i −1.49896 + 0.237412i
\(785\) 56.5468 + 48.2955i 2.01824 + 1.72374i
\(786\) 0 0
\(787\) −6.18405 + 39.0446i −0.220438 + 1.39179i 0.590680 + 0.806906i \(0.298860\pi\)
−0.811118 + 0.584883i \(0.801140\pi\)
\(788\) −5.15459 5.15459i −0.183625 0.183625i
\(789\) 0 0
\(790\) −68.5086 41.9821i −2.43743 1.49366i
\(791\) 0.132457 + 0.0318001i 0.00470962 + 0.00113068i
\(792\) 0 0
\(793\) −7.21389 2.98809i −0.256173 0.106110i
\(794\) −33.0287 53.8979i −1.17214 1.91277i
\(795\) 0 0
\(796\) −15.6526 + 3.75786i −0.554792 + 0.133194i
\(797\) 16.5643 + 5.38206i 0.586737 + 0.190643i 0.587317 0.809357i \(-0.300184\pi\)
−0.000579223 1.00000i \(0.500184\pi\)
\(798\) 0 0
\(799\) −1.90055 + 3.73004i −0.0672366 + 0.131959i
\(800\) 40.0481 78.5988i 1.41591 2.77889i
\(801\) 0 0
\(802\) −17.0926 5.55372i −0.603560 0.196109i
\(803\) 29.9442 7.18897i 1.05671 0.253693i
\(804\) 0 0
\(805\) 24.0274 + 39.2092i 0.846856 + 1.38194i
\(806\) 11.1711 + 4.62723i 0.393486 + 0.162987i
\(807\) 0 0
\(808\) −8.30496 1.99385i −0.292168 0.0701432i
\(809\) 31.6404 + 19.3893i 1.11242 + 0.681690i 0.952225 0.305396i \(-0.0987888\pi\)
0.160191 + 0.987086i \(0.448789\pi\)
\(810\) 0 0
\(811\) −6.62574 6.62574i −0.232661 0.232661i 0.581141 0.813803i \(-0.302606\pi\)
−0.813803 + 0.581141i \(0.802606\pi\)
\(812\) 8.22899 51.9558i 0.288781 1.82329i
\(813\) 0 0
\(814\) 43.4067 + 37.0728i 1.52141 + 1.29940i
\(815\) 51.7938 8.20333i 1.81426 0.287350i
\(816\) 0 0
\(817\) 17.0975 + 41.2769i 0.598165 + 1.44410i
\(818\) 50.8043 25.8861i 1.77633 0.905086i
\(819\) 0 0
\(820\) −26.4946 + 36.2975i −0.925230 + 1.26756i
\(821\) 0.148634i 0.00518735i −0.999997 0.00259368i \(-0.999174\pi\)
0.999997 0.00259368i \(-0.000825594\pi\)
\(822\) 0 0
\(823\) 31.6724 13.1191i 1.10403 0.457304i 0.245153 0.969485i \(-0.421162\pi\)
0.858878 + 0.512180i \(0.171162\pi\)
\(824\) 3.50874 + 2.54925i 0.122233 + 0.0888074i
\(825\) 0 0
\(826\) 52.2842 61.2170i 1.81920 2.13001i
\(827\) −33.4348 + 28.5560i −1.16264 + 0.992990i −0.162662 + 0.986682i \(0.552008\pi\)
−0.999980 + 0.00630870i \(0.997992\pi\)
\(828\) 0 0
\(829\) −31.2571 + 31.2571i −1.08560 + 1.08560i −0.0896281 + 0.995975i \(0.528568\pi\)
−0.995975 + 0.0896281i \(0.971432\pi\)
\(830\) −6.97090 9.59463i −0.241964 0.333034i
\(831\) 0 0
\(832\) 1.89601 7.89743i 0.0657322 0.273794i
\(833\) −7.44433 + 0.585882i −0.257931 + 0.0202996i
\(834\) 0 0
\(835\) −40.3104 + 24.7022i −1.39500 + 0.854856i
\(836\) −31.4564 + 10.2208i −1.08794 + 0.353494i
\(837\) 0 0
\(838\) 4.52405 13.9236i 0.156281 0.480983i
\(839\) −2.80490 0.220750i −0.0968359 0.00762115i 0.0299486 0.999551i \(-0.490466\pi\)
−0.126784 + 0.991930i \(0.540466\pi\)
\(840\) 0 0
\(841\) −24.7820 12.6270i −0.854551 0.435415i
\(842\) −2.98988 + 37.9901i −0.103038 + 1.30922i
\(843\) 0 0
\(844\) −2.29570 9.56226i −0.0790211 0.329147i
\(845\) −13.7628 42.3577i −0.473456 1.45715i
\(846\) 0 0
\(847\) −4.51237 + 10.8938i −0.155047 + 0.374316i
\(848\) 2.36398 + 30.0373i 0.0811795 + 1.03148i
\(849\) 0 0
\(850\) 9.25967 15.1104i 0.317604 0.518283i
\(851\) 17.8201 12.9471i 0.610865 0.443819i
\(852\) 0 0
\(853\) −21.6098 3.42265i −0.739904 0.117189i −0.224906 0.974381i \(-0.572207\pi\)
−0.514998 + 0.857191i \(0.672207\pi\)
\(854\) 27.4600 + 32.1515i 0.939662 + 1.10020i
\(855\) 0 0
\(856\) 0.204833 + 1.29327i 0.00700105 + 0.0442029i
\(857\) 5.22450 7.19090i 0.178465 0.245637i −0.710407 0.703791i \(-0.751489\pi\)
0.888873 + 0.458154i \(0.151489\pi\)
\(858\) 0 0
\(859\) −15.7035 30.8200i −0.535798 1.05156i −0.987237 0.159261i \(-0.949089\pi\)
0.451438 0.892302i \(-0.350911\pi\)
\(860\) 60.7735 2.07236
\(861\) 0 0
\(862\) 44.2798 1.50818
\(863\) −4.51695 8.86502i −0.153759 0.301769i 0.801259 0.598318i \(-0.204164\pi\)
−0.955018 + 0.296549i \(0.904164\pi\)
\(864\) 0 0
\(865\) 30.7268 42.2919i 1.04474 1.43797i
\(866\) 4.95286 + 31.2711i 0.168305 + 1.06264i
\(867\) 0 0
\(868\) −19.6562 23.0145i −0.667176 0.781163i
\(869\) −37.5879 5.95334i −1.27508 0.201953i
\(870\) 0 0
\(871\) 5.21164 3.78648i 0.176590 0.128300i
\(872\) −0.365340 + 0.596181i −0.0123720 + 0.0201892i
\(873\) 0 0
\(874\) 2.16628 + 27.5252i 0.0732755 + 0.931053i
\(875\) 42.2713 102.052i 1.42903 3.44998i
\(876\) 0 0
\(877\) −11.1052 34.1781i −0.374994 1.15411i −0.943482 0.331422i \(-0.892471\pi\)
0.568488 0.822691i \(-0.307529\pi\)
\(878\) −6.31602 26.3081i −0.213155 0.887855i
\(879\) 0 0
\(880\) 5.35403 68.0294i 0.180484 2.29327i
\(881\) 11.5624 + 5.89133i 0.389547 + 0.198484i 0.637784 0.770215i \(-0.279851\pi\)
−0.248237 + 0.968699i \(0.579851\pi\)
\(882\) 0 0
\(883\) 10.8501 + 0.853923i 0.365136 + 0.0287368i 0.259700 0.965689i \(-0.416376\pi\)
0.105436 + 0.994426i \(0.466376\pi\)
\(884\) 0.605033 1.86210i 0.0203495 0.0626292i
\(885\) 0 0
\(886\) 2.49611 0.811034i 0.0838583 0.0272472i
\(887\) −17.4967 + 10.7220i −0.587483 + 0.360010i −0.784254 0.620439i \(-0.786954\pi\)
0.196772 + 0.980449i \(0.436954\pi\)
\(888\) 0 0
\(889\) −33.9713 + 2.67360i −1.13936 + 0.0896696i
\(890\) 13.2316 55.1134i 0.443523 1.84741i
\(891\) 0 0
\(892\) 3.38134 + 4.65402i 0.113216 + 0.155828i
\(893\) −19.3881 + 19.3881i −0.648797 + 0.648797i
\(894\) 0 0
\(895\) −39.7852 + 33.9798i −1.32987 + 1.13582i
\(896\) 11.3102 13.2426i 0.377849 0.442404i
\(897\) 0 0
\(898\) −38.8662 28.2379i −1.29698 0.942311i
\(899\) −30.2001 + 12.5093i −1.00723 + 0.417208i
\(900\) 0 0
\(901\) 5.29467i 0.176391i
\(902\) −10.8483 + 44.7502i −0.361210 + 1.49002i
\(903\) 0 0
\(904\) −0.0161928 + 0.00825066i −0.000538566 + 0.000274413i
\(905\) −18.1980 43.9337i −0.604920 1.46041i
\(906\) 0 0
\(907\) −33.5001 + 5.30589i −1.11235 + 0.176179i −0.685451 0.728119i \(-0.740395\pi\)
−0.426902 + 0.904298i \(0.640395\pi\)
\(908\) −2.81574 2.40487i −0.0934436 0.0798083i
\(909\) 0 0
\(910\) 7.22812 45.6365i 0.239610 1.51284i
\(911\) −11.1519 11.1519i −0.369478 0.369478i 0.497809 0.867287i \(-0.334138\pi\)
−0.867287 + 0.497809i \(0.834138\pi\)
\(912\) 0 0
\(913\) −4.78945 2.93498i −0.158508 0.0971336i
\(914\) −11.2826 2.70872i −0.373196 0.0895964i
\(915\) 0 0
\(916\) −22.1453 9.17289i −0.731702 0.303081i
\(917\) 42.3648 + 69.1330i 1.39901 + 2.28297i
\(918\) 0 0
\(919\) −34.4509 + 8.27093i −1.13643 + 0.272833i −0.757655 0.652656i \(-0.773655\pi\)
−0.378776 + 0.925489i \(0.623655\pi\)
\(920\) −5.83483 1.89585i −0.192369 0.0625043i
\(921\) 0 0
\(922\) 15.8626 31.1322i 0.522408 1.02528i
\(923\) 4.12564 8.09703i 0.135797 0.266517i
\(924\) 0 0
\(925\) −88.0674 28.6148i −2.89564 0.940850i
\(926\) 51.8174 12.4403i 1.70283 0.408813i
\(927\) 0 0
\(928\) 29.7814 + 48.5988i 0.977623 + 1.59534i
\(929\) −18.3719 7.60989i −0.602762 0.249672i 0.0603682 0.998176i \(-0.480773\pi\)
−0.663130 + 0.748504i \(0.730773\pi\)
\(930\) 0 0
\(931\) −47.5571 11.4174i −1.55862 0.374192i
\(932\) −10.3160 6.32167i −0.337913 0.207073i
\(933\) 0 0
\(934\) 8.12834 + 8.12834i 0.265968 + 0.265968i
\(935\) 1.87589 11.8439i 0.0613482 0.387337i
\(936\) 0 0
\(937\) −34.1493 29.1662i −1.11561 0.952819i −0.116423 0.993200i \(-0.537143\pi\)
−0.999184 + 0.0403805i \(0.987143\pi\)
\(938\) −34.4539 + 5.45696i −1.12496 + 0.178176i
\(939\) 0 0
\(940\) 14.2729 + 34.4578i 0.465530 + 1.12389i
\(941\) −13.4796 + 6.86822i −0.439424 + 0.223898i −0.659683 0.751544i \(-0.729310\pi\)
0.220260 + 0.975441i \(0.429310\pi\)
\(942\) 0 0
\(943\) 15.8134 + 8.10146i 0.514956 + 0.263820i
\(944\) 46.0980i 1.50036i
\(945\) 0 0
\(946\) 57.5316 23.8304i 1.87051 0.774792i
\(947\) −6.01499 4.37015i −0.195461 0.142011i 0.485750 0.874098i \(-0.338546\pi\)
−0.681211 + 0.732087i \(0.738546\pi\)
\(948\) 0 0
\(949\) −7.75420 + 9.07901i −0.251712 + 0.294717i
\(950\) 88.2618 75.3827i 2.86359 2.44574i
\(951\) 0 0
\(952\) 1.22465 1.22465i 0.0396912 0.0396912i
\(953\) 22.6728 + 31.2065i 0.734445 + 1.01088i 0.998919 + 0.0464836i \(0.0148015\pi\)
−0.264474 + 0.964393i \(0.585198\pi\)
\(954\) 0 0
\(955\) 19.8621 82.7314i 0.642721 2.67713i
\(956\) 27.9895 2.20282i 0.905245 0.0712443i
\(957\) 0 0
\(958\) 31.0598 19.0335i 1.00350 0.614944i
\(959\) 34.6020 11.2429i 1.11736 0.363051i
\(960\) 0 0
\(961\) 3.76764 11.5956i 0.121537 0.374052i
\(962\) −22.0639 1.73647i −0.711368 0.0559859i
\(963\) 0 0
\(964\) 10.8008 + 5.50327i 0.347870 + 0.177248i
\(965\) −1.10988 + 14.1024i −0.0357283 + 0.453971i
\(966\) 0 0
\(967\) 9.29550 + 38.7185i 0.298923 + 1.24510i 0.896410 + 0.443226i \(0.146166\pi\)
−0.597487 + 0.801879i \(0.703834\pi\)
\(968\) −0.486124 1.49613i −0.0156246 0.0480876i
\(969\) 0 0
\(970\) −37.9478 + 91.6140i −1.21843 + 2.94155i
\(971\) −1.03988 13.2129i −0.0333714 0.424023i −0.990798 0.135347i \(-0.956785\pi\)
0.957427 0.288676i \(-0.0932150\pi\)
\(972\) 0 0
\(973\) −14.2390 + 23.2359i −0.456480 + 0.744908i
\(974\) 4.26901 3.10162i 0.136788 0.0993823i
\(975\) 0 0
\(976\) −23.9129 3.78743i −0.765433 0.121233i
\(977\) −12.2797 14.3777i −0.392864 0.459984i 0.528358 0.849021i \(-0.322808\pi\)
−0.921222 + 0.389037i \(0.872808\pi\)
\(978\) 0 0
\(979\) −4.19960 26.5152i −0.134220 0.847430i
\(980\) −39.1043 + 53.8225i −1.24914 + 1.71930i
\(981\) 0 0
\(982\) 7.57525 + 14.8673i 0.241736 + 0.474434i
\(983\) −3.94890 −0.125950 −0.0629752 0.998015i \(-0.520059\pi\)
−0.0629752 + 0.998015i \(0.520059\pi\)
\(984\) 0 0
\(985\) 17.3101 0.551545
\(986\) 5.19855 + 10.2027i 0.165556 + 0.324921i
\(987\) 0 0
\(988\) 7.53759 10.3746i 0.239803 0.330060i
\(989\) −3.75893 23.7329i −0.119527 0.754664i
\(990\) 0 0
\(991\) 19.2113 + 22.4936i 0.610268 + 0.714532i 0.976385 0.216037i \(-0.0693131\pi\)
−0.366117 + 0.930569i \(0.619313\pi\)
\(992\) 32.3908 + 5.13020i 1.02841 + 0.162884i
\(993\) 0 0
\(994\) −39.8111 + 28.9245i −1.26273 + 0.917429i
\(995\) 19.9724 32.5920i 0.633167 1.03324i
\(996\) 0 0
\(997\) −4.27936 54.3744i −0.135529 1.72205i −0.570235 0.821481i \(-0.693148\pi\)
0.434707 0.900572i \(-0.356852\pi\)
\(998\) 15.6782 37.8506i 0.496286 1.19814i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 369.2.ba.a.350.6 yes 112
3.2 odd 2 369.2.ba.b.350.2 yes 112
41.28 odd 40 369.2.ba.b.233.2 yes 112
123.110 even 40 inner 369.2.ba.a.233.6 112
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
369.2.ba.a.233.6 112 123.110 even 40 inner
369.2.ba.a.350.6 yes 112 1.1 even 1 trivial
369.2.ba.b.233.2 yes 112 41.28 odd 40
369.2.ba.b.350.2 yes 112 3.2 odd 2