Properties

Label 3660.1.fu.d
Level 36603660
Weight 11
Character orbit 3660.fu
Analytic conductor 1.8271.827
Analytic rank 00
Dimension 1616
Projective image D60D_{60}
CM discriminant -15
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3660,1,Mod(59,3660)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3660.59"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3660, base_ring=CyclotomicField(60)) chi = DirichletCharacter(H, H._module([30, 30, 30, 31])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: N N == 3660=223561 3660 = 2^{2} \cdot 3 \cdot 5 \cdot 61
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3660.fu (of order 6060, degree 1616, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,2,-4,2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.826577946241.82657794624
Analytic rank: 00
Dimension: 1616
Coefficient field: Q(ζ60)\Q(\zeta_{60})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x16+x14x10x8x6+x2+1 x^{16} + x^{14} - x^{10} - x^{8} - x^{6} + x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D60D_{60}
Projective field: Galois closure of Q[x]/(x60+)\mathbb{Q}[x]/(x^{60} + \cdots)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+ζ604q2ζ606q3+ζ608q4ζ607q5ζ6010q6+ζ6012q8+ζ6012q9ζ6011q10ζ6014q12+ζ6027q98+O(q100) q + \zeta_{60}^{4} q^{2} - \zeta_{60}^{6} q^{3} + \zeta_{60}^{8} q^{4} - \zeta_{60}^{7} q^{5} - \zeta_{60}^{10} q^{6} + \zeta_{60}^{12} q^{8} + \zeta_{60}^{12} q^{9} - \zeta_{60}^{11} q^{10} - \zeta_{60}^{14} q^{12} + \cdots - \zeta_{60}^{27} q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q+2q24q3+2q48q64q84q9+2q12+2q162q17+2q182q234q242q254q27+4q318q322q348q362q46++2q96+O(q100) 16 q + 2 q^{2} - 4 q^{3} + 2 q^{4} - 8 q^{6} - 4 q^{8} - 4 q^{9} + 2 q^{12} + 2 q^{16} - 2 q^{17} + 2 q^{18} - 2 q^{23} - 4 q^{24} - 2 q^{25} - 4 q^{27} + 4 q^{31} - 8 q^{32} - 2 q^{34} - 8 q^{36} - 2 q^{46}+ \cdots + 2 q^{96}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3660Z)×\left(\mathbb{Z}/3660\mathbb{Z}\right)^\times.

nn 18311831 21972197 24412441 36013601
χ(n)\chi(n) 1-1 1-1 1-1 ζ6017-\zeta_{60}^{17}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
59.1
0.743145 0.669131i
0.406737 + 0.913545i
−0.207912 + 0.978148i
−0.406737 + 0.913545i
−0.994522 0.104528i
−0.994522 + 0.104528i
0.207912 + 0.978148i
−0.743145 0.669131i
0.743145 + 0.669131i
−0.207912 0.978148i
0.994522 0.104528i
0.994522 + 0.104528i
0.406737 0.913545i
0.207912 0.978148i
−0.406737 0.913545i
−0.743145 + 0.669131i
−0.978148 0.207912i 0.309017 0.951057i 0.913545 + 0.406737i −0.406737 0.913545i −0.500000 + 0.866025i 0 −0.809017 0.587785i −0.809017 0.587785i 0.207912 + 0.978148i
299.1 −0.104528 0.994522i −0.809017 0.587785i −0.978148 + 0.207912i 0.207912 0.978148i −0.500000 + 0.866025i 0 0.309017 + 0.951057i 0.309017 + 0.951057i −0.994522 0.104528i
359.1 0.669131 + 0.743145i 0.309017 + 0.951057i −0.104528 + 0.994522i −0.994522 + 0.104528i −0.500000 + 0.866025i 0 −0.809017 + 0.587785i −0.809017 + 0.587785i −0.743145 0.669131i
539.1 −0.104528 + 0.994522i −0.809017 + 0.587785i −0.978148 0.207912i −0.207912 0.978148i −0.500000 0.866025i 0 0.309017 0.951057i 0.309017 0.951057i 0.994522 0.104528i
959.1 0.913545 + 0.406737i −0.809017 0.587785i 0.669131 + 0.743145i 0.743145 + 0.669131i −0.500000 0.866025i 0 0.309017 + 0.951057i 0.309017 + 0.951057i 0.406737 + 0.913545i
1019.1 0.913545 0.406737i −0.809017 + 0.587785i 0.669131 0.743145i 0.743145 0.669131i −0.500000 + 0.866025i 0 0.309017 0.951057i 0.309017 0.951057i 0.406737 0.913545i
1499.1 0.669131 0.743145i 0.309017 0.951057i −0.104528 0.994522i 0.994522 + 0.104528i −0.500000 0.866025i 0 −0.809017 0.587785i −0.809017 0.587785i 0.743145 0.669131i
1739.1 −0.978148 + 0.207912i 0.309017 + 0.951057i 0.913545 0.406737i 0.406737 0.913545i −0.500000 0.866025i 0 −0.809017 + 0.587785i −0.809017 + 0.587785i −0.207912 + 0.978148i
1799.1 −0.978148 + 0.207912i 0.309017 + 0.951057i 0.913545 0.406737i −0.406737 + 0.913545i −0.500000 0.866025i 0 −0.809017 + 0.587785i −0.809017 + 0.587785i 0.207912 0.978148i
2039.1 0.669131 0.743145i 0.309017 0.951057i −0.104528 0.994522i −0.994522 0.104528i −0.500000 0.866025i 0 −0.809017 0.587785i −0.809017 0.587785i −0.743145 + 0.669131i
2519.1 0.913545 0.406737i −0.809017 + 0.587785i 0.669131 0.743145i −0.743145 + 0.669131i −0.500000 + 0.866025i 0 0.309017 0.951057i 0.309017 0.951057i −0.406737 + 0.913545i
2579.1 0.913545 + 0.406737i −0.809017 0.587785i 0.669131 + 0.743145i −0.743145 0.669131i −0.500000 0.866025i 0 0.309017 + 0.951057i 0.309017 + 0.951057i −0.406737 0.913545i
2999.1 −0.104528 + 0.994522i −0.809017 + 0.587785i −0.978148 0.207912i 0.207912 + 0.978148i −0.500000 0.866025i 0 0.309017 0.951057i 0.309017 0.951057i −0.994522 + 0.104528i
3179.1 0.669131 + 0.743145i 0.309017 + 0.951057i −0.104528 + 0.994522i 0.994522 0.104528i −0.500000 + 0.866025i 0 −0.809017 + 0.587785i −0.809017 + 0.587785i 0.743145 + 0.669131i
3239.1 −0.104528 0.994522i −0.809017 0.587785i −0.978148 + 0.207912i −0.207912 + 0.978148i −0.500000 + 0.866025i 0 0.309017 + 0.951057i 0.309017 + 0.951057i 0.994522 + 0.104528i
3479.1 −0.978148 0.207912i 0.309017 0.951057i 0.913545 + 0.406737i 0.406737 + 0.913545i −0.500000 + 0.866025i 0 −0.809017 0.587785i −0.809017 0.587785i −0.207912 0.978148i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 59.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by Q(15)\Q(\sqrt{-15})
244.w even 60 1 inner
3660.fu odd 60 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3660.1.fu.d yes 16
3.b odd 2 1 3660.1.fu.a 16
4.b odd 2 1 3660.1.fu.c yes 16
5.b even 2 1 3660.1.fu.a 16
12.b even 2 1 3660.1.fu.b yes 16
15.d odd 2 1 CM 3660.1.fu.d yes 16
20.d odd 2 1 3660.1.fu.b yes 16
60.h even 2 1 3660.1.fu.c yes 16
61.l odd 60 1 3660.1.fu.c yes 16
183.x even 60 1 3660.1.fu.b yes 16
244.w even 60 1 inner 3660.1.fu.d yes 16
305.bj odd 60 1 3660.1.fu.b yes 16
732.bv odd 60 1 3660.1.fu.a 16
915.cw even 60 1 3660.1.fu.c yes 16
1220.db even 60 1 3660.1.fu.a 16
3660.fu odd 60 1 inner 3660.1.fu.d yes 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3660.1.fu.a 16 3.b odd 2 1
3660.1.fu.a 16 5.b even 2 1
3660.1.fu.a 16 732.bv odd 60 1
3660.1.fu.a 16 1220.db even 60 1
3660.1.fu.b yes 16 12.b even 2 1
3660.1.fu.b yes 16 20.d odd 2 1
3660.1.fu.b yes 16 183.x even 60 1
3660.1.fu.b yes 16 305.bj odd 60 1
3660.1.fu.c yes 16 4.b odd 2 1
3660.1.fu.c yes 16 60.h even 2 1
3660.1.fu.c yes 16 61.l odd 60 1
3660.1.fu.c yes 16 915.cw even 60 1
3660.1.fu.d yes 16 1.a even 1 1 trivial
3660.1.fu.d yes 16 15.d odd 2 1 CM
3660.1.fu.d yes 16 244.w even 60 1 inner
3660.1.fu.d yes 16 3660.fu odd 60 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S1new(3660,[χ])S_{1}^{\mathrm{new}}(3660, [\chi]):

T7 T_{7} Copy content Toggle raw display
T1716+2T1715T17148T17134T171226T171163T1710++1 T_{17}^{16} + 2 T_{17}^{15} - T_{17}^{14} - 8 T_{17}^{13} - 4 T_{17}^{12} - 26 T_{17}^{11} - 63 T_{17}^{10} + \cdots + 1 Copy content Toggle raw display
T2316+2T2315+2T2314+8T2313+7T231210T2311+23T2310++1 T_{23}^{16} + 2 T_{23}^{15} + 2 T_{23}^{14} + 8 T_{23}^{13} + 7 T_{23}^{12} - 10 T_{23}^{11} + 23 T_{23}^{10} + \cdots + 1 Copy content Toggle raw display
T29 T_{29} Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T8T7+T5++1)2 (T^{8} - T^{7} + T^{5} + \cdots + 1)^{2} Copy content Toggle raw display
33 (T4+T3+T2++1)4 (T^{4} + T^{3} + T^{2} + \cdots + 1)^{4} Copy content Toggle raw display
55 T16+T14++1 T^{16} + T^{14} + \cdots + 1 Copy content Toggle raw display
77 T16 T^{16} Copy content Toggle raw display
1111 T16 T^{16} Copy content Toggle raw display
1313 T16 T^{16} Copy content Toggle raw display
1717 T16+2T15++1 T^{16} + 2 T^{15} + \cdots + 1 Copy content Toggle raw display
1919 T168T14++1 T^{16} - 8 T^{14} + \cdots + 1 Copy content Toggle raw display
2323 T16+2T15++1 T^{16} + 2 T^{15} + \cdots + 1 Copy content Toggle raw display
2929 T16 T^{16} Copy content Toggle raw display
3131 T164T15++1 T^{16} - 4 T^{15} + \cdots + 1 Copy content Toggle raw display
3737 T16 T^{16} Copy content Toggle raw display
4141 T16 T^{16} Copy content Toggle raw display
4343 T16 T^{16} Copy content Toggle raw display
4747 (T4T2+1)4 (T^{4} - T^{2} + 1)^{4} Copy content Toggle raw display
5353 T16+2T15++1 T^{16} + 2 T^{15} + \cdots + 1 Copy content Toggle raw display
5959 T16 T^{16} Copy content Toggle raw display
6161 T16+T14++1 T^{16} + T^{14} + \cdots + 1 Copy content Toggle raw display
6767 T16 T^{16} Copy content Toggle raw display
7171 T16 T^{16} Copy content Toggle raw display
7373 T16 T^{16} Copy content Toggle raw display
7979 T16+2T15++1 T^{16} + 2 T^{15} + \cdots + 1 Copy content Toggle raw display
8383 (T83T7+6T6++1)2 (T^{8} - 3 T^{7} + 6 T^{6} + \cdots + 1)^{2} Copy content Toggle raw display
8989 T16 T^{16} Copy content Toggle raw display
9797 T16 T^{16} Copy content Toggle raw display
show more
show less