gp: [N,k,chi] = [3660,1,Mod(59,3660)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3660.59");
S:= CuspForms(chi, 1);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3660, base_ring=CyclotomicField(60))
chi = DirichletCharacter(H, H._module([30, 30, 30, 31]))
B = ModularForms(chi, 1).cuspidal_submodule().basis()
N = [B[i] for i in range(len(B))]
Newform invariants
sage: traces = [16,2,-4,2,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The q q q -expansion and trace form are shown below.
Character values
We give the values of χ \chi χ on generators for ( Z / 3660 Z ) × \left(\mathbb{Z}/3660\mathbb{Z}\right)^\times ( Z / 3 6 6 0 Z ) × .
n n n
1831 1831 1 8 3 1
2197 2197 2 1 9 7
2441 2441 2 4 4 1
3601 3601 3 6 0 1
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
− 1 -1 − 1
− 1 -1 − 1
− ζ 60 17 -\zeta_{60}^{17} − ζ 6 0 1 7
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 1 n e w ( 3660 , [ χ ] ) S_{1}^{\mathrm{new}}(3660, [\chi]) S 1 n e w ( 3 6 6 0 , [ χ ] ) :
T 7 T_{7} T 7
T7
T 17 16 + 2 T 17 15 − T 17 14 − 8 T 17 13 − 4 T 17 12 − 26 T 17 11 − 63 T 17 10 + ⋯ + 1 T_{17}^{16} + 2 T_{17}^{15} - T_{17}^{14} - 8 T_{17}^{13} - 4 T_{17}^{12} - 26 T_{17}^{11} - 63 T_{17}^{10} + \cdots + 1 T 1 7 1 6 + 2 T 1 7 1 5 − T 1 7 1 4 − 8 T 1 7 1 3 − 4 T 1 7 1 2 − 2 6 T 1 7 1 1 − 6 3 T 1 7 1 0 + ⋯ + 1
T17^16 + 2*T17^15 - T17^14 - 8*T17^13 - 4*T17^12 - 26*T17^11 - 63*T17^10 - 4*T17^9 + 207*T17^8 + 208*T17^7 + 153*T17^6 + 98*T17^5 + 56*T17^4 + 26*T17^3 + 11*T17^2 + 4*T17 + 1
T 23 16 + 2 T 23 15 + 2 T 23 14 + 8 T 23 13 + 7 T 23 12 − 10 T 23 11 + 23 T 23 10 + ⋯ + 1 T_{23}^{16} + 2 T_{23}^{15} + 2 T_{23}^{14} + 8 T_{23}^{13} + 7 T_{23}^{12} - 10 T_{23}^{11} + 23 T_{23}^{10} + \cdots + 1 T 2 3 1 6 + 2 T 2 3 1 5 + 2 T 2 3 1 4 + 8 T 2 3 1 3 + 7 T 2 3 1 2 − 1 0 T 2 3 1 1 + 2 3 T 2 3 1 0 + ⋯ + 1
T23^16 + 2*T23^15 + 2*T23^14 + 8*T23^13 + 7*T23^12 - 10*T23^11 + 23*T23^10 + 44*T23^9 + 106*T23^7 + 103*T23^6 + 50*T23^5 + 207*T23^4 - 38*T23^3 + 77*T23^2 + 18*T23 + 1
T 29 T_{29} T 2 9
T29
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 8 − T 7 + T 5 + ⋯ + 1 ) 2 (T^{8} - T^{7} + T^{5} + \cdots + 1)^{2} ( T 8 − T 7 + T 5 + ⋯ + 1 ) 2
(T^8 - T^7 + T^5 - T^4 + T^3 - T + 1)^2
3 3 3
( T 4 + T 3 + T 2 + ⋯ + 1 ) 4 (T^{4} + T^{3} + T^{2} + \cdots + 1)^{4} ( T 4 + T 3 + T 2 + ⋯ + 1 ) 4
(T^4 + T^3 + T^2 + T + 1)^4
5 5 5
T 16 + T 14 + ⋯ + 1 T^{16} + T^{14} + \cdots + 1 T 1 6 + T 1 4 + ⋯ + 1
T^16 + T^14 - T^10 - T^8 - T^6 + T^2 + 1
7 7 7
T 16 T^{16} T 1 6
T^16
11 11 1 1
T 16 T^{16} T 1 6
T^16
13 13 1 3
T 16 T^{16} T 1 6
T^16
17 17 1 7
T 16 + 2 T 15 + ⋯ + 1 T^{16} + 2 T^{15} + \cdots + 1 T 1 6 + 2 T 1 5 + ⋯ + 1
T^16 + 2*T^15 - T^14 - 8*T^13 - 4*T^12 - 26*T^11 - 63*T^10 - 4*T^9 + 207*T^8 + 208*T^7 + 153*T^6 + 98*T^5 + 56*T^4 + 26*T^3 + 11*T^2 + 4*T + 1
19 19 1 9
T 16 − 8 T 14 + ⋯ + 1 T^{16} - 8 T^{14} + \cdots + 1 T 1 6 − 8 T 1 4 + ⋯ + 1
T^16 - 8*T^14 + 30*T^12 - 38*T^10 - 21*T^8 + 58*T^6 + 35*T^4 + 3*T^2 + 1
23 23 2 3
T 16 + 2 T 15 + ⋯ + 1 T^{16} + 2 T^{15} + \cdots + 1 T 1 6 + 2 T 1 5 + ⋯ + 1
T^16 + 2*T^15 + 2*T^14 + 8*T^13 + 7*T^12 - 10*T^11 + 23*T^10 + 44*T^9 + 106*T^7 + 103*T^6 + 50*T^5 + 207*T^4 - 38*T^3 + 77*T^2 + 18*T + 1
29 29 2 9
T 16 T^{16} T 1 6
T^16
31 31 3 1
T 16 − 4 T 15 + ⋯ + 1 T^{16} - 4 T^{15} + \cdots + 1 T 1 6 − 4 T 1 5 + ⋯ + 1
T^16 - 4*T^15 + 11*T^14 - 16*T^13 + 16*T^12 + 2*T^11 + 8*T^10 - 58*T^9 + 177*T^8 - 206*T^7 + 52*T^6 + 176*T^5 - 204*T^4 + 28*T^3 + 89*T^2 - 12*T + 1
37 37 3 7
T 16 T^{16} T 1 6
T^16
41 41 4 1
T 16 T^{16} T 1 6
T^16
43 43 4 3
T 16 T^{16} T 1 6
T^16
47 47 4 7
( T 4 − T 2 + 1 ) 4 (T^{4} - T^{2} + 1)^{4} ( T 4 − T 2 + 1 ) 4
(T^4 - T^2 + 1)^4
53 53 5 3
T 16 + 2 T 15 + ⋯ + 1 T^{16} + 2 T^{15} + \cdots + 1 T 1 6 + 2 T 1 5 + ⋯ + 1
T^16 + 2*T^15 - 3*T^14 - 12*T^13 - 8*T^12 + 10*T^11 + 33*T^10 + 24*T^9 + 15*T^8 + 36*T^7 - 87*T^6 - 20*T^5 + 142*T^4 - 48*T^3 + 87*T^2 + 8*T + 1
59 59 5 9
T 16 T^{16} T 1 6
T^16
61 61 6 1
T 16 + T 14 + ⋯ + 1 T^{16} + T^{14} + \cdots + 1 T 1 6 + T 1 4 + ⋯ + 1
T^16 + T^14 - T^10 - T^8 - T^6 + T^2 + 1
67 67 6 7
T 16 T^{16} T 1 6
T^16
71 71 7 1
T 16 T^{16} T 1 6
T^16
73 73 7 3
T 16 T^{16} T 1 6
T^16
79 79 7 9
T 16 + 2 T 15 + ⋯ + 1 T^{16} + 2 T^{15} + \cdots + 1 T 1 6 + 2 T 1 5 + ⋯ + 1
T^16 + 2*T^15 - T^14 + 2*T^13 + 16*T^12 + 14*T^11 + 32*T^10 + 56*T^9 + 42*T^8 + 148*T^7 + 283*T^6 + 188*T^5 + 36*T^4 + 76*T^3 + 86*T^2 - 6*T + 1
83 83 8 3
( T 8 − 3 T 7 + 6 T 6 + ⋯ + 1 ) 2 (T^{8} - 3 T^{7} + 6 T^{6} + \cdots + 1)^{2} ( T 8 − 3 T 7 + 6 T 6 + ⋯ + 1 ) 2
(T^8 - 3*T^7 + 6*T^6 - 14*T^5 + 19*T^4 - 12*T^3 + 4*T^2 - T + 1)^2
89 89 8 9
T 16 T^{16} T 1 6
T^16
97 97 9 7
T 16 T^{16} T 1 6
T^16
show more
show less