Properties

Label 3675.2.a.bu
Level $3675$
Weight $2$
Character orbit 3675.a
Self dual yes
Analytic conductor $29.345$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3675,2,Mod(1,3675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3675, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3675.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3675 = 3 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3675.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,4,0,0,0,0,0,4,0,0,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.3450227428\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{24})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 735)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + q^{3} + \beta_{2} q^{4} + \beta_1 q^{6} + \beta_{3} q^{8} + q^{9} - 2 \beta_{2} q^{11} + \beta_{2} q^{12} - 4 q^{13} + ( - 2 \beta_{2} - 1) q^{16} - 4 q^{17} + \beta_1 q^{18} + ( - 3 \beta_{3} - \beta_1) q^{19}+ \cdots - 2 \beta_{2} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} + 4 q^{9} - 16 q^{13} - 4 q^{16} - 16 q^{17} + 4 q^{27} + 8 q^{29} + 4 q^{38} - 16 q^{39} - 24 q^{44} - 28 q^{46} - 24 q^{47} - 4 q^{48} - 16 q^{51} - 36 q^{62} - 16 q^{64} + 16 q^{71} - 16 q^{73}+ \cdots - 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{24} + \zeta_{24}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 4\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 4\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.93185
−0.517638
0.517638
1.93185
−1.93185 1.00000 1.73205 0 −1.93185 0 0.517638 1.00000 0
1.2 −0.517638 1.00000 −1.73205 0 −0.517638 0 1.93185 1.00000 0
1.3 0.517638 1.00000 −1.73205 0 0.517638 0 −1.93185 1.00000 0
1.4 1.93185 1.00000 1.73205 0 1.93185 0 −0.517638 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)
\(7\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
35.c odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3675.2.a.bu 4
5.b even 2 1 3675.2.a.bs 4
5.c odd 4 2 735.2.d.f 8
7.b odd 2 1 3675.2.a.bs 4
15.e even 4 2 2205.2.d.t 8
35.c odd 2 1 inner 3675.2.a.bu 4
35.f even 4 2 735.2.d.f 8
35.k even 12 2 735.2.q.c 8
35.k even 12 2 735.2.q.d 8
35.l odd 12 2 735.2.q.c 8
35.l odd 12 2 735.2.q.d 8
105.k odd 4 2 2205.2.d.t 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
735.2.d.f 8 5.c odd 4 2
735.2.d.f 8 35.f even 4 2
735.2.q.c 8 35.k even 12 2
735.2.q.c 8 35.l odd 12 2
735.2.q.d 8 35.k even 12 2
735.2.q.d 8 35.l odd 12 2
2205.2.d.t 8 15.e even 4 2
2205.2.d.t 8 105.k odd 4 2
3675.2.a.bs 4 5.b even 2 1
3675.2.a.bs 4 7.b odd 2 1
3675.2.a.bu 4 1.a even 1 1 trivial
3675.2.a.bu 4 35.c odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3675))\):

\( T_{2}^{4} - 4T_{2}^{2} + 1 \) Copy content Toggle raw display
\( T_{11}^{2} - 12 \) Copy content Toggle raw display
\( T_{13} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 4T^{2} + 1 \) Copy content Toggle raw display
$3$ \( (T - 1)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} - 12)^{2} \) Copy content Toggle raw display
$13$ \( (T + 4)^{4} \) Copy content Toggle raw display
$17$ \( (T + 4)^{4} \) Copy content Toggle raw display
$19$ \( T^{4} - 28T^{2} + 4 \) Copy content Toggle raw display
$23$ \( T^{4} - 52T^{2} + 484 \) Copy content Toggle raw display
$29$ \( (T^{2} - 4 T - 44)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 54)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} - 112T^{2} + 64 \) Copy content Toggle raw display
$41$ \( (T^{2} - 72)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( (T + 6)^{4} \) Copy content Toggle raw display
$53$ \( (T^{2} - 54)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} - 112T^{2} + 64 \) Copy content Toggle raw display
$61$ \( T^{4} - 84T^{2} + 36 \) Copy content Toggle raw display
$67$ \( T^{4} - 208T^{2} + 7744 \) Copy content Toggle raw display
$71$ \( (T^{2} - 8 T - 92)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 8 T - 32)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 16 T + 52)^{2} \) Copy content Toggle raw display
$83$ \( (T + 6)^{4} \) Copy content Toggle raw display
$89$ \( T^{4} - 256T^{2} + 4096 \) Copy content Toggle raw display
$97$ \( (T^{2} + 24 T + 96)^{2} \) Copy content Toggle raw display
show more
show less