Properties

Label 369.2.ba.a.350.5
Level $369$
Weight $2$
Character 369.350
Analytic conductor $2.946$
Analytic rank $0$
Dimension $112$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [369,2,Mod(17,369)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("369.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(369, base_ring=CyclotomicField(40)) chi = DirichletCharacter(H, H._module([20, 33])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 369 = 3^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 369.ba (of order \(40\), degree \(16\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [112,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.94647983459\)
Analytic rank: \(0\)
Dimension: \(112\)
Relative dimension: \(7\) over \(\Q(\zeta_{40})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{40}]$

Embedding invariants

Embedding label 350.5
Character \(\chi\) \(=\) 369.350
Dual form 369.2.ba.a.233.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.626663 + 1.22990i) q^{2} +(0.0556331 - 0.0765724i) q^{4} +(0.501789 + 3.16817i) q^{5} +(-0.983319 - 1.15132i) q^{7} +(2.85574 + 0.452305i) q^{8} +(-3.58207 + 2.60253i) q^{10} +(-0.369033 + 0.602207i) q^{11} +(0.346766 + 4.40607i) q^{13} +(0.799793 - 1.93087i) q^{14} +(1.17480 + 3.61567i) q^{16} +(0.0916972 + 0.381946i) q^{17} +(0.318106 - 4.04192i) q^{19} +(0.270511 + 0.137832i) q^{20} +(-0.971911 - 0.0764911i) q^{22} +(1.07861 - 3.31961i) q^{23} +(-5.03024 + 1.63442i) q^{25} +(-5.20171 + 3.18761i) q^{26} +(-0.142864 + 0.0112437i) q^{28} +(-1.58190 + 6.58910i) q^{29} +(0.487790 + 0.671385i) q^{31} +(0.378272 - 0.378272i) q^{32} +(-0.412291 + 0.352130i) q^{34} +(3.15416 - 3.69304i) q^{35} +(-7.31688 - 5.31603i) q^{37} +(5.17049 - 2.14169i) q^{38} +9.27444i q^{40} +(6.26427 - 1.32625i) q^{41} +(5.53886 - 2.82219i) q^{43} +(0.0255820 + 0.0617604i) q^{44} +(4.75870 - 0.753704i) q^{46} +(-6.09893 - 5.20898i) q^{47} +(0.736423 - 4.64959i) q^{49} +(-5.16244 - 5.16244i) q^{50} +(0.356675 + 0.218571i) q^{52} +(-6.54598 - 1.57155i) q^{53} +(-2.09307 - 0.866979i) q^{55} +(-2.28736 - 3.73263i) q^{56} +(-9.09523 + 2.18357i) q^{58} +(13.3068 + 4.32366i) q^{59} +(5.69224 - 11.1716i) q^{61} +(-0.520054 + 1.02066i) q^{62} +(7.93363 + 2.57779i) q^{64} +(-13.7852 + 3.30953i) q^{65} +(1.09943 + 1.79411i) q^{67} +(0.0343479 + 0.0142274i) q^{68} +(6.51866 + 1.56499i) q^{70} +(-7.80591 - 4.78347i) q^{71} +(-0.723298 - 0.723298i) q^{73} +(1.95294 - 12.3304i) q^{74} +(-0.291802 - 0.249223i) q^{76} +(1.05621 - 0.167287i) q^{77} +(-4.02725 - 9.72264i) q^{79} +(-10.8656 + 5.53629i) q^{80} +(5.55674 + 6.87329i) q^{82} +2.39159i q^{83} +(-1.16406 + 0.482169i) q^{85} +(6.94200 + 5.04366i) q^{86} +(-1.32624 + 1.55283i) q^{88} +(-7.24033 + 6.18383i) q^{89} +(4.73182 - 4.73182i) q^{91} +(-0.194184 - 0.267272i) q^{92} +(2.58453 - 10.7653i) q^{94} +(12.9651 - 1.02038i) q^{95} +(15.2104 - 9.32092i) q^{97} +(6.18000 - 2.00800i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 112 q - 4 q^{5} + 24 q^{8} - 12 q^{11} - 4 q^{13} - 4 q^{14} + 28 q^{16} - 4 q^{17} + 88 q^{20} + 8 q^{22} + 24 q^{23} - 60 q^{26} + 8 q^{29} + 48 q^{32} - 152 q^{35} + 8 q^{37} - 56 q^{38} + 12 q^{41}+ \cdots + 60 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/369\mathbb{Z}\right)^\times\).

\(n\) \(83\) \(334\)
\(\chi(n)\) \(-1\) \(e\left(\frac{29}{40}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.626663 + 1.22990i 0.443118 + 0.869668i 0.999256 + 0.0385777i \(0.0122827\pi\)
−0.556138 + 0.831090i \(0.687717\pi\)
\(3\) 0 0
\(4\) 0.0556331 0.0765724i 0.0278165 0.0382862i
\(5\) 0.501789 + 3.16817i 0.224407 + 1.41685i 0.800435 + 0.599420i \(0.204602\pi\)
−0.576028 + 0.817430i \(0.695398\pi\)
\(6\) 0 0
\(7\) −0.983319 1.15132i −0.371660 0.435158i 0.542783 0.839873i \(-0.317371\pi\)
−0.914443 + 0.404715i \(0.867371\pi\)
\(8\) 2.85574 + 0.452305i 1.00966 + 0.159914i
\(9\) 0 0
\(10\) −3.58207 + 2.60253i −1.13275 + 0.822991i
\(11\) −0.369033 + 0.602207i −0.111268 + 0.181572i −0.903427 0.428742i \(-0.858957\pi\)
0.792159 + 0.610314i \(0.208957\pi\)
\(12\) 0 0
\(13\) 0.346766 + 4.40607i 0.0961755 + 1.22203i 0.835811 + 0.549017i \(0.184998\pi\)
−0.739635 + 0.673008i \(0.765002\pi\)
\(14\) 0.799793 1.93087i 0.213754 0.516047i
\(15\) 0 0
\(16\) 1.17480 + 3.61567i 0.293701 + 0.903918i
\(17\) 0.0916972 + 0.381946i 0.0222398 + 0.0926356i 0.982386 0.186863i \(-0.0598319\pi\)
−0.960146 + 0.279498i \(0.909832\pi\)
\(18\) 0 0
\(19\) 0.318106 4.04192i 0.0729786 0.927281i −0.846054 0.533098i \(-0.821028\pi\)
0.919032 0.394183i \(-0.128972\pi\)
\(20\) 0.270511 + 0.137832i 0.0604880 + 0.0308202i
\(21\) 0 0
\(22\) −0.971911 0.0764911i −0.207212 0.0163080i
\(23\) 1.07861 3.31961i 0.224905 0.692187i −0.773396 0.633923i \(-0.781444\pi\)
0.998301 0.0582639i \(-0.0185565\pi\)
\(24\) 0 0
\(25\) −5.03024 + 1.63442i −1.00605 + 0.326885i
\(26\) −5.20171 + 3.18761i −1.02014 + 0.625142i
\(27\) 0 0
\(28\) −0.142864 + 0.0112437i −0.0269988 + 0.00212485i
\(29\) −1.58190 + 6.58910i −0.293752 + 1.22357i 0.608918 + 0.793233i \(0.291604\pi\)
−0.902670 + 0.430333i \(0.858396\pi\)
\(30\) 0 0
\(31\) 0.487790 + 0.671385i 0.0876096 + 0.120584i 0.850572 0.525859i \(-0.176256\pi\)
−0.762962 + 0.646443i \(0.776256\pi\)
\(32\) 0.378272 0.378272i 0.0668696 0.0668696i
\(33\) 0 0
\(34\) −0.412291 + 0.352130i −0.0707073 + 0.0603897i
\(35\) 3.15416 3.69304i 0.533150 0.624238i
\(36\) 0 0
\(37\) −7.31688 5.31603i −1.20289 0.873949i −0.208322 0.978060i \(-0.566800\pi\)
−0.994566 + 0.104111i \(0.966800\pi\)
\(38\) 5.17049 2.14169i 0.838764 0.347428i
\(39\) 0 0
\(40\) 9.27444i 1.46642i
\(41\) 6.26427 1.32625i 0.978314 0.207126i
\(42\) 0 0
\(43\) 5.53886 2.82219i 0.844668 0.430380i 0.0225831 0.999745i \(-0.492811\pi\)
0.822085 + 0.569365i \(0.192811\pi\)
\(44\) 0.0255820 + 0.0617604i 0.00385663 + 0.00931072i
\(45\) 0 0
\(46\) 4.75870 0.753704i 0.701632 0.111128i
\(47\) −6.09893 5.20898i −0.889620 0.759807i 0.0819309 0.996638i \(-0.473891\pi\)
−0.971551 + 0.236831i \(0.923891\pi\)
\(48\) 0 0
\(49\) 0.736423 4.64959i 0.105203 0.664227i
\(50\) −5.16244 5.16244i −0.730079 0.730079i
\(51\) 0 0
\(52\) 0.356675 + 0.218571i 0.0494620 + 0.0303103i
\(53\) −6.54598 1.57155i −0.899160 0.215869i −0.242585 0.970130i \(-0.577995\pi\)
−0.656575 + 0.754261i \(0.727995\pi\)
\(54\) 0 0
\(55\) −2.09307 0.866979i −0.282230 0.116903i
\(56\) −2.28736 3.73263i −0.305661 0.498793i
\(57\) 0 0
\(58\) −9.09523 + 2.18357i −1.19426 + 0.286717i
\(59\) 13.3068 + 4.32366i 1.73240 + 0.562892i 0.993794 0.111241i \(-0.0354824\pi\)
0.738610 + 0.674133i \(0.235482\pi\)
\(60\) 0 0
\(61\) 5.69224 11.1716i 0.728816 1.43038i −0.167000 0.985957i \(-0.553408\pi\)
0.895816 0.444425i \(-0.146592\pi\)
\(62\) −0.520054 + 1.02066i −0.0660469 + 0.129624i
\(63\) 0 0
\(64\) 7.93363 + 2.57779i 0.991704 + 0.322224i
\(65\) −13.7852 + 3.30953i −1.70984 + 0.410497i
\(66\) 0 0
\(67\) 1.09943 + 1.79411i 0.134317 + 0.219186i 0.912726 0.408572i \(-0.133973\pi\)
−0.778409 + 0.627757i \(0.783973\pi\)
\(68\) 0.0343479 + 0.0142274i 0.00416530 + 0.00172532i
\(69\) 0 0
\(70\) 6.51866 + 1.56499i 0.779128 + 0.187052i
\(71\) −7.80591 4.78347i −0.926392 0.567694i −0.0245208 0.999699i \(-0.507806\pi\)
−0.901871 + 0.432006i \(0.857806\pi\)
\(72\) 0 0
\(73\) −0.723298 0.723298i −0.0846557 0.0846557i 0.663511 0.748167i \(-0.269066\pi\)
−0.748167 + 0.663511i \(0.769066\pi\)
\(74\) 1.95294 12.3304i 0.227024 1.43338i
\(75\) 0 0
\(76\) −0.291802 0.249223i −0.0334720 0.0285878i
\(77\) 1.05621 0.167287i 0.120366 0.0190641i
\(78\) 0 0
\(79\) −4.02725 9.72264i −0.453101 1.09388i −0.971137 0.238523i \(-0.923337\pi\)
0.518036 0.855359i \(-0.326663\pi\)
\(80\) −10.8656 + 5.53629i −1.21481 + 0.618976i
\(81\) 0 0
\(82\) 5.55674 + 6.87329i 0.613639 + 0.759027i
\(83\) 2.39159i 0.262511i 0.991349 + 0.131255i \(0.0419008\pi\)
−0.991349 + 0.131255i \(0.958099\pi\)
\(84\) 0 0
\(85\) −1.16406 + 0.482169i −0.126260 + 0.0522986i
\(86\) 6.94200 + 5.04366i 0.748575 + 0.543872i
\(87\) 0 0
\(88\) −1.32624 + 1.55283i −0.141378 + 0.165532i
\(89\) −7.24033 + 6.18383i −0.767474 + 0.655484i −0.944422 0.328736i \(-0.893377\pi\)
0.176948 + 0.984220i \(0.443377\pi\)
\(90\) 0 0
\(91\) 4.73182 4.73182i 0.496029 0.496029i
\(92\) −0.194184 0.267272i −0.0202451 0.0278650i
\(93\) 0 0
\(94\) 2.58453 10.7653i 0.266573 1.11036i
\(95\) 12.9651 1.02038i 1.33019 0.104689i
\(96\) 0 0
\(97\) 15.2104 9.32092i 1.54438 0.946396i 0.550629 0.834750i \(-0.314388\pi\)
0.993748 0.111646i \(-0.0356122\pi\)
\(98\) 6.18000 2.00800i 0.624274 0.202839i
\(99\) 0 0
\(100\) −0.154696 + 0.476105i −0.0154696 + 0.0476105i
\(101\) 7.31744 + 0.575895i 0.728113 + 0.0573037i 0.437097 0.899414i \(-0.356007\pi\)
0.291016 + 0.956718i \(0.406007\pi\)
\(102\) 0 0
\(103\) −0.148091 0.0754562i −0.0145919 0.00743492i 0.446679 0.894694i \(-0.352606\pi\)
−0.461271 + 0.887259i \(0.652606\pi\)
\(104\) −1.00262 + 12.7394i −0.0983146 + 1.24921i
\(105\) 0 0
\(106\) −2.16928 9.03571i −0.210699 0.877626i
\(107\) −2.63626 8.11358i −0.254857 0.784369i −0.993858 0.110665i \(-0.964702\pi\)
0.739001 0.673705i \(-0.235298\pi\)
\(108\) 0 0
\(109\) 2.27143 5.48372i 0.217564 0.525245i −0.776985 0.629519i \(-0.783252\pi\)
0.994549 + 0.104274i \(0.0332519\pi\)
\(110\) −0.245358 3.11756i −0.0233939 0.297248i
\(111\) 0 0
\(112\) 3.00759 4.90794i 0.284190 0.463756i
\(113\) −6.41054 + 4.65753i −0.603053 + 0.438144i −0.846961 0.531655i \(-0.821570\pi\)
0.243908 + 0.969798i \(0.421570\pi\)
\(114\) 0 0
\(115\) 11.0583 + 1.75147i 1.03120 + 0.163325i
\(116\) 0.416537 + 0.487702i 0.0386745 + 0.0452820i
\(117\) 0 0
\(118\) 3.02126 + 19.0755i 0.278130 + 1.75604i
\(119\) 0.349574 0.481148i 0.0320454 0.0441068i
\(120\) 0 0
\(121\) 4.76743 + 9.35660i 0.433403 + 0.850600i
\(122\) 17.3071 1.56691
\(123\) 0 0
\(124\) 0.0785468 0.00705371
\(125\) −0.421008 0.826275i −0.0376561 0.0739043i
\(126\) 0 0
\(127\) −3.55138 + 4.88806i −0.315134 + 0.433745i −0.936974 0.349400i \(-0.886386\pi\)
0.621840 + 0.783145i \(0.286386\pi\)
\(128\) 1.63393 + 10.3162i 0.144420 + 0.911833i
\(129\) 0 0
\(130\) −12.7091 14.8804i −1.11466 1.30510i
\(131\) −15.8526 2.51081i −1.38505 0.219371i −0.580987 0.813913i \(-0.697333\pi\)
−0.804065 + 0.594542i \(0.797333\pi\)
\(132\) 0 0
\(133\) −4.96634 + 3.60826i −0.430637 + 0.312876i
\(134\) −1.51760 + 2.47649i −0.131100 + 0.213936i
\(135\) 0 0
\(136\) 0.0891072 + 1.13221i 0.00764088 + 0.0970866i
\(137\) −2.32085 + 5.60304i −0.198284 + 0.478700i −0.991479 0.130268i \(-0.958416\pi\)
0.793195 + 0.608968i \(0.208416\pi\)
\(138\) 0 0
\(139\) 6.81303 + 20.9684i 0.577874 + 1.77851i 0.626178 + 0.779680i \(0.284618\pi\)
−0.0483036 + 0.998833i \(0.515382\pi\)
\(140\) −0.107310 0.446977i −0.00906932 0.0377764i
\(141\) 0 0
\(142\) 0.991491 12.5981i 0.0832041 1.05721i
\(143\) −2.78134 1.41716i −0.232587 0.118509i
\(144\) 0 0
\(145\) −21.6692 1.70540i −1.79953 0.141626i
\(146\) 0.436317 1.34285i 0.0361099 0.111135i
\(147\) 0 0
\(148\) −0.814121 + 0.264524i −0.0669204 + 0.0217437i
\(149\) −1.86668 + 1.14390i −0.152924 + 0.0937121i −0.596855 0.802349i \(-0.703583\pi\)
0.443931 + 0.896061i \(0.353583\pi\)
\(150\) 0 0
\(151\) −18.0731 + 1.42238i −1.47077 + 0.115752i −0.788357 0.615218i \(-0.789068\pi\)
−0.682409 + 0.730970i \(0.739068\pi\)
\(152\) 2.73661 11.3988i 0.221968 0.924565i
\(153\) 0 0
\(154\) 0.867634 + 1.19420i 0.0699159 + 0.0962310i
\(155\) −1.88229 + 1.88229i −0.151190 + 0.151190i
\(156\) 0 0
\(157\) −7.65640 + 6.53918i −0.611047 + 0.521884i −0.900244 0.435386i \(-0.856612\pi\)
0.289197 + 0.957270i \(0.406612\pi\)
\(158\) 9.43410 11.0459i 0.750537 0.878766i
\(159\) 0 0
\(160\) 1.38824 + 1.00862i 0.109750 + 0.0797382i
\(161\) −4.88255 + 2.02242i −0.384799 + 0.159389i
\(162\) 0 0
\(163\) 15.6240i 1.22377i 0.790948 + 0.611883i \(0.209588\pi\)
−0.790948 + 0.611883i \(0.790412\pi\)
\(164\) 0.246946 0.553453i 0.0192833 0.0432175i
\(165\) 0 0
\(166\) −2.94140 + 1.49872i −0.228297 + 0.116323i
\(167\) −4.82565 11.6501i −0.373420 0.901515i −0.993166 0.116713i \(-0.962764\pi\)
0.619746 0.784802i \(-0.287236\pi\)
\(168\) 0 0
\(169\) −6.45330 + 1.02210i −0.496407 + 0.0786232i
\(170\) −1.32249 1.12951i −0.101430 0.0866297i
\(171\) 0 0
\(172\) 0.0920420 0.581131i 0.00701814 0.0443108i
\(173\) −5.02432 5.02432i −0.381992 0.381992i 0.489828 0.871819i \(-0.337060\pi\)
−0.871819 + 0.489828i \(0.837060\pi\)
\(174\) 0 0
\(175\) 6.82807 + 4.18425i 0.516154 + 0.316299i
\(176\) −2.61092 0.626828i −0.196806 0.0472489i
\(177\) 0 0
\(178\) −12.1427 5.02968i −0.910135 0.376990i
\(179\) 3.95369 + 6.45184i 0.295513 + 0.482233i 0.965594 0.260055i \(-0.0837406\pi\)
−0.670081 + 0.742288i \(0.733741\pi\)
\(180\) 0 0
\(181\) −14.0815 + 3.38067i −1.04667 + 0.251283i −0.720086 0.693885i \(-0.755898\pi\)
−0.326585 + 0.945168i \(0.605898\pi\)
\(182\) 8.78490 + 2.85439i 0.651180 + 0.211581i
\(183\) 0 0
\(184\) 4.58170 8.99209i 0.337767 0.662906i
\(185\) 13.1706 25.8487i 0.968318 1.90043i
\(186\) 0 0
\(187\) −0.263850 0.0857300i −0.0192946 0.00626920i
\(188\) −0.738166 + 0.177218i −0.0538363 + 0.0129249i
\(189\) 0 0
\(190\) 9.37973 + 15.3063i 0.680477 + 1.11044i
\(191\) −10.5888 4.38602i −0.766178 0.317361i −0.0348546 0.999392i \(-0.511097\pi\)
−0.731323 + 0.682031i \(0.761097\pi\)
\(192\) 0 0
\(193\) −26.3732 6.33165i −1.89838 0.455762i −0.999858 0.0168424i \(-0.994639\pi\)
−0.898526 0.438919i \(-0.855361\pi\)
\(194\) 20.9955 + 12.8661i 1.50739 + 0.923730i
\(195\) 0 0
\(196\) −0.315061 0.315061i −0.0225043 0.0225043i
\(197\) −2.39369 + 15.1132i −0.170543 + 1.07677i 0.742781 + 0.669535i \(0.233507\pi\)
−0.913324 + 0.407234i \(0.866493\pi\)
\(198\) 0 0
\(199\) 4.94666 + 4.22484i 0.350659 + 0.299491i 0.807278 0.590171i \(-0.200940\pi\)
−0.456619 + 0.889662i \(0.650940\pi\)
\(200\) −15.1043 + 2.39229i −1.06804 + 0.169160i
\(201\) 0 0
\(202\) 3.87728 + 9.36059i 0.272805 + 0.658609i
\(203\) 9.14168 4.65792i 0.641620 0.326922i
\(204\) 0 0
\(205\) 7.34513 + 19.1808i 0.513006 + 1.33964i
\(206\) 0.229422i 0.0159846i
\(207\) 0 0
\(208\) −15.5235 + 6.43006i −1.07636 + 0.445845i
\(209\) 2.31668 + 1.68317i 0.160248 + 0.116427i
\(210\) 0 0
\(211\) 16.0303 18.7690i 1.10357 1.29211i 0.150749 0.988572i \(-0.451831\pi\)
0.952819 0.303540i \(-0.0981686\pi\)
\(212\) −0.484511 + 0.413811i −0.0332763 + 0.0284207i
\(213\) 0 0
\(214\) 8.32681 8.32681i 0.569209 0.569209i
\(215\) 11.7205 + 16.1319i 0.799333 + 1.10019i
\(216\) 0 0
\(217\) 0.293325 1.22179i 0.0199122 0.0829403i
\(218\) 8.16783 0.642822i 0.553195 0.0435374i
\(219\) 0 0
\(220\) −0.182831 + 0.112039i −0.0123264 + 0.00755365i
\(221\) −1.65109 + 0.536470i −0.111064 + 0.0360869i
\(222\) 0 0
\(223\) −6.30536 + 19.4059i −0.422238 + 1.29952i 0.483376 + 0.875413i \(0.339410\pi\)
−0.905614 + 0.424103i \(0.860590\pi\)
\(224\) −0.807473 0.0635495i −0.0539516 0.00424608i
\(225\) 0 0
\(226\) −9.74553 4.96560i −0.648263 0.330307i
\(227\) −2.21227 + 28.1096i −0.146834 + 1.86570i 0.278206 + 0.960522i \(0.410260\pi\)
−0.425039 + 0.905175i \(0.639740\pi\)
\(228\) 0 0
\(229\) 1.98635 + 8.27376i 0.131262 + 0.546745i 0.998782 + 0.0493430i \(0.0157128\pi\)
−0.867520 + 0.497402i \(0.834287\pi\)
\(230\) 4.77573 + 14.6982i 0.314902 + 0.969170i
\(231\) 0 0
\(232\) −7.49779 + 18.1013i −0.492254 + 1.18841i
\(233\) −0.256186 3.25515i −0.0167833 0.213252i −0.999590 0.0286170i \(-0.990890\pi\)
0.982807 0.184635i \(-0.0591103\pi\)
\(234\) 0 0
\(235\) 13.4426 21.9363i 0.876896 1.43096i
\(236\) 1.07137 0.778399i 0.0697405 0.0506694i
\(237\) 0 0
\(238\) 0.810827 + 0.128422i 0.0525581 + 0.00832439i
\(239\) 10.4264 + 12.2078i 0.674430 + 0.789656i 0.987083 0.160212i \(-0.0512177\pi\)
−0.312653 + 0.949867i \(0.601218\pi\)
\(240\) 0 0
\(241\) −1.80293 11.3833i −0.116137 0.733260i −0.975189 0.221372i \(-0.928946\pi\)
0.859052 0.511888i \(-0.171054\pi\)
\(242\) −8.52008 + 11.7269i −0.547691 + 0.753832i
\(243\) 0 0
\(244\) −0.538763 1.05738i −0.0344907 0.0676919i
\(245\) 15.1002 0.964718
\(246\) 0 0
\(247\) 17.9193 1.14018
\(248\) 1.08933 + 2.13793i 0.0691725 + 0.135759i
\(249\) 0 0
\(250\) 0.752402 1.03559i 0.0475861 0.0654967i
\(251\) −3.94201 24.8888i −0.248817 1.57097i −0.723192 0.690647i \(-0.757326\pi\)
0.474375 0.880323i \(-0.342674\pi\)
\(252\) 0 0
\(253\) 1.60105 + 1.87459i 0.100657 + 0.117855i
\(254\) −8.23733 1.30466i −0.516856 0.0818619i
\(255\) 0 0
\(256\) 1.83356 1.33216i 0.114597 0.0832598i
\(257\) −4.78295 + 7.80507i −0.298352 + 0.486867i −0.966327 0.257317i \(-0.917161\pi\)
0.667975 + 0.744184i \(0.267161\pi\)
\(258\) 0 0
\(259\) 1.07439 + 13.6514i 0.0667593 + 0.848258i
\(260\) −0.513494 + 1.23968i −0.0318456 + 0.0768820i
\(261\) 0 0
\(262\) −6.84623 21.0705i −0.422962 1.30174i
\(263\) −2.10293 8.75934i −0.129672 0.540124i −0.998951 0.0458009i \(-0.985416\pi\)
0.869278 0.494323i \(-0.164584\pi\)
\(264\) 0 0
\(265\) 1.69424 21.5274i 0.104076 1.32242i
\(266\) −7.55001 3.84692i −0.462921 0.235870i
\(267\) 0 0
\(268\) 0.198544 + 0.0156258i 0.0121280 + 0.000954496i
\(269\) 4.64304 14.2898i 0.283091 0.871266i −0.703873 0.710326i \(-0.748548\pi\)
0.986964 0.160940i \(-0.0514525\pi\)
\(270\) 0 0
\(271\) −1.08985 + 0.354114i −0.0662038 + 0.0215109i −0.341932 0.939725i \(-0.611081\pi\)
0.275728 + 0.961236i \(0.411081\pi\)
\(272\) −1.27327 + 0.780259i −0.0772031 + 0.0473101i
\(273\) 0 0
\(274\) −8.34555 + 0.656809i −0.504173 + 0.0396793i
\(275\) 0.872062 3.63240i 0.0525873 0.219042i
\(276\) 0 0
\(277\) −9.66393 13.3013i −0.580649 0.799195i 0.413117 0.910678i \(-0.364440\pi\)
−0.993766 + 0.111483i \(0.964440\pi\)
\(278\) −21.5194 + 21.5194i −1.29065 + 1.29065i
\(279\) 0 0
\(280\) 10.6778 9.11973i 0.638123 0.545008i
\(281\) −0.651019 + 0.762246i −0.0388366 + 0.0454718i −0.779484 0.626422i \(-0.784519\pi\)
0.740648 + 0.671894i \(0.234519\pi\)
\(282\) 0 0
\(283\) 21.1156 + 15.3414i 1.25519 + 0.911952i 0.998511 0.0545438i \(-0.0173705\pi\)
0.256683 + 0.966496i \(0.417370\pi\)
\(284\) −0.800549 + 0.331598i −0.0475038 + 0.0196767i
\(285\) 0 0
\(286\) 4.30884i 0.254787i
\(287\) −7.68672 5.90804i −0.453732 0.348741i
\(288\) 0 0
\(289\) 15.0096 7.64779i 0.882920 0.449870i
\(290\) −11.4818 27.7196i −0.674236 1.62775i
\(291\) 0 0
\(292\) −0.0956240 + 0.0151454i −0.00559597 + 0.000886315i
\(293\) 14.0903 + 12.0343i 0.823166 + 0.703050i 0.957672 0.287863i \(-0.0929448\pi\)
−0.134506 + 0.990913i \(0.542945\pi\)
\(294\) 0 0
\(295\) −7.02086 + 44.3279i −0.408770 + 2.58087i
\(296\) −18.4906 18.4906i −1.07475 1.07475i
\(297\) 0 0
\(298\) −2.57666 1.57898i −0.149262 0.0914678i
\(299\) 15.0005 + 3.60130i 0.867500 + 0.208268i
\(300\) 0 0
\(301\) −8.69571 3.60188i −0.501212 0.207609i
\(302\) −13.0751 21.3367i −0.752388 1.22779i
\(303\) 0 0
\(304\) 14.9880 3.59830i 0.859620 0.206377i
\(305\) 38.2500 + 12.4282i 2.19019 + 0.711635i
\(306\) 0 0
\(307\) 5.90452 11.5883i 0.336989 0.661378i −0.658873 0.752254i \(-0.728967\pi\)
0.995862 + 0.0908759i \(0.0289667\pi\)
\(308\) 0.0459506 0.0901832i 0.00261828 0.00513866i
\(309\) 0 0
\(310\) −3.49459 1.13546i −0.198479 0.0644899i
\(311\) 26.3432 6.32443i 1.49378 0.358626i 0.597414 0.801933i \(-0.296195\pi\)
0.896370 + 0.443308i \(0.146195\pi\)
\(312\) 0 0
\(313\) 9.09284 + 14.8382i 0.513958 + 0.838703i 0.999367 0.0355842i \(-0.0113292\pi\)
−0.485409 + 0.874287i \(0.661329\pi\)
\(314\) −12.8405 5.31871i −0.724631 0.300152i
\(315\) 0 0
\(316\) −0.968534 0.232524i −0.0544843 0.0130805i
\(317\) −11.3149 6.93375i −0.635506 0.389438i 0.167107 0.985939i \(-0.446557\pi\)
−0.802613 + 0.596500i \(0.796557\pi\)
\(318\) 0 0
\(319\) −3.38423 3.38423i −0.189480 0.189480i
\(320\) −4.18588 + 26.4286i −0.233998 + 1.47740i
\(321\) 0 0
\(322\) −5.54708 4.73765i −0.309127 0.264019i
\(323\) 1.57297 0.249133i 0.0875222 0.0138622i
\(324\) 0 0
\(325\) −8.94570 21.5968i −0.496218 1.19798i
\(326\) −19.2159 + 9.79099i −1.06427 + 0.542273i
\(327\) 0 0
\(328\) 18.4890 0.954072i 1.02088 0.0526798i
\(329\) 12.1439i 0.669515i
\(330\) 0 0
\(331\) 19.3900 8.03161i 1.06577 0.441457i 0.220275 0.975438i \(-0.429304\pi\)
0.845497 + 0.533980i \(0.179304\pi\)
\(332\) 0.183129 + 0.133051i 0.0100505 + 0.00730214i
\(333\) 0 0
\(334\) 11.3044 13.2358i 0.618550 0.724229i
\(335\) −5.13237 + 4.38346i −0.280411 + 0.239494i
\(336\) 0 0
\(337\) −8.35710 + 8.35710i −0.455240 + 0.455240i −0.897089 0.441849i \(-0.854323\pi\)
0.441849 + 0.897089i \(0.354323\pi\)
\(338\) −5.30112 7.29637i −0.288343 0.396870i
\(339\) 0 0
\(340\) −0.0278394 + 0.115959i −0.00150980 + 0.00628878i
\(341\) −0.584323 + 0.0459872i −0.0316429 + 0.00249035i
\(342\) 0 0
\(343\) −15.1141 + 9.26192i −0.816084 + 0.500097i
\(344\) 17.0940 5.55419i 0.921648 0.299462i
\(345\) 0 0
\(346\) 3.03083 9.32794i 0.162939 0.501473i
\(347\) −14.5206 1.14280i −0.779507 0.0613485i −0.317539 0.948245i \(-0.602856\pi\)
−0.461968 + 0.886897i \(0.652856\pi\)
\(348\) 0 0
\(349\) −8.84082 4.50462i −0.473238 0.241127i 0.201070 0.979577i \(-0.435558\pi\)
−0.674308 + 0.738450i \(0.735558\pi\)
\(350\) −0.867288 + 11.0199i −0.0463585 + 0.589040i
\(351\) 0 0
\(352\) 0.0882031 + 0.367392i 0.00470124 + 0.0195821i
\(353\) −1.74660 5.37548i −0.0929621 0.286108i 0.893755 0.448555i \(-0.148061\pi\)
−0.986717 + 0.162447i \(0.948061\pi\)
\(354\) 0 0
\(355\) 11.2379 27.1308i 0.596448 1.43995i
\(356\) 0.0707084 + 0.898435i 0.00374754 + 0.0476170i
\(357\) 0 0
\(358\) −5.45746 + 8.90577i −0.288436 + 0.470684i
\(359\) −16.0221 + 11.6408i −0.845615 + 0.614375i −0.923934 0.382553i \(-0.875045\pi\)
0.0783183 + 0.996928i \(0.475045\pi\)
\(360\) 0 0
\(361\) 2.53013 + 0.400733i 0.133165 + 0.0210912i
\(362\) −12.9822 15.2003i −0.682332 0.798908i
\(363\) 0 0
\(364\) −0.0990809 0.625572i −0.00519325 0.0327889i
\(365\) 1.92859 2.65448i 0.100947 0.138942i
\(366\) 0 0
\(367\) 4.28343 + 8.40670i 0.223593 + 0.438826i 0.975365 0.220597i \(-0.0708005\pi\)
−0.751772 + 0.659423i \(0.770801\pi\)
\(368\) 13.2698 0.691736
\(369\) 0 0
\(370\) 40.0447 2.08182
\(371\) 4.62743 + 9.08185i 0.240244 + 0.471506i
\(372\) 0 0
\(373\) −11.5758 + 15.9328i −0.599373 + 0.824967i −0.995651 0.0931642i \(-0.970302\pi\)
0.396277 + 0.918131i \(0.370302\pi\)
\(374\) −0.0599060 0.378232i −0.00309767 0.0195579i
\(375\) 0 0
\(376\) −15.0609 17.6341i −0.776707 0.909407i
\(377\) −29.5806 4.68511i −1.52348 0.241296i
\(378\) 0 0
\(379\) 30.6033 22.2346i 1.57199 1.14212i 0.646765 0.762689i \(-0.276121\pi\)
0.925222 0.379426i \(-0.123879\pi\)
\(380\) 0.643157 1.04954i 0.0329933 0.0538401i
\(381\) 0 0
\(382\) −1.24126 15.7717i −0.0635082 0.806948i
\(383\) 10.7674 25.9947i 0.550186 1.32827i −0.367153 0.930161i \(-0.619667\pi\)
0.917339 0.398107i \(-0.130333\pi\)
\(384\) 0 0
\(385\) 1.05999 + 3.26231i 0.0540220 + 0.166263i
\(386\) −8.73985 36.4041i −0.444847 1.85292i
\(387\) 0 0
\(388\) 0.132474 1.68324i 0.00672536 0.0854538i
\(389\) 1.70386 + 0.868162i 0.0863893 + 0.0440175i 0.496651 0.867950i \(-0.334563\pi\)
−0.410262 + 0.911968i \(0.634563\pi\)
\(390\) 0 0
\(391\) 1.36682 + 0.107571i 0.0691230 + 0.00544010i
\(392\) 4.20606 12.9449i 0.212438 0.653818i
\(393\) 0 0
\(394\) −20.0877 + 6.52688i −1.01200 + 0.328819i
\(395\) 28.7822 17.6377i 1.44819 0.887450i
\(396\) 0 0
\(397\) 15.5147 1.22104i 0.778663 0.0612821i 0.317103 0.948391i \(-0.397290\pi\)
0.461560 + 0.887109i \(0.347290\pi\)
\(398\) −2.09623 + 8.73143i −0.105075 + 0.437667i
\(399\) 0 0
\(400\) −11.8191 16.2676i −0.590954 0.813379i
\(401\) 2.51506 2.51506i 0.125596 0.125596i −0.641515 0.767111i \(-0.721694\pi\)
0.767111 + 0.641515i \(0.221694\pi\)
\(402\) 0 0
\(403\) −2.78902 + 2.38205i −0.138931 + 0.118658i
\(404\) 0.451190 0.528275i 0.0224475 0.0262827i
\(405\) 0 0
\(406\) 11.4575 + 8.32437i 0.568627 + 0.413131i
\(407\) 5.90152 2.44449i 0.292527 0.121169i
\(408\) 0 0
\(409\) 7.86984i 0.389138i 0.980889 + 0.194569i \(0.0623309\pi\)
−0.980889 + 0.194569i \(0.937669\pi\)
\(410\) −18.9874 + 21.0536i −0.937723 + 1.03977i
\(411\) 0 0
\(412\) −0.0140166 + 0.00714183i −0.000690550 + 0.000351853i
\(413\) −8.10697 19.5720i −0.398918 0.963073i
\(414\) 0 0
\(415\) −7.57696 + 1.20007i −0.371938 + 0.0589092i
\(416\) 1.79786 + 1.53552i 0.0881475 + 0.0752851i
\(417\) 0 0
\(418\) −0.618342 + 3.90406i −0.0302441 + 0.190954i
\(419\) −23.0073 23.0073i −1.12398 1.12398i −0.991137 0.132844i \(-0.957589\pi\)
−0.132844 0.991137i \(-0.542411\pi\)
\(420\) 0 0
\(421\) 33.6837 + 20.6414i 1.64165 + 1.00600i 0.962226 + 0.272251i \(0.0877680\pi\)
0.679419 + 0.733751i \(0.262232\pi\)
\(422\) 33.1295 + 7.95369i 1.61272 + 0.387180i
\(423\) 0 0
\(424\) −17.9828 7.44872i −0.873322 0.361742i
\(425\) −1.08552 1.77141i −0.0526555 0.0859259i
\(426\) 0 0
\(427\) −18.4594 + 4.43171i −0.893314 + 0.214466i
\(428\) −0.767940 0.249519i −0.0371198 0.0120609i
\(429\) 0 0
\(430\) −12.4958 + 24.5243i −0.602599 + 1.18267i
\(431\) 5.13903 10.0859i 0.247539 0.485822i −0.733486 0.679704i \(-0.762108\pi\)
0.981025 + 0.193883i \(0.0621081\pi\)
\(432\) 0 0
\(433\) −34.9045 11.3412i −1.67740 0.545021i −0.692999 0.720939i \(-0.743711\pi\)
−0.984405 + 0.175917i \(0.943711\pi\)
\(434\) 1.68649 0.404890i 0.0809540 0.0194353i
\(435\) 0 0
\(436\) −0.293535 0.479005i −0.0140578 0.0229402i
\(437\) −13.0745 5.41564i −0.625438 0.259065i
\(438\) 0 0
\(439\) −8.50499 2.04187i −0.405921 0.0974530i 0.0253430 0.999679i \(-0.491932\pi\)
−0.431264 + 0.902226i \(0.641932\pi\)
\(440\) −5.58513 3.42257i −0.266261 0.163165i
\(441\) 0 0
\(442\) −1.69448 1.69448i −0.0805981 0.0805981i
\(443\) −4.22809 + 26.6951i −0.200883 + 1.26832i 0.656768 + 0.754092i \(0.271923\pi\)
−0.857651 + 0.514232i \(0.828077\pi\)
\(444\) 0 0
\(445\) −23.2245 19.8356i −1.10095 0.940299i
\(446\) −27.8186 + 4.40603i −1.31725 + 0.208632i
\(447\) 0 0
\(448\) −4.83343 11.6689i −0.228358 0.551305i
\(449\) −6.77390 + 3.45148i −0.319680 + 0.162885i −0.606466 0.795110i \(-0.707413\pi\)
0.286785 + 0.957995i \(0.407413\pi\)
\(450\) 0 0
\(451\) −1.51304 + 4.26182i −0.0712464 + 0.200681i
\(452\) 0.749984i 0.0352763i
\(453\) 0 0
\(454\) −35.9582 + 14.8944i −1.68760 + 0.699027i
\(455\) 17.3656 + 12.6168i 0.814111 + 0.591486i
\(456\) 0 0
\(457\) −7.88006 + 9.22637i −0.368614 + 0.431591i −0.913450 0.406951i \(-0.866592\pi\)
0.544836 + 0.838543i \(0.316592\pi\)
\(458\) −8.93109 + 7.62787i −0.417322 + 0.356427i
\(459\) 0 0
\(460\) 0.749324 0.749324i 0.0349374 0.0349374i
\(461\) −11.4128 15.7084i −0.531547 0.731612i 0.455818 0.890073i \(-0.349347\pi\)
−0.987365 + 0.158461i \(0.949347\pi\)
\(462\) 0 0
\(463\) −3.12164 + 13.0026i −0.145075 + 0.604281i 0.851700 + 0.524030i \(0.175572\pi\)
−0.996775 + 0.0802508i \(0.974428\pi\)
\(464\) −25.6825 + 2.02125i −1.19228 + 0.0938344i
\(465\) 0 0
\(466\) 3.84296 2.35497i 0.178021 0.109092i
\(467\) 1.72751 0.561303i 0.0799397 0.0259740i −0.268774 0.963203i \(-0.586619\pi\)
0.348714 + 0.937229i \(0.386619\pi\)
\(468\) 0 0
\(469\) 0.984501 3.02998i 0.0454600 0.139912i
\(470\) 35.4033 + 2.78630i 1.63303 + 0.128522i
\(471\) 0 0
\(472\) 36.0453 + 18.3660i 1.65912 + 0.845363i
\(473\) −0.344479 + 4.37702i −0.0158392 + 0.201256i
\(474\) 0 0
\(475\) 5.00606 + 20.8518i 0.229694 + 0.956744i
\(476\) −0.0173947 0.0535355i −0.000797286 0.00245380i
\(477\) 0 0
\(478\) −8.48044 + 20.4736i −0.387886 + 0.936441i
\(479\) −1.51817 19.2901i −0.0693668 0.881389i −0.928905 0.370317i \(-0.879249\pi\)
0.859538 0.511071i \(-0.170751\pi\)
\(480\) 0 0
\(481\) 20.8856 34.0821i 0.952300 1.55401i
\(482\) 12.8704 9.35088i 0.586230 0.425921i
\(483\) 0 0
\(484\) 0.981684 + 0.155483i 0.0446220 + 0.00706743i
\(485\) 37.1627 + 43.5119i 1.68747 + 1.97577i
\(486\) 0 0
\(487\) 0.174854 + 1.10399i 0.00792339 + 0.0500263i 0.991333 0.131371i \(-0.0419380\pi\)
−0.983410 + 0.181397i \(0.941938\pi\)
\(488\) 21.3085 29.3287i 0.964592 1.32765i
\(489\) 0 0
\(490\) 9.46276 + 18.5717i 0.427484 + 0.838984i
\(491\) −38.4365 −1.73461 −0.867307 0.497773i \(-0.834151\pi\)
−0.867307 + 0.497773i \(0.834151\pi\)
\(492\) 0 0
\(493\) −2.66174 −0.119879
\(494\) 11.2294 + 22.0389i 0.505234 + 0.991577i
\(495\) 0 0
\(496\) −1.85445 + 2.55243i −0.0832673 + 0.114608i
\(497\) 2.16841 + 13.6908i 0.0972663 + 0.614115i
\(498\) 0 0
\(499\) 18.3489 + 21.4838i 0.821408 + 0.961745i 0.999753 0.0222231i \(-0.00707442\pi\)
−0.178345 + 0.983968i \(0.557074\pi\)
\(500\) −0.0866919 0.0137306i −0.00387698 0.000614053i
\(501\) 0 0
\(502\) 28.1404 20.4452i 1.25597 0.912513i
\(503\) 3.57462 5.83325i 0.159384 0.260092i −0.762972 0.646431i \(-0.776261\pi\)
0.922357 + 0.386340i \(0.126261\pi\)
\(504\) 0 0
\(505\) 1.84728 + 23.4719i 0.0822028 + 1.04449i
\(506\) −1.30223 + 3.14387i −0.0578913 + 0.139762i
\(507\) 0 0
\(508\) 0.176716 + 0.543876i 0.00784050 + 0.0241306i
\(509\) 2.63332 + 10.9686i 0.116720 + 0.486173i 0.999855 + 0.0170539i \(0.00542868\pi\)
−0.883135 + 0.469120i \(0.844571\pi\)
\(510\) 0 0
\(511\) −0.121514 + 1.54398i −0.00537546 + 0.0683017i
\(512\) 21.4002 + 10.9040i 0.945765 + 0.481891i
\(513\) 0 0
\(514\) −12.5967 0.991384i −0.555618 0.0437281i
\(515\) 0.164748 0.507041i 0.00725965 0.0223429i
\(516\) 0 0
\(517\) 5.38759 1.75053i 0.236946 0.0769883i
\(518\) −16.1165 + 9.87623i −0.708120 + 0.433937i
\(519\) 0 0
\(520\) −40.8639 + 3.21606i −1.79200 + 0.141033i
\(521\) −4.80365 + 20.0086i −0.210452 + 0.876595i 0.762760 + 0.646682i \(0.223844\pi\)
−0.973211 + 0.229912i \(0.926156\pi\)
\(522\) 0 0
\(523\) −9.41472 12.9583i −0.411677 0.566625i 0.551949 0.833878i \(-0.313884\pi\)
−0.963626 + 0.267253i \(0.913884\pi\)
\(524\) −1.07419 + 1.07419i −0.0469262 + 0.0469262i
\(525\) 0 0
\(526\) 9.45525 8.07554i 0.412268 0.352110i
\(527\) −0.211704 + 0.247873i −0.00922197 + 0.0107975i
\(528\) 0 0
\(529\) 8.75096 + 6.35794i 0.380476 + 0.276432i
\(530\) 27.5382 11.4067i 1.19618 0.495474i
\(531\) 0 0
\(532\) 0.581023i 0.0251906i
\(533\) 8.01580 + 27.1409i 0.347203 + 1.17560i
\(534\) 0 0
\(535\) 24.3824 12.4234i 1.05414 0.537112i
\(536\) 2.32821 + 5.62080i 0.100563 + 0.242781i
\(537\) 0 0
\(538\) 20.4846 3.24445i 0.883155 0.139878i
\(539\) 2.52825 + 2.15933i 0.108899 + 0.0930089i
\(540\) 0 0
\(541\) −0.622281 + 3.92893i −0.0267539 + 0.168918i −0.997448 0.0714026i \(-0.977252\pi\)
0.970694 + 0.240320i \(0.0772525\pi\)
\(542\) −1.11849 1.11849i −0.0480434 0.0480434i
\(543\) 0 0
\(544\) 0.179166 + 0.109793i 0.00768167 + 0.00470733i
\(545\) 18.5132 + 4.44461i 0.793016 + 0.190386i
\(546\) 0 0
\(547\) −38.8125 16.0766i −1.65950 0.687388i −0.661462 0.749979i \(-0.730064\pi\)
−0.998039 + 0.0625912i \(0.980064\pi\)
\(548\) 0.299922 + 0.489428i 0.0128120 + 0.0209073i
\(549\) 0 0
\(550\) 5.01396 1.20375i 0.213796 0.0513279i
\(551\) 26.1294 + 8.48997i 1.11315 + 0.361685i
\(552\) 0 0
\(553\) −7.23379 + 14.1971i −0.307612 + 0.603722i
\(554\) 10.3031 20.2210i 0.437738 0.859110i
\(555\) 0 0
\(556\) 1.98463 + 0.644845i 0.0841670 + 0.0273475i
\(557\) −32.7419 + 7.86064i −1.38732 + 0.333066i −0.857255 0.514892i \(-0.827832\pi\)
−0.530064 + 0.847958i \(0.677832\pi\)
\(558\) 0 0
\(559\) 14.3555 + 23.4260i 0.607171 + 0.990813i
\(560\) 17.0584 + 7.06580i 0.720847 + 0.298585i
\(561\) 0 0
\(562\) −1.34545 0.323015i −0.0567545 0.0136255i
\(563\) 26.4753 + 16.2241i 1.11580 + 0.683763i 0.953022 0.302900i \(-0.0979547\pi\)
0.162778 + 0.986663i \(0.447955\pi\)
\(564\) 0 0
\(565\) −17.9726 17.9726i −0.756113 0.756113i
\(566\) −5.63594 + 35.5839i −0.236896 + 1.49570i
\(567\) 0 0
\(568\) −20.1281 17.1910i −0.844555 0.721318i
\(569\) −9.29108 + 1.47156i −0.389502 + 0.0616911i −0.348114 0.937452i \(-0.613178\pi\)
−0.0413878 + 0.999143i \(0.513178\pi\)
\(570\) 0 0
\(571\) −9.53367 23.0163i −0.398972 0.963202i −0.987911 0.155025i \(-0.950454\pi\)
0.588939 0.808177i \(-0.299546\pi\)
\(572\) −0.263250 + 0.134132i −0.0110070 + 0.00560836i
\(573\) 0 0
\(574\) 2.44930 13.1562i 0.102232 0.549130i
\(575\) 18.4613i 0.769891i
\(576\) 0 0
\(577\) −4.84247 + 2.00582i −0.201595 + 0.0835033i −0.481196 0.876613i \(-0.659798\pi\)
0.279602 + 0.960116i \(0.409798\pi\)
\(578\) 18.8120 + 13.6677i 0.782475 + 0.568501i
\(579\) 0 0
\(580\) −1.33611 + 1.56439i −0.0554790 + 0.0649576i
\(581\) 2.75348 2.35169i 0.114234 0.0975647i
\(582\) 0 0
\(583\) 3.36208 3.36208i 0.139243 0.139243i
\(584\) −1.73840 2.39270i −0.0719355 0.0990108i
\(585\) 0 0
\(586\) −5.97102 + 24.8711i −0.246660 + 1.02741i
\(587\) 7.62789 0.600328i 0.314837 0.0247782i 0.0799437 0.996799i \(-0.474526\pi\)
0.234893 + 0.972021i \(0.424526\pi\)
\(588\) 0 0
\(589\) 2.86885 1.75804i 0.118209 0.0724386i
\(590\) −58.9185 + 19.1438i −2.42564 + 0.788137i
\(591\) 0 0
\(592\) 10.6251 32.7007i 0.436690 1.34399i
\(593\) 39.5471 + 3.11243i 1.62401 + 0.127812i 0.857521 0.514450i \(-0.172004\pi\)
0.766486 + 0.642262i \(0.222004\pi\)
\(594\) 0 0
\(595\) 1.69977 + 0.866077i 0.0696838 + 0.0355057i
\(596\) −0.0162578 + 0.206575i −0.000665945 + 0.00846163i
\(597\) 0 0
\(598\) 4.97103 + 20.7058i 0.203281 + 0.846725i
\(599\) −1.77363 5.45868i −0.0724687 0.223036i 0.908261 0.418403i \(-0.137410\pi\)
−0.980730 + 0.195367i \(0.937410\pi\)
\(600\) 0 0
\(601\) −7.24802 + 17.4983i −0.295653 + 0.713769i 0.704339 + 0.709863i \(0.251243\pi\)
−0.999992 + 0.00390608i \(0.998757\pi\)
\(602\) −1.01934 12.9520i −0.0415453 0.527883i
\(603\) 0 0
\(604\) −0.896546 + 1.46303i −0.0364799 + 0.0595298i
\(605\) −27.2511 + 19.7991i −1.10791 + 0.804947i
\(606\) 0 0
\(607\) −44.9704 7.12261i −1.82529 0.289098i −0.852835 0.522180i \(-0.825119\pi\)
−0.972457 + 0.233083i \(0.925119\pi\)
\(608\) −1.40861 1.64928i −0.0571268 0.0668869i
\(609\) 0 0
\(610\) 8.68450 + 54.8318i 0.351625 + 2.22007i
\(611\) 20.8362 28.6786i 0.842944 1.16021i
\(612\) 0 0
\(613\) 10.0783 + 19.7797i 0.407057 + 0.798894i 0.999980 0.00636491i \(-0.00202603\pi\)
−0.592923 + 0.805259i \(0.702026\pi\)
\(614\) 17.9525 0.724505
\(615\) 0 0
\(616\) 3.09192 0.124577
\(617\) −7.26558 14.2595i −0.292501 0.574066i 0.697257 0.716821i \(-0.254404\pi\)
−0.989758 + 0.142756i \(0.954404\pi\)
\(618\) 0 0
\(619\) −2.13229 + 2.93485i −0.0857040 + 0.117961i −0.849716 0.527240i \(-0.823227\pi\)
0.764012 + 0.645202i \(0.223227\pi\)
\(620\) 0.0394139 + 0.248850i 0.00158290 + 0.00999404i
\(621\) 0 0
\(622\) 24.2867 + 28.4361i 0.973807 + 1.14018i
\(623\) 14.2391 + 2.25525i 0.570478 + 0.0903549i
\(624\) 0 0
\(625\) −18.9884 + 13.7958i −0.759534 + 0.551834i
\(626\) −12.5513 + 20.4818i −0.501649 + 0.818617i
\(627\) 0 0
\(628\) 0.0747716 + 0.950064i 0.00298371 + 0.0379117i
\(629\) 1.35950 3.28212i 0.0542068 0.130867i
\(630\) 0 0
\(631\) 2.40812 + 7.41143i 0.0958657 + 0.295044i 0.987478 0.157755i \(-0.0504255\pi\)
−0.891613 + 0.452799i \(0.850426\pi\)
\(632\) −7.10318 29.5869i −0.282549 1.17690i
\(633\) 0 0
\(634\) 1.43719 18.2612i 0.0570781 0.725246i
\(635\) −17.2683 8.79862i −0.685270 0.349162i
\(636\) 0 0
\(637\) 20.7418 + 1.63242i 0.821820 + 0.0646786i
\(638\) 2.04148 6.28302i 0.0808229 0.248747i
\(639\) 0 0
\(640\) −31.8636 + 10.3531i −1.25952 + 0.409243i
\(641\) −20.3995 + 12.5008i −0.805733 + 0.493754i −0.863362 0.504584i \(-0.831646\pi\)
0.0576297 + 0.998338i \(0.481646\pi\)
\(642\) 0 0
\(643\) 16.1444 1.27059i 0.636672 0.0501071i 0.243984 0.969779i \(-0.421545\pi\)
0.392687 + 0.919672i \(0.371545\pi\)
\(644\) −0.116770 + 0.486382i −0.00460138 + 0.0191661i
\(645\) 0 0
\(646\) 1.29213 + 1.77846i 0.0508381 + 0.0699727i
\(647\) 24.0389 24.0389i 0.945067 0.945067i −0.0535006 0.998568i \(-0.517038\pi\)
0.998568 + 0.0535006i \(0.0170379\pi\)
\(648\) 0 0
\(649\) −7.51440 + 6.41790i −0.294966 + 0.251925i
\(650\) 20.9559 24.5362i 0.821959 0.962390i
\(651\) 0 0
\(652\) 1.19637 + 0.869211i 0.0468533 + 0.0340409i
\(653\) −29.8930 + 12.3821i −1.16980 + 0.484548i −0.881127 0.472879i \(-0.843215\pi\)
−0.288675 + 0.957427i \(0.593215\pi\)
\(654\) 0 0
\(655\) 51.4838i 2.01164i
\(656\) 12.1546 + 21.0915i 0.474557 + 0.823483i
\(657\) 0 0
\(658\) −14.9357 + 7.61014i −0.582256 + 0.296674i
\(659\) −17.9858 43.4215i −0.700626 1.69146i −0.722190 0.691694i \(-0.756865\pi\)
0.0215639 0.999767i \(-0.493135\pi\)
\(660\) 0 0
\(661\) 17.8322 2.82434i 0.693592 0.109854i 0.200322 0.979730i \(-0.435801\pi\)
0.493271 + 0.869876i \(0.335801\pi\)
\(662\) 22.0291 + 18.8146i 0.856184 + 0.731250i
\(663\) 0 0
\(664\) −1.08173 + 6.82975i −0.0419791 + 0.265046i
\(665\) −13.9236 13.9236i −0.539936 0.539936i
\(666\) 0 0
\(667\) 20.1670 + 12.3584i 0.780870 + 0.478518i
\(668\) −1.16054 0.278622i −0.0449028 0.0107802i
\(669\) 0 0
\(670\) −8.60747 3.56533i −0.332536 0.137741i
\(671\) 4.62702 + 7.55061i 0.178624 + 0.291488i
\(672\) 0 0
\(673\) 42.4556 10.1927i 1.63654 0.392899i 0.692159 0.721745i \(-0.256660\pi\)
0.944383 + 0.328846i \(0.106660\pi\)
\(674\) −15.5155 5.04128i −0.597633 0.194183i
\(675\) 0 0
\(676\) −0.280752 + 0.551007i −0.0107982 + 0.0211926i
\(677\) 13.8628 27.2072i 0.532790 1.04566i −0.455091 0.890445i \(-0.650393\pi\)
0.987881 0.155214i \(-0.0496067\pi\)
\(678\) 0 0
\(679\) −25.6880 8.34653i −0.985814 0.320311i
\(680\) −3.54234 + 0.850440i −0.135842 + 0.0326129i
\(681\) 0 0
\(682\) −0.422733 0.689838i −0.0161873 0.0264153i
\(683\) −30.8111 12.7624i −1.17896 0.488339i −0.294812 0.955555i \(-0.595257\pi\)
−0.884143 + 0.467216i \(0.845257\pi\)
\(684\) 0 0
\(685\) −18.9160 4.54132i −0.722742 0.173515i
\(686\) −20.8626 12.7846i −0.796540 0.488120i
\(687\) 0 0
\(688\) 16.7112 + 16.7112i 0.637108 + 0.637108i
\(689\) 4.65445 29.3870i 0.177320 1.11956i
\(690\) 0 0
\(691\) −23.5638 20.1254i −0.896408 0.765605i 0.0764339 0.997075i \(-0.475647\pi\)
−0.972842 + 0.231470i \(0.925647\pi\)
\(692\) −0.664242 + 0.105206i −0.0252507 + 0.00399932i
\(693\) 0 0
\(694\) −7.69401 18.5750i −0.292061 0.705096i
\(695\) −63.0127 + 32.1066i −2.39021 + 1.21787i
\(696\) 0 0
\(697\) 1.08097 + 2.27100i 0.0409448 + 0.0860203i
\(698\) 13.6962i 0.518408i
\(699\) 0 0
\(700\) 0.700265 0.290059i 0.0264675 0.0109632i
\(701\) 0.349064 + 0.253610i 0.0131840 + 0.00957871i 0.594358 0.804201i \(-0.297406\pi\)
−0.581174 + 0.813779i \(0.697406\pi\)
\(702\) 0 0
\(703\) −23.8145 + 27.8832i −0.898181 + 1.05164i
\(704\) −4.48014 + 3.82640i −0.168851 + 0.144213i
\(705\) 0 0
\(706\) 5.51675 5.51675i 0.207626 0.207626i
\(707\) −6.53234 8.99100i −0.245674 0.338141i
\(708\) 0 0
\(709\) 4.26392 17.7605i 0.160135 0.667009i −0.833321 0.552790i \(-0.813563\pi\)
0.993456 0.114220i \(-0.0364368\pi\)
\(710\) 40.4104 3.18037i 1.51658 0.119357i
\(711\) 0 0
\(712\) −23.4735 + 14.3846i −0.879706 + 0.539084i
\(713\) 2.75487 0.895112i 0.103171 0.0335222i
\(714\) 0 0
\(715\) 3.09417 9.52287i 0.115715 0.356135i
\(716\) 0.713989 + 0.0561922i 0.0266830 + 0.00210000i
\(717\) 0 0
\(718\) −24.3574 12.4107i −0.909010 0.463164i
\(719\) −0.931727 + 11.8387i −0.0347475 + 0.441509i 0.954795 + 0.297266i \(0.0960748\pi\)
−0.989542 + 0.144243i \(0.953925\pi\)
\(720\) 0 0
\(721\) 0.0587467 + 0.244698i 0.00218784 + 0.00911302i
\(722\) 1.09268 + 3.36292i 0.0406653 + 0.125155i
\(723\) 0 0
\(724\) −0.524532 + 1.26633i −0.0194941 + 0.0470629i
\(725\) −2.81203 35.7303i −0.104436 1.32699i
\(726\) 0 0
\(727\) 6.44010 10.5093i 0.238850 0.389768i −0.710645 0.703551i \(-0.751597\pi\)
0.949495 + 0.313783i \(0.101597\pi\)
\(728\) 15.6531 11.3726i 0.580141 0.421497i
\(729\) 0 0
\(730\) 4.47331 + 0.708502i 0.165565 + 0.0262228i
\(731\) 1.58582 + 1.85676i 0.0586537 + 0.0686747i
\(732\) 0 0
\(733\) 0.595077 + 3.75717i 0.0219797 + 0.138774i 0.996238 0.0866609i \(-0.0276197\pi\)
−0.974258 + 0.225435i \(0.927620\pi\)
\(734\) −7.65510 + 10.5363i −0.282555 + 0.388904i
\(735\) 0 0
\(736\) −0.847709 1.66372i −0.0312470 0.0613256i
\(737\) −1.48615 −0.0547432
\(738\) 0 0
\(739\) 1.23408 0.0453964 0.0226982 0.999742i \(-0.492774\pi\)
0.0226982 + 0.999742i \(0.492774\pi\)
\(740\) −1.24658 2.44654i −0.0458250 0.0899366i
\(741\) 0 0
\(742\) −8.26989 + 11.3825i −0.303597 + 0.417866i
\(743\) 4.40873 + 27.8356i 0.161741 + 1.02119i 0.926341 + 0.376686i \(0.122936\pi\)
−0.764601 + 0.644504i \(0.777064\pi\)
\(744\) 0 0
\(745\) −4.56076 5.33996i −0.167093 0.195641i
\(746\) −26.8498 4.25259i −0.983040 0.155698i
\(747\) 0 0
\(748\) −0.0212433 + 0.0154342i −0.000776733 + 0.000564330i
\(749\) −6.74903 + 11.0134i −0.246604 + 0.402422i
\(750\) 0 0
\(751\) −2.86246 36.3710i −0.104453 1.32720i −0.796190 0.605047i \(-0.793154\pi\)
0.691737 0.722149i \(-0.256846\pi\)
\(752\) 11.6689 28.1713i 0.425522 1.02730i
\(753\) 0 0
\(754\) −12.7749 39.3171i −0.465234 1.43184i
\(755\) −13.5752 56.5449i −0.494053 2.05788i
\(756\) 0 0
\(757\) 4.03529 51.2732i 0.146665 1.86356i −0.281115 0.959674i \(-0.590704\pi\)
0.427780 0.903883i \(-0.359296\pi\)
\(758\) 46.5242 + 23.7053i 1.68984 + 0.861015i
\(759\) 0 0
\(760\) 37.4866 + 2.95026i 1.35978 + 0.107017i
\(761\) −0.243367 + 0.749007i −0.00882205 + 0.0271515i −0.955371 0.295410i \(-0.904544\pi\)
0.946549 + 0.322561i \(0.104544\pi\)
\(762\) 0 0
\(763\) −8.54706 + 2.77711i −0.309424 + 0.100538i
\(764\) −0.924935 + 0.566801i −0.0334630 + 0.0205061i
\(765\) 0 0
\(766\) 38.7183 3.04720i 1.39895 0.110100i
\(767\) −14.4360 + 60.1302i −0.521254 + 2.17118i
\(768\) 0 0
\(769\) 13.1839 + 18.1460i 0.475422 + 0.654362i 0.977617 0.210392i \(-0.0674741\pi\)
−0.502195 + 0.864754i \(0.667474\pi\)
\(770\) −3.34805 + 3.34805i −0.120655 + 0.120655i
\(771\) 0 0
\(772\) −1.95205 + 1.66721i −0.0702559 + 0.0600042i
\(773\) 0.811712 0.950393i 0.0291952 0.0341832i −0.745616 0.666376i \(-0.767845\pi\)
0.774811 + 0.632192i \(0.217845\pi\)
\(774\) 0 0
\(775\) −3.55102 2.57997i −0.127557 0.0926753i
\(776\) 47.6527 19.7384i 1.71063 0.708567i
\(777\) 0 0
\(778\) 2.63962i 0.0946350i
\(779\) −3.36790 25.7416i −0.120668 0.922288i
\(780\) 0 0
\(781\) 5.76128 2.93552i 0.206155 0.105041i
\(782\) 0.724234 + 1.74846i 0.0258986 + 0.0625247i
\(783\) 0 0
\(784\) 17.6765 2.79969i 0.631305 0.0999889i
\(785\) −24.5592 20.9755i −0.876554 0.748648i
\(786\) 0 0
\(787\) 0.454509 2.86965i 0.0162015 0.102292i −0.978262 0.207371i \(-0.933509\pi\)
0.994464 + 0.105079i \(0.0335094\pi\)
\(788\) 1.02408 + 1.02408i 0.0364814 + 0.0364814i
\(789\) 0 0
\(790\) 39.7293 + 24.3461i 1.41350 + 0.866197i
\(791\) 11.6659 + 2.80074i 0.414792 + 0.0995828i
\(792\) 0 0
\(793\) 51.1970 + 21.2065i 1.81806 + 0.753064i
\(794\) 11.2243 + 18.3163i 0.398335 + 0.650023i
\(795\) 0 0
\(796\) 0.598704 0.143736i 0.0212205 0.00509459i
\(797\) −5.51385 1.79156i −0.195311 0.0634603i 0.209728 0.977760i \(-0.432742\pi\)
−0.405039 + 0.914299i \(0.632742\pi\)
\(798\) 0 0
\(799\) 1.43029 2.80711i 0.0506002 0.0993084i
\(800\) −1.28454 + 2.52105i −0.0454153 + 0.0891326i
\(801\) 0 0
\(802\) 4.66936 + 1.51717i 0.164881 + 0.0535730i
\(803\) 0.702496 0.168654i 0.0247906 0.00595169i
\(804\) 0 0
\(805\) −8.85738 14.4539i −0.312182 0.509434i
\(806\) −4.67745 1.93746i −0.164756 0.0682443i
\(807\) 0 0
\(808\) 20.6362 + 4.95432i 0.725980 + 0.174292i
\(809\) −24.0581 14.7428i −0.845838 0.518330i 0.0307752 0.999526i \(-0.490202\pi\)
−0.876613 + 0.481196i \(0.840202\pi\)
\(810\) 0 0
\(811\) −4.39928 4.39928i −0.154480 0.154480i 0.625636 0.780115i \(-0.284840\pi\)
−0.780115 + 0.625636i \(0.784840\pi\)
\(812\) 0.151912 0.959135i 0.00533107 0.0336590i
\(813\) 0 0
\(814\) 6.70473 + 5.72638i 0.235001 + 0.200710i
\(815\) −49.4995 + 7.83995i −1.73389 + 0.274622i
\(816\) 0 0
\(817\) −9.64513 23.2854i −0.337440 0.814653i
\(818\) −9.67908 + 4.93174i −0.338421 + 0.172434i
\(819\) 0 0
\(820\) 1.87735 + 0.504652i 0.0655599 + 0.0176232i
\(821\) 8.62347i 0.300961i 0.988613 + 0.150481i \(0.0480821\pi\)
−0.988613 + 0.150481i \(0.951918\pi\)
\(822\) 0 0
\(823\) −25.0623 + 10.3812i −0.873618 + 0.361865i −0.774018 0.633163i \(-0.781756\pi\)
−0.0995998 + 0.995028i \(0.531756\pi\)
\(824\) −0.388781 0.282466i −0.0135438 0.00984016i
\(825\) 0 0
\(826\) 18.9911 22.2358i 0.660786 0.773681i
\(827\) 18.9518 16.1864i 0.659019 0.562856i −0.255795 0.966731i \(-0.582337\pi\)
0.914814 + 0.403876i \(0.132337\pi\)
\(828\) 0 0
\(829\) −28.9863 + 28.9863i −1.00674 + 1.00674i −0.00675804 + 0.999977i \(0.502151\pi\)
−0.999977 + 0.00675804i \(0.997849\pi\)
\(830\) −6.22416 8.56683i −0.216044 0.297359i
\(831\) 0 0
\(832\) −8.60684 + 35.8501i −0.298388 + 1.24288i
\(833\) 1.84342 0.145080i 0.0638708 0.00502674i
\(834\) 0 0
\(835\) 34.4882 21.1344i 1.19351 0.731386i
\(836\) 0.257768 0.0837540i 0.00891511 0.00289669i
\(837\) 0 0
\(838\) 13.8788 42.7144i 0.479434 1.47555i
\(839\) 11.5601 + 0.909800i 0.399099 + 0.0314098i 0.276421 0.961037i \(-0.410852\pi\)
0.122678 + 0.992446i \(0.460852\pi\)
\(840\) 0 0
\(841\) −15.0747 7.68094i −0.519817 0.264860i
\(842\) −4.27844 + 54.3627i −0.147445 + 1.87346i
\(843\) 0 0
\(844\) −0.545376 2.27165i −0.0187726 0.0781935i
\(845\) −6.47639 19.9323i −0.222795 0.685691i
\(846\) 0 0
\(847\) 6.08453 14.6894i 0.209067 0.504732i
\(848\) −2.00803 25.5144i −0.0689559 0.876168i
\(849\) 0 0
\(850\) 1.49839 2.44515i 0.0513944 0.0838681i
\(851\) −25.5392 + 18.5553i −0.875472 + 0.636068i
\(852\) 0 0
\(853\) 3.18240 + 0.504042i 0.108963 + 0.0172581i 0.210678 0.977556i \(-0.432433\pi\)
−0.101715 + 0.994814i \(0.532433\pi\)
\(854\) −17.0184 19.9260i −0.582357 0.681853i
\(855\) 0 0
\(856\) −3.85867 24.3627i −0.131887 0.832699i
\(857\) −16.6351 + 22.8963i −0.568245 + 0.782122i −0.992345 0.123493i \(-0.960590\pi\)
0.424101 + 0.905615i \(0.360590\pi\)
\(858\) 0 0
\(859\) 18.5467 + 36.4000i 0.632806 + 1.24195i 0.955372 + 0.295404i \(0.0954544\pi\)
−0.322567 + 0.946547i \(0.604546\pi\)
\(860\) 1.88731 0.0643566
\(861\) 0 0
\(862\) 15.6251 0.532192
\(863\) 17.6587 + 34.6572i 0.601111 + 1.17975i 0.968345 + 0.249617i \(0.0803049\pi\)
−0.367234 + 0.930129i \(0.619695\pi\)
\(864\) 0 0
\(865\) 13.3967 18.4390i 0.455503 0.626946i
\(866\) −7.92492 50.0360i −0.269300 1.70029i
\(867\) 0 0
\(868\) −0.0772366 0.0904324i −0.00262158 0.00306948i
\(869\) 7.34122 + 1.16274i 0.249034 + 0.0394431i
\(870\) 0 0
\(871\) −7.52374 + 5.46632i −0.254932 + 0.185219i
\(872\) 8.96693 14.6327i 0.303659 0.495526i
\(873\) 0 0
\(874\) −1.53264 19.4741i −0.0518424 0.658720i
\(875\) −0.537321 + 1.29721i −0.0181648 + 0.0438536i
\(876\) 0 0
\(877\) 3.22536 + 9.92663i 0.108913 + 0.335198i 0.990629 0.136582i \(-0.0436116\pi\)
−0.881716 + 0.471780i \(0.843612\pi\)
\(878\) −2.81848 11.7398i −0.0951191 0.396199i
\(879\) 0 0
\(880\) 0.675764 8.58639i 0.0227800 0.289447i
\(881\) 46.6686 + 23.7788i 1.57230 + 0.801129i 0.999823 0.0187887i \(-0.00598099\pi\)
0.572481 + 0.819918i \(0.305981\pi\)
\(882\) 0 0
\(883\) 22.9017 + 1.80240i 0.770703 + 0.0606556i 0.457712 0.889101i \(-0.348669\pi\)
0.312991 + 0.949756i \(0.398669\pi\)
\(884\) −0.0507762 + 0.156273i −0.00170779 + 0.00525603i
\(885\) 0 0
\(886\) −35.4818 + 11.5287i −1.19204 + 0.387316i
\(887\) −46.0326 + 28.2088i −1.54562 + 0.947159i −0.552069 + 0.833798i \(0.686161\pi\)
−0.993554 + 0.113360i \(0.963839\pi\)
\(888\) 0 0
\(889\) 9.11986 0.717748i 0.305870 0.0240725i
\(890\) 9.84180 40.9940i 0.329898 1.37412i
\(891\) 0 0
\(892\) 1.13517 + 1.56243i 0.0380083 + 0.0523139i
\(893\) −22.9944 + 22.9944i −0.769478 + 0.769478i
\(894\) 0 0
\(895\) −18.4566 + 15.7634i −0.616937 + 0.526914i
\(896\) 10.2706 12.0253i 0.343116 0.401737i
\(897\) 0 0
\(898\) −8.48992 6.16828i −0.283312 0.205838i
\(899\) −5.19546 + 2.15203i −0.173278 + 0.0717742i
\(900\) 0 0
\(901\) 2.64432i 0.0880950i
\(902\) −6.18976 + 0.809838i −0.206096 + 0.0269647i
\(903\) 0 0
\(904\) −20.4135 + 10.4012i −0.678942 + 0.345938i
\(905\) −17.7765 42.9163i −0.590911 1.42659i
\(906\) 0 0
\(907\) −22.4641 + 3.55797i −0.745909 + 0.118140i −0.517808 0.855497i \(-0.673252\pi\)
−0.228101 + 0.973637i \(0.573252\pi\)
\(908\) 2.02934 + 1.73322i 0.0673460 + 0.0575189i
\(909\) 0 0
\(910\) −4.63502 + 29.2644i −0.153649 + 0.970104i
\(911\) 38.7532 + 38.7532i 1.28395 + 1.28395i 0.938401 + 0.345549i \(0.112307\pi\)
0.345549 + 0.938401i \(0.387693\pi\)
\(912\) 0 0
\(913\) −1.44023 0.882574i −0.0476646 0.0292089i
\(914\) −16.2856 3.90983i −0.538680 0.129326i
\(915\) 0 0
\(916\) 0.744049 + 0.308195i 0.0245841 + 0.0101830i
\(917\) 12.6975 + 20.7204i 0.419307 + 0.684247i
\(918\) 0 0
\(919\) −44.2164 + 10.6154i −1.45856 + 0.350170i −0.883690 0.468073i \(-0.844949\pi\)
−0.574873 + 0.818243i \(0.694949\pi\)
\(920\) 30.7875 + 10.0035i 1.01504 + 0.329805i
\(921\) 0 0
\(922\) 12.1677 23.8804i 0.400721 0.786460i
\(923\) 18.3695 36.0522i 0.604640 1.18667i
\(924\) 0 0
\(925\) 45.4943 + 14.7820i 1.49584 + 0.486029i
\(926\) −17.9480 + 4.30894i −0.589809 + 0.141601i
\(927\) 0 0
\(928\) 1.89408 + 3.09086i 0.0621763 + 0.101462i
\(929\) 13.3056 + 5.51136i 0.436542 + 0.180822i 0.590121 0.807315i \(-0.299080\pi\)
−0.153579 + 0.988136i \(0.549080\pi\)
\(930\) 0 0
\(931\) −18.5590 4.45563i −0.608247 0.146027i
\(932\) −0.263507 0.161477i −0.00863146 0.00528937i
\(933\) 0 0
\(934\) 1.77291 + 1.77291i 0.0580115 + 0.0580115i
\(935\) 0.139210 0.878940i 0.00455267 0.0287444i
\(936\) 0 0
\(937\) 12.1305 + 10.3605i 0.396287 + 0.338461i 0.825155 0.564906i \(-0.191087\pi\)
−0.428868 + 0.903367i \(0.641087\pi\)
\(938\) 4.34352 0.687945i 0.141821 0.0224622i
\(939\) 0 0
\(940\) −0.931861 2.24971i −0.0303939 0.0733775i
\(941\) −4.65315 + 2.37090i −0.151688 + 0.0772890i −0.528187 0.849128i \(-0.677128\pi\)
0.376499 + 0.926417i \(0.377128\pi\)
\(942\) 0 0
\(943\) 2.35405 22.2254i 0.0766583 0.723760i
\(944\) 53.1927i 1.73127i
\(945\) 0 0
\(946\) −5.59915 + 2.31924i −0.182044 + 0.0754051i
\(947\) −35.8206 26.0252i −1.16401 0.845704i −0.173732 0.984793i \(-0.555583\pi\)
−0.990280 + 0.139089i \(0.955583\pi\)
\(948\) 0 0
\(949\) 2.93609 3.43772i 0.0953096 0.111593i
\(950\) −22.5084 + 19.2240i −0.730268 + 0.623708i
\(951\) 0 0
\(952\) 1.21592 1.21592i 0.0394082 0.0394082i
\(953\) 21.0410 + 28.9604i 0.681584 + 0.938120i 0.999952 0.00984752i \(-0.00313461\pi\)
−0.318368 + 0.947967i \(0.603135\pi\)
\(954\) 0 0
\(955\) 8.58232 35.7479i 0.277717 1.15678i
\(956\) 1.51483 0.119220i 0.0489932 0.00385585i
\(957\) 0 0
\(958\) 22.7735 13.9556i 0.735778 0.450885i
\(959\) 8.73303 2.83753i 0.282004 0.0916287i
\(960\) 0 0
\(961\) 9.36671 28.8278i 0.302152 0.929928i
\(962\) 55.0057 + 4.32904i 1.77346 + 0.139574i
\(963\) 0 0
\(964\) −0.971945 0.495231i −0.0313042 0.0159503i
\(965\) 6.82596 86.7320i 0.219735 2.79200i
\(966\) 0 0
\(967\) 2.80051 + 11.6650i 0.0900583 + 0.375120i 0.999138 0.0415015i \(-0.0132141\pi\)
−0.909080 + 0.416621i \(0.863214\pi\)
\(968\) 9.38250 + 28.8764i 0.301565 + 0.928121i
\(969\) 0 0
\(970\) −30.2266 + 72.9735i −0.970518 + 2.34304i
\(971\) 2.43288 + 30.9127i 0.0780748 + 0.992035i 0.903798 + 0.427959i \(0.140767\pi\)
−0.825723 + 0.564075i \(0.809233\pi\)
\(972\) 0 0
\(973\) 17.4419 28.4626i 0.559161 0.912468i
\(974\) −1.24821 + 0.906879i −0.0399953 + 0.0290583i
\(975\) 0 0
\(976\) 47.0803 + 7.45678i 1.50700 + 0.238686i
\(977\) 9.44565 + 11.0594i 0.302193 + 0.353823i 0.890637 0.454716i \(-0.150259\pi\)
−0.588444 + 0.808538i \(0.700259\pi\)
\(978\) 0 0
\(979\) −1.05202 6.64221i −0.0336228 0.212286i
\(980\) 0.840072 1.15626i 0.0268351 0.0369354i
\(981\) 0 0
\(982\) −24.0867 47.2729i −0.768639 1.50854i
\(983\) 27.8004 0.886696 0.443348 0.896350i \(-0.353791\pi\)
0.443348 + 0.896350i \(0.353791\pi\)
\(984\) 0 0
\(985\) −49.0822 −1.56389
\(986\) −1.66801 3.27366i −0.0531204 0.104255i
\(987\) 0 0
\(988\) 0.996907 1.37213i 0.0317158 0.0436531i
\(989\) −3.39432 21.4309i −0.107933 0.681463i
\(990\) 0 0
\(991\) 5.70258 + 6.67686i 0.181148 + 0.212097i 0.843549 0.537052i \(-0.180462\pi\)
−0.662401 + 0.749150i \(0.730462\pi\)
\(992\) 0.438483 + 0.0694488i 0.0139218 + 0.00220500i
\(993\) 0 0
\(994\) −15.4794 + 11.2464i −0.490976 + 0.356715i
\(995\) −10.9029 + 17.7918i −0.345644 + 0.564039i
\(996\) 0 0
\(997\) 1.77966 + 22.6127i 0.0563624 + 0.716152i 0.958571 + 0.284853i \(0.0919447\pi\)
−0.902209 + 0.431299i \(0.858055\pi\)
\(998\) −14.9242 + 36.0303i −0.472418 + 1.14052i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 369.2.ba.a.350.5 yes 112
3.2 odd 2 369.2.ba.b.350.3 yes 112
41.28 odd 40 369.2.ba.b.233.3 yes 112
123.110 even 40 inner 369.2.ba.a.233.5 112
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
369.2.ba.a.233.5 112 123.110 even 40 inner
369.2.ba.a.350.5 yes 112 1.1 even 1 trivial
369.2.ba.b.233.3 yes 112 41.28 odd 40
369.2.ba.b.350.3 yes 112 3.2 odd 2