Properties

Label 3654.2.f.b.755.7
Level $3654$
Weight $2$
Character 3654.755
Analytic conductor $29.177$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3654,2,Mod(755,3654)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3654.755"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3654, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3654 = 2 \cdot 3^{2} \cdot 7 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3654.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,-40,0,0,-4,0,0,0,0,0,0,0,0,40,0,0,0,0,0,8,0,0,64] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(25)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.1773368986\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 755.7
Character \(\chi\) \(=\) 3654.755
Dual form 3654.2.f.b.755.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000 q^{4} -2.09396 q^{5} +(-2.34749 - 1.22036i) q^{7} +1.00000i q^{8} +2.09396i q^{10} +5.08562i q^{11} +5.72887i q^{13} +(-1.22036 + 2.34749i) q^{14} +1.00000 q^{16} +0.0838140 q^{17} +2.68374i q^{19} +2.09396 q^{20} +5.08562 q^{22} -5.04508i q^{23} -0.615315 q^{25} +5.72887 q^{26} +(2.34749 + 1.22036i) q^{28} -1.00000i q^{29} -2.19960i q^{31} -1.00000i q^{32} -0.0838140i q^{34} +(4.91557 + 2.55538i) q^{35} -1.46824 q^{37} +2.68374 q^{38} -2.09396i q^{40} +6.62193 q^{41} +7.01012 q^{43} -5.08562i q^{44} -5.04508 q^{46} -10.0266 q^{47} +(4.02146 + 5.72956i) q^{49} +0.615315i q^{50} -5.72887i q^{52} -3.12887i q^{53} -10.6491i q^{55} +(1.22036 - 2.34749i) q^{56} -1.00000 q^{58} -6.23070 q^{59} -0.169107i q^{61} -2.19960 q^{62} -1.00000 q^{64} -11.9960i q^{65} -0.665504 q^{67} -0.0838140 q^{68} +(2.55538 - 4.91557i) q^{70} -14.8331i q^{71} -3.15651i q^{73} +1.46824i q^{74} -2.68374i q^{76} +(6.20628 - 11.9385i) q^{77} +6.53737 q^{79} -2.09396 q^{80} -6.62193i q^{82} -7.54921 q^{83} -0.175503 q^{85} -7.01012i q^{86} -5.08562 q^{88} -13.0060 q^{89} +(6.99127 - 13.4485i) q^{91} +5.04508i q^{92} +10.0266i q^{94} -5.61966i q^{95} +7.01498i q^{97} +(5.72956 - 4.02146i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 40 q^{4} - 4 q^{7} + 40 q^{16} + 8 q^{22} + 64 q^{25} + 4 q^{28} - 48 q^{37} - 8 q^{43} + 8 q^{46} + 36 q^{49} - 40 q^{58} - 40 q^{64} + 24 q^{67} + 28 q^{70} - 144 q^{79} - 24 q^{85} - 8 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3654\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\) \(2089\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) −2.09396 −0.936449 −0.468225 0.883610i \(-0.655106\pi\)
−0.468225 + 0.883610i \(0.655106\pi\)
\(6\) 0 0
\(7\) −2.34749 1.22036i −0.887269 0.461252i
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 2.09396i 0.662170i
\(11\) 5.08562i 1.53337i 0.642022 + 0.766686i \(0.278096\pi\)
−0.642022 + 0.766686i \(0.721904\pi\)
\(12\) 0 0
\(13\) 5.72887i 1.58890i 0.607328 + 0.794451i \(0.292241\pi\)
−0.607328 + 0.794451i \(0.707759\pi\)
\(14\) −1.22036 + 2.34749i −0.326154 + 0.627394i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 0.0838140 0.0203279 0.0101639 0.999948i \(-0.496765\pi\)
0.0101639 + 0.999948i \(0.496765\pi\)
\(18\) 0 0
\(19\) 2.68374i 0.615692i 0.951436 + 0.307846i \(0.0996082\pi\)
−0.951436 + 0.307846i \(0.900392\pi\)
\(20\) 2.09396 0.468225
\(21\) 0 0
\(22\) 5.08562 1.08426
\(23\) 5.04508i 1.05197i −0.850493 0.525986i \(-0.823696\pi\)
0.850493 0.525986i \(-0.176304\pi\)
\(24\) 0 0
\(25\) −0.615315 −0.123063
\(26\) 5.72887 1.12352
\(27\) 0 0
\(28\) 2.34749 + 1.22036i 0.443635 + 0.230626i
\(29\) 1.00000i 0.185695i
\(30\) 0 0
\(31\) 2.19960i 0.395060i −0.980297 0.197530i \(-0.936708\pi\)
0.980297 0.197530i \(-0.0632919\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 0.0838140i 0.0143740i
\(35\) 4.91557 + 2.55538i 0.830883 + 0.431939i
\(36\) 0 0
\(37\) −1.46824 −0.241377 −0.120689 0.992690i \(-0.538510\pi\)
−0.120689 + 0.992690i \(0.538510\pi\)
\(38\) 2.68374 0.435360
\(39\) 0 0
\(40\) 2.09396i 0.331085i
\(41\) 6.62193 1.03417 0.517086 0.855934i \(-0.327017\pi\)
0.517086 + 0.855934i \(0.327017\pi\)
\(42\) 0 0
\(43\) 7.01012 1.06903 0.534517 0.845158i \(-0.320494\pi\)
0.534517 + 0.845158i \(0.320494\pi\)
\(44\) 5.08562i 0.766686i
\(45\) 0 0
\(46\) −5.04508 −0.743856
\(47\) −10.0266 −1.46253 −0.731266 0.682093i \(-0.761070\pi\)
−0.731266 + 0.682093i \(0.761070\pi\)
\(48\) 0 0
\(49\) 4.02146 + 5.72956i 0.574494 + 0.818509i
\(50\) 0.615315i 0.0870187i
\(51\) 0 0
\(52\) 5.72887i 0.794451i
\(53\) 3.12887i 0.429783i −0.976638 0.214892i \(-0.931060\pi\)
0.976638 0.214892i \(-0.0689398\pi\)
\(54\) 0 0
\(55\) 10.6491i 1.43593i
\(56\) 1.22036 2.34749i 0.163077 0.313697i
\(57\) 0 0
\(58\) −1.00000 −0.131306
\(59\) −6.23070 −0.811169 −0.405584 0.914058i \(-0.632932\pi\)
−0.405584 + 0.914058i \(0.632932\pi\)
\(60\) 0 0
\(61\) 0.169107i 0.0216519i −0.999941 0.0108260i \(-0.996554\pi\)
0.999941 0.0108260i \(-0.00344607\pi\)
\(62\) −2.19960 −0.279349
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 11.9960i 1.48793i
\(66\) 0 0
\(67\) −0.665504 −0.0813043 −0.0406521 0.999173i \(-0.512944\pi\)
−0.0406521 + 0.999173i \(0.512944\pi\)
\(68\) −0.0838140 −0.0101639
\(69\) 0 0
\(70\) 2.55538 4.91557i 0.305427 0.587523i
\(71\) 14.8331i 1.76036i −0.474638 0.880181i \(-0.657421\pi\)
0.474638 0.880181i \(-0.342579\pi\)
\(72\) 0 0
\(73\) 3.15651i 0.369441i −0.982791 0.184721i \(-0.940862\pi\)
0.982791 0.184721i \(-0.0591380\pi\)
\(74\) 1.46824i 0.170679i
\(75\) 0 0
\(76\) 2.68374i 0.307846i
\(77\) 6.20628 11.9385i 0.707271 1.36051i
\(78\) 0 0
\(79\) 6.53737 0.735512 0.367756 0.929922i \(-0.380126\pi\)
0.367756 + 0.929922i \(0.380126\pi\)
\(80\) −2.09396 −0.234112
\(81\) 0 0
\(82\) 6.62193i 0.731269i
\(83\) −7.54921 −0.828634 −0.414317 0.910133i \(-0.635980\pi\)
−0.414317 + 0.910133i \(0.635980\pi\)
\(84\) 0 0
\(85\) −0.175503 −0.0190360
\(86\) 7.01012i 0.755921i
\(87\) 0 0
\(88\) −5.08562 −0.542129
\(89\) −13.0060 −1.37863 −0.689317 0.724460i \(-0.742089\pi\)
−0.689317 + 0.724460i \(0.742089\pi\)
\(90\) 0 0
\(91\) 6.99127 13.4485i 0.732884 1.40978i
\(92\) 5.04508i 0.525986i
\(93\) 0 0
\(94\) 10.0266i 1.03417i
\(95\) 5.61966i 0.576565i
\(96\) 0 0
\(97\) 7.01498i 0.712263i 0.934436 + 0.356132i \(0.115905\pi\)
−0.934436 + 0.356132i \(0.884095\pi\)
\(98\) 5.72956 4.02146i 0.578773 0.406228i
\(99\) 0 0
\(100\) 0.615315 0.0615315
\(101\) −11.7521 −1.16938 −0.584689 0.811258i \(-0.698783\pi\)
−0.584689 + 0.811258i \(0.698783\pi\)
\(102\) 0 0
\(103\) 16.9944i 1.67450i 0.546817 + 0.837252i \(0.315839\pi\)
−0.546817 + 0.837252i \(0.684161\pi\)
\(104\) −5.72887 −0.561762
\(105\) 0 0
\(106\) −3.12887 −0.303903
\(107\) 7.80211i 0.754258i −0.926161 0.377129i \(-0.876911\pi\)
0.926161 0.377129i \(-0.123089\pi\)
\(108\) 0 0
\(109\) −0.524959 −0.0502819 −0.0251410 0.999684i \(-0.508003\pi\)
−0.0251410 + 0.999684i \(0.508003\pi\)
\(110\) −10.6491 −1.01535
\(111\) 0 0
\(112\) −2.34749 1.22036i −0.221817 0.115313i
\(113\) 9.71468i 0.913880i −0.889497 0.456940i \(-0.848945\pi\)
0.889497 0.456940i \(-0.151055\pi\)
\(114\) 0 0
\(115\) 10.5642i 0.985118i
\(116\) 1.00000i 0.0928477i
\(117\) 0 0
\(118\) 6.23070i 0.573583i
\(119\) −0.196753 0.102283i −0.0180363 0.00937627i
\(120\) 0 0
\(121\) −14.8635 −1.35123
\(122\) −0.169107 −0.0153102
\(123\) 0 0
\(124\) 2.19960i 0.197530i
\(125\) 11.7583 1.05169
\(126\) 0 0
\(127\) 6.11874 0.542950 0.271475 0.962445i \(-0.412489\pi\)
0.271475 + 0.962445i \(0.412489\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) −11.9960 −1.05212
\(131\) −1.78939 −0.156339 −0.0781697 0.996940i \(-0.524908\pi\)
−0.0781697 + 0.996940i \(0.524908\pi\)
\(132\) 0 0
\(133\) 3.27512 6.30007i 0.283989 0.546285i
\(134\) 0.665504i 0.0574908i
\(135\) 0 0
\(136\) 0.0838140i 0.00718699i
\(137\) 9.58464i 0.818871i 0.912339 + 0.409436i \(0.134274\pi\)
−0.912339 + 0.409436i \(0.865726\pi\)
\(138\) 0 0
\(139\) 3.98318i 0.337849i 0.985629 + 0.168924i \(0.0540293\pi\)
−0.985629 + 0.168924i \(0.945971\pi\)
\(140\) −4.91557 2.55538i −0.415441 0.215969i
\(141\) 0 0
\(142\) −14.8331 −1.24476
\(143\) −29.1348 −2.43638
\(144\) 0 0
\(145\) 2.09396i 0.173894i
\(146\) −3.15651 −0.261235
\(147\) 0 0
\(148\) 1.46824 0.120689
\(149\) 6.42874i 0.526663i −0.964705 0.263332i \(-0.915179\pi\)
0.964705 0.263332i \(-0.0848213\pi\)
\(150\) 0 0
\(151\) −12.1904 −0.992041 −0.496020 0.868311i \(-0.665206\pi\)
−0.496020 + 0.868311i \(0.665206\pi\)
\(152\) −2.68374 −0.217680
\(153\) 0 0
\(154\) −11.9385 6.20628i −0.962029 0.500116i
\(155\) 4.60588i 0.369953i
\(156\) 0 0
\(157\) 8.65041i 0.690378i −0.938533 0.345189i \(-0.887815\pi\)
0.938533 0.345189i \(-0.112185\pi\)
\(158\) 6.53737i 0.520085i
\(159\) 0 0
\(160\) 2.09396i 0.165542i
\(161\) −6.15680 + 11.8433i −0.485224 + 0.933382i
\(162\) 0 0
\(163\) 22.7342 1.78068 0.890341 0.455295i \(-0.150466\pi\)
0.890341 + 0.455295i \(0.150466\pi\)
\(164\) −6.62193 −0.517086
\(165\) 0 0
\(166\) 7.54921i 0.585933i
\(167\) −8.25057 −0.638448 −0.319224 0.947679i \(-0.603422\pi\)
−0.319224 + 0.947679i \(0.603422\pi\)
\(168\) 0 0
\(169\) −19.8199 −1.52461
\(170\) 0.175503i 0.0134605i
\(171\) 0 0
\(172\) −7.01012 −0.534517
\(173\) 23.0659 1.75367 0.876834 0.480793i \(-0.159651\pi\)
0.876834 + 0.480793i \(0.159651\pi\)
\(174\) 0 0
\(175\) 1.44445 + 0.750905i 0.109190 + 0.0567631i
\(176\) 5.08562i 0.383343i
\(177\) 0 0
\(178\) 13.0060i 0.974842i
\(179\) 12.2767i 0.917602i 0.888539 + 0.458801i \(0.151721\pi\)
−0.888539 + 0.458801i \(0.848279\pi\)
\(180\) 0 0
\(181\) 16.2132i 1.20512i 0.798075 + 0.602558i \(0.205852\pi\)
−0.798075 + 0.602558i \(0.794148\pi\)
\(182\) −13.4485 6.99127i −0.996868 0.518227i
\(183\) 0 0
\(184\) 5.04508 0.371928
\(185\) 3.07444 0.226037
\(186\) 0 0
\(187\) 0.426246i 0.0311702i
\(188\) 10.0266 0.731266
\(189\) 0 0
\(190\) −5.61966 −0.407693
\(191\) 3.14319i 0.227433i −0.993513 0.113717i \(-0.963724\pi\)
0.993513 0.113717i \(-0.0362756\pi\)
\(192\) 0 0
\(193\) −0.241791 −0.0174045 −0.00870225 0.999962i \(-0.502770\pi\)
−0.00870225 + 0.999962i \(0.502770\pi\)
\(194\) 7.01498 0.503646
\(195\) 0 0
\(196\) −4.02146 5.72956i −0.287247 0.409255i
\(197\) 24.6873i 1.75890i −0.475996 0.879448i \(-0.657912\pi\)
0.475996 0.879448i \(-0.342088\pi\)
\(198\) 0 0
\(199\) 24.5655i 1.74140i −0.491813 0.870701i \(-0.663665\pi\)
0.491813 0.870701i \(-0.336335\pi\)
\(200\) 0.615315i 0.0435094i
\(201\) 0 0
\(202\) 11.7521i 0.826875i
\(203\) −1.22036 + 2.34749i −0.0856523 + 0.164762i
\(204\) 0 0
\(205\) −13.8661 −0.968449
\(206\) 16.9944 1.18405
\(207\) 0 0
\(208\) 5.72887i 0.397225i
\(209\) −13.6485 −0.944086
\(210\) 0 0
\(211\) −6.52086 −0.448914 −0.224457 0.974484i \(-0.572061\pi\)
−0.224457 + 0.974484i \(0.572061\pi\)
\(212\) 3.12887i 0.214892i
\(213\) 0 0
\(214\) −7.80211 −0.533341
\(215\) −14.6789 −1.00110
\(216\) 0 0
\(217\) −2.68430 + 5.16354i −0.182222 + 0.350524i
\(218\) 0.524959i 0.0355547i
\(219\) 0 0
\(220\) 10.6491i 0.717963i
\(221\) 0.480159i 0.0322990i
\(222\) 0 0
\(223\) 27.8778i 1.86683i −0.358794 0.933417i \(-0.616812\pi\)
0.358794 0.933417i \(-0.383188\pi\)
\(224\) −1.22036 + 2.34749i −0.0815386 + 0.156849i
\(225\) 0 0
\(226\) −9.71468 −0.646211
\(227\) −10.3089 −0.684227 −0.342114 0.939659i \(-0.611143\pi\)
−0.342114 + 0.939659i \(0.611143\pi\)
\(228\) 0 0
\(229\) 3.04938i 0.201509i 0.994911 + 0.100754i \(0.0321256\pi\)
−0.994911 + 0.100754i \(0.967874\pi\)
\(230\) 10.5642 0.696584
\(231\) 0 0
\(232\) 1.00000 0.0656532
\(233\) 21.3292i 1.39732i −0.715453 0.698661i \(-0.753780\pi\)
0.715453 0.698661i \(-0.246220\pi\)
\(234\) 0 0
\(235\) 20.9954 1.36959
\(236\) 6.23070 0.405584
\(237\) 0 0
\(238\) −0.102283 + 0.196753i −0.00663002 + 0.0127536i
\(239\) 16.6158i 1.07478i −0.843333 0.537392i \(-0.819410\pi\)
0.843333 0.537392i \(-0.180590\pi\)
\(240\) 0 0
\(241\) 4.60540i 0.296660i −0.988938 0.148330i \(-0.952610\pi\)
0.988938 0.148330i \(-0.0473898\pi\)
\(242\) 14.8635i 0.955465i
\(243\) 0 0
\(244\) 0.169107i 0.0108260i
\(245\) −8.42078 11.9975i −0.537984 0.766492i
\(246\) 0 0
\(247\) −15.3748 −0.978275
\(248\) 2.19960 0.139675
\(249\) 0 0
\(250\) 11.7583i 0.743658i
\(251\) 14.0707 0.888136 0.444068 0.895993i \(-0.353535\pi\)
0.444068 + 0.895993i \(0.353535\pi\)
\(252\) 0 0
\(253\) 25.6574 1.61306
\(254\) 6.11874i 0.383924i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −9.15106 −0.570827 −0.285414 0.958404i \(-0.592131\pi\)
−0.285414 + 0.958404i \(0.592131\pi\)
\(258\) 0 0
\(259\) 3.44668 + 1.79178i 0.214166 + 0.111336i
\(260\) 11.9960i 0.743963i
\(261\) 0 0
\(262\) 1.78939i 0.110549i
\(263\) 27.3278i 1.68510i −0.538615 0.842552i \(-0.681052\pi\)
0.538615 0.842552i \(-0.318948\pi\)
\(264\) 0 0
\(265\) 6.55174i 0.402470i
\(266\) −6.30007 3.27512i −0.386282 0.200811i
\(267\) 0 0
\(268\) 0.665504 0.0406521
\(269\) −12.9376 −0.788820 −0.394410 0.918935i \(-0.629051\pi\)
−0.394410 + 0.918935i \(0.629051\pi\)
\(270\) 0 0
\(271\) 20.4152i 1.24013i −0.784549 0.620067i \(-0.787105\pi\)
0.784549 0.620067i \(-0.212895\pi\)
\(272\) 0.0838140 0.00508197
\(273\) 0 0
\(274\) 9.58464 0.579029
\(275\) 3.12926i 0.188702i
\(276\) 0 0
\(277\) −18.2251 −1.09504 −0.547520 0.836792i \(-0.684428\pi\)
−0.547520 + 0.836792i \(0.684428\pi\)
\(278\) 3.98318 0.238895
\(279\) 0 0
\(280\) −2.55538 + 4.91557i −0.152713 + 0.293761i
\(281\) 18.3462i 1.09444i 0.836988 + 0.547221i \(0.184314\pi\)
−0.836988 + 0.547221i \(0.815686\pi\)
\(282\) 0 0
\(283\) 24.9977i 1.48596i −0.669313 0.742981i \(-0.733411\pi\)
0.669313 0.742981i \(-0.266589\pi\)
\(284\) 14.8331i 0.880181i
\(285\) 0 0
\(286\) 29.1348i 1.72278i
\(287\) −15.5449 8.08112i −0.917588 0.477013i
\(288\) 0 0
\(289\) −16.9930 −0.999587
\(290\) 2.09396 0.122962
\(291\) 0 0
\(292\) 3.15651i 0.184721i
\(293\) 27.2313 1.59087 0.795436 0.606038i \(-0.207242\pi\)
0.795436 + 0.606038i \(0.207242\pi\)
\(294\) 0 0
\(295\) 13.0469 0.759618
\(296\) 1.46824i 0.0853397i
\(297\) 0 0
\(298\) −6.42874 −0.372407
\(299\) 28.9026 1.67148
\(300\) 0 0
\(301\) −16.4562 8.55485i −0.948521 0.493094i
\(302\) 12.1904i 0.701479i
\(303\) 0 0
\(304\) 2.68374i 0.153923i
\(305\) 0.354103i 0.0202759i
\(306\) 0 0
\(307\) 11.1820i 0.638190i 0.947723 + 0.319095i \(0.103379\pi\)
−0.947723 + 0.319095i \(0.896621\pi\)
\(308\) −6.20628 + 11.9385i −0.353635 + 0.680257i
\(309\) 0 0
\(310\) 4.60588 0.261596
\(311\) 23.5365 1.33463 0.667317 0.744773i \(-0.267442\pi\)
0.667317 + 0.744773i \(0.267442\pi\)
\(312\) 0 0
\(313\) 23.8054i 1.34556i −0.739841 0.672782i \(-0.765099\pi\)
0.739841 0.672782i \(-0.234901\pi\)
\(314\) −8.65041 −0.488171
\(315\) 0 0
\(316\) −6.53737 −0.367756
\(317\) 22.6738i 1.27349i −0.771075 0.636745i \(-0.780281\pi\)
0.771075 0.636745i \(-0.219719\pi\)
\(318\) 0 0
\(319\) 5.08562 0.284740
\(320\) 2.09396 0.117056
\(321\) 0 0
\(322\) 11.8433 + 6.15680i 0.660001 + 0.343105i
\(323\) 0.224935i 0.0125157i
\(324\) 0 0
\(325\) 3.52506i 0.195535i
\(326\) 22.7342i 1.25913i
\(327\) 0 0
\(328\) 6.62193i 0.365635i
\(329\) 23.5374 + 12.2360i 1.29766 + 0.674595i
\(330\) 0 0
\(331\) −18.0202 −0.990480 −0.495240 0.868756i \(-0.664920\pi\)
−0.495240 + 0.868756i \(0.664920\pi\)
\(332\) 7.54921 0.414317
\(333\) 0 0
\(334\) 8.25057i 0.451451i
\(335\) 1.39354 0.0761373
\(336\) 0 0
\(337\) 15.8472 0.863250 0.431625 0.902053i \(-0.357940\pi\)
0.431625 + 0.902053i \(0.357940\pi\)
\(338\) 19.8199i 1.07806i
\(339\) 0 0
\(340\) 0.175503 0.00951801
\(341\) 11.1863 0.605774
\(342\) 0 0
\(343\) −2.44823 18.3577i −0.132192 0.991224i
\(344\) 7.01012i 0.377960i
\(345\) 0 0
\(346\) 23.0659i 1.24003i
\(347\) 10.6587i 0.572187i −0.958202 0.286093i \(-0.907643\pi\)
0.958202 0.286093i \(-0.0923568\pi\)
\(348\) 0 0
\(349\) 28.9116i 1.54760i 0.633427 + 0.773802i \(0.281648\pi\)
−0.633427 + 0.773802i \(0.718352\pi\)
\(350\) 0.750905 1.44445i 0.0401375 0.0772091i
\(351\) 0 0
\(352\) 5.08562 0.271065
\(353\) −21.2889 −1.13309 −0.566546 0.824030i \(-0.691721\pi\)
−0.566546 + 0.824030i \(0.691721\pi\)
\(354\) 0 0
\(355\) 31.0599i 1.64849i
\(356\) 13.0060 0.689317
\(357\) 0 0
\(358\) 12.2767 0.648843
\(359\) 10.5541i 0.557024i −0.960433 0.278512i \(-0.910159\pi\)
0.960433 0.278512i \(-0.0898411\pi\)
\(360\) 0 0
\(361\) 11.7975 0.620923
\(362\) 16.2132 0.852146
\(363\) 0 0
\(364\) −6.99127 + 13.4485i −0.366442 + 0.704892i
\(365\) 6.60961i 0.345963i
\(366\) 0 0
\(367\) 30.1107i 1.57176i 0.618376 + 0.785882i \(0.287791\pi\)
−0.618376 + 0.785882i \(0.712209\pi\)
\(368\) 5.04508i 0.262993i
\(369\) 0 0
\(370\) 3.07444i 0.159833i
\(371\) −3.81834 + 7.34500i −0.198238 + 0.381334i
\(372\) 0 0
\(373\) −0.225433 −0.0116725 −0.00583625 0.999983i \(-0.501858\pi\)
−0.00583625 + 0.999983i \(0.501858\pi\)
\(374\) 0.426246 0.0220407
\(375\) 0 0
\(376\) 10.0266i 0.517083i
\(377\) 5.72887 0.295052
\(378\) 0 0
\(379\) 21.9143 1.12566 0.562831 0.826572i \(-0.309712\pi\)
0.562831 + 0.826572i \(0.309712\pi\)
\(380\) 5.61966i 0.288282i
\(381\) 0 0
\(382\) −3.14319 −0.160820
\(383\) −13.2298 −0.676013 −0.338006 0.941144i \(-0.609753\pi\)
−0.338006 + 0.941144i \(0.609753\pi\)
\(384\) 0 0
\(385\) −12.9957 + 24.9987i −0.662323 + 1.27405i
\(386\) 0.241791i 0.0123068i
\(387\) 0 0
\(388\) 7.01498i 0.356132i
\(389\) 20.3750i 1.03305i 0.856272 + 0.516526i \(0.172775\pi\)
−0.856272 + 0.516526i \(0.827225\pi\)
\(390\) 0 0
\(391\) 0.422848i 0.0213843i
\(392\) −5.72956 + 4.02146i −0.289387 + 0.203114i
\(393\) 0 0
\(394\) −24.6873 −1.24373
\(395\) −13.6890 −0.688769
\(396\) 0 0
\(397\) 16.6678i 0.836531i 0.908325 + 0.418265i \(0.137362\pi\)
−0.908325 + 0.418265i \(0.862638\pi\)
\(398\) −24.5655 −1.23136
\(399\) 0 0
\(400\) −0.615315 −0.0307658
\(401\) 15.7493i 0.786485i −0.919435 0.393242i \(-0.871353\pi\)
0.919435 0.393242i \(-0.128647\pi\)
\(402\) 0 0
\(403\) 12.6012 0.627711
\(404\) 11.7521 0.584689
\(405\) 0 0
\(406\) 2.34749 + 1.22036i 0.116504 + 0.0605653i
\(407\) 7.46691i 0.370121i
\(408\) 0 0
\(409\) 17.0312i 0.842139i −0.907028 0.421069i \(-0.861655\pi\)
0.907028 0.421069i \(-0.138345\pi\)
\(410\) 13.8661i 0.684797i
\(411\) 0 0
\(412\) 16.9944i 0.837252i
\(413\) 14.6265 + 7.60369i 0.719725 + 0.374153i
\(414\) 0 0
\(415\) 15.8078 0.775974
\(416\) 5.72887 0.280881
\(417\) 0 0
\(418\) 13.6485i 0.667570i
\(419\) −11.5262 −0.563093 −0.281546 0.959548i \(-0.590847\pi\)
−0.281546 + 0.959548i \(0.590847\pi\)
\(420\) 0 0
\(421\) −21.5417 −1.04988 −0.524939 0.851140i \(-0.675912\pi\)
−0.524939 + 0.851140i \(0.675912\pi\)
\(422\) 6.52086i 0.317430i
\(423\) 0 0
\(424\) 3.12887 0.151951
\(425\) −0.0515720 −0.00250161
\(426\) 0 0
\(427\) −0.206371 + 0.396977i −0.00998698 + 0.0192111i
\(428\) 7.80211i 0.377129i
\(429\) 0 0
\(430\) 14.6789i 0.707881i
\(431\) 14.9330i 0.719298i −0.933088 0.359649i \(-0.882896\pi\)
0.933088 0.359649i \(-0.117104\pi\)
\(432\) 0 0
\(433\) 16.3522i 0.785837i −0.919573 0.392918i \(-0.871465\pi\)
0.919573 0.392918i \(-0.128535\pi\)
\(434\) 5.16354 + 2.68430i 0.247858 + 0.128850i
\(435\) 0 0
\(436\) 0.524959 0.0251410
\(437\) 13.5397 0.647691
\(438\) 0 0
\(439\) 20.9177i 0.998348i 0.866502 + 0.499174i \(0.166363\pi\)
−0.866502 + 0.499174i \(0.833637\pi\)
\(440\) 10.6491 0.507676
\(441\) 0 0
\(442\) 0.480159 0.0228388
\(443\) 17.2290i 0.818576i 0.912405 + 0.409288i \(0.134223\pi\)
−0.912405 + 0.409288i \(0.865777\pi\)
\(444\) 0 0
\(445\) 27.2341 1.29102
\(446\) −27.8778 −1.32005
\(447\) 0 0
\(448\) 2.34749 + 1.22036i 0.110909 + 0.0576565i
\(449\) 19.5036i 0.920434i −0.887807 0.460217i \(-0.847772\pi\)
0.887807 0.460217i \(-0.152228\pi\)
\(450\) 0 0
\(451\) 33.6766i 1.58577i
\(452\) 9.71468i 0.456940i
\(453\) 0 0
\(454\) 10.3089i 0.483822i
\(455\) −14.6395 + 28.1606i −0.686308 + 1.32019i
\(456\) 0 0
\(457\) −22.5735 −1.05594 −0.527972 0.849262i \(-0.677047\pi\)
−0.527972 + 0.849262i \(0.677047\pi\)
\(458\) 3.04938 0.142488
\(459\) 0 0
\(460\) 10.5642i 0.492559i
\(461\) 0.0153958 0.000717054 0.000358527 1.00000i \(-0.499886\pi\)
0.000358527 1.00000i \(0.499886\pi\)
\(462\) 0 0
\(463\) 12.9800 0.603230 0.301615 0.953430i \(-0.402474\pi\)
0.301615 + 0.953430i \(0.402474\pi\)
\(464\) 1.00000i 0.0464238i
\(465\) 0 0
\(466\) −21.3292 −0.988056
\(467\) 15.2541 0.705875 0.352937 0.935647i \(-0.385183\pi\)
0.352937 + 0.935647i \(0.385183\pi\)
\(468\) 0 0
\(469\) 1.56227 + 0.812153i 0.0721388 + 0.0375017i
\(470\) 20.9954i 0.968444i
\(471\) 0 0
\(472\) 6.23070i 0.286791i
\(473\) 35.6508i 1.63923i
\(474\) 0 0
\(475\) 1.65135i 0.0757690i
\(476\) 0.196753 + 0.102283i 0.00901815 + 0.00468813i
\(477\) 0 0
\(478\) −16.6158 −0.759987
\(479\) 18.0263 0.823643 0.411821 0.911265i \(-0.364893\pi\)
0.411821 + 0.911265i \(0.364893\pi\)
\(480\) 0 0
\(481\) 8.41135i 0.383524i
\(482\) −4.60540 −0.209770
\(483\) 0 0
\(484\) 14.8635 0.675616
\(485\) 14.6891i 0.666999i
\(486\) 0 0
\(487\) −7.06154 −0.319989 −0.159995 0.987118i \(-0.551148\pi\)
−0.159995 + 0.987118i \(0.551148\pi\)
\(488\) 0.169107 0.00765510
\(489\) 0 0
\(490\) −11.9975 + 8.42078i −0.541992 + 0.380412i
\(491\) 23.8411i 1.07593i 0.842966 + 0.537967i \(0.180807\pi\)
−0.842966 + 0.537967i \(0.819193\pi\)
\(492\) 0 0
\(493\) 0.0838140i 0.00377479i
\(494\) 15.3748i 0.691745i
\(495\) 0 0
\(496\) 2.19960i 0.0987649i
\(497\) −18.1017 + 34.8205i −0.811970 + 1.56191i
\(498\) 0 0
\(499\) −38.1415 −1.70745 −0.853723 0.520727i \(-0.825661\pi\)
−0.853723 + 0.520727i \(0.825661\pi\)
\(500\) −11.7583 −0.525846
\(501\) 0 0
\(502\) 14.0707i 0.628007i
\(503\) −21.7081 −0.967915 −0.483958 0.875091i \(-0.660801\pi\)
−0.483958 + 0.875091i \(0.660801\pi\)
\(504\) 0 0
\(505\) 24.6085 1.09506
\(506\) 25.6574i 1.14061i
\(507\) 0 0
\(508\) −6.11874 −0.271475
\(509\) −0.959344 −0.0425222 −0.0212611 0.999774i \(-0.506768\pi\)
−0.0212611 + 0.999774i \(0.506768\pi\)
\(510\) 0 0
\(511\) −3.85207 + 7.40988i −0.170405 + 0.327794i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 9.15106i 0.403636i
\(515\) 35.5856i 1.56809i
\(516\) 0 0
\(517\) 50.9915i 2.24261i
\(518\) 1.79178 3.44668i 0.0787261 0.151439i
\(519\) 0 0
\(520\) 11.9960 0.526061
\(521\) 40.1191 1.75765 0.878826 0.477143i \(-0.158328\pi\)
0.878826 + 0.477143i \(0.158328\pi\)
\(522\) 0 0
\(523\) 30.6470i 1.34010i −0.742316 0.670050i \(-0.766272\pi\)
0.742316 0.670050i \(-0.233728\pi\)
\(524\) 1.78939 0.0781697
\(525\) 0 0
\(526\) −27.3278 −1.19155
\(527\) 0.184357i 0.00803072i
\(528\) 0 0
\(529\) −2.45282 −0.106644
\(530\) 6.55174 0.284589
\(531\) 0 0
\(532\) −3.27512 + 6.30007i −0.141995 + 0.273142i
\(533\) 37.9361i 1.64320i
\(534\) 0 0
\(535\) 16.3373i 0.706324i
\(536\) 0.665504i 0.0287454i
\(537\) 0 0
\(538\) 12.9376i 0.557780i
\(539\) −29.1384 + 20.4516i −1.25508 + 0.880913i
\(540\) 0 0
\(541\) 14.3509 0.616993 0.308497 0.951225i \(-0.400174\pi\)
0.308497 + 0.951225i \(0.400174\pi\)
\(542\) −20.4152 −0.876907
\(543\) 0 0
\(544\) 0.0838140i 0.00359349i
\(545\) 1.09924 0.0470864
\(546\) 0 0
\(547\) 41.7345 1.78444 0.892219 0.451602i \(-0.149147\pi\)
0.892219 + 0.451602i \(0.149147\pi\)
\(548\) 9.58464i 0.409436i
\(549\) 0 0
\(550\) −3.12926 −0.133432
\(551\) 2.68374 0.114331
\(552\) 0 0
\(553\) −15.3464 7.97793i −0.652597 0.339256i
\(554\) 18.2251i 0.774311i
\(555\) 0 0
\(556\) 3.98318i 0.168924i
\(557\) 2.51524i 0.106574i −0.998579 0.0532870i \(-0.983030\pi\)
0.998579 0.0532870i \(-0.0169698\pi\)
\(558\) 0 0
\(559\) 40.1600i 1.69859i
\(560\) 4.91557 + 2.55538i 0.207721 + 0.107985i
\(561\) 0 0
\(562\) 18.3462 0.773887
\(563\) 39.8123 1.67789 0.838944 0.544217i \(-0.183173\pi\)
0.838944 + 0.544217i \(0.183173\pi\)
\(564\) 0 0
\(565\) 20.3422i 0.855802i
\(566\) −24.9977 −1.05073
\(567\) 0 0
\(568\) 14.8331 0.622382
\(569\) 24.6357i 1.03278i 0.856353 + 0.516391i \(0.172725\pi\)
−0.856353 + 0.516391i \(0.827275\pi\)
\(570\) 0 0
\(571\) −8.43767 −0.353106 −0.176553 0.984291i \(-0.556495\pi\)
−0.176553 + 0.984291i \(0.556495\pi\)
\(572\) 29.1348 1.21819
\(573\) 0 0
\(574\) −8.08112 + 15.5449i −0.337299 + 0.648833i
\(575\) 3.10431i 0.129459i
\(576\) 0 0
\(577\) 1.19465i 0.0497338i 0.999691 + 0.0248669i \(0.00791620\pi\)
−0.999691 + 0.0248669i \(0.992084\pi\)
\(578\) 16.9930i 0.706815i
\(579\) 0 0
\(580\) 2.09396i 0.0869471i
\(581\) 17.7217 + 9.21274i 0.735221 + 0.382209i
\(582\) 0 0
\(583\) 15.9122 0.659018
\(584\) 3.15651 0.130617
\(585\) 0 0
\(586\) 27.2313i 1.12492i
\(587\) −0.594115 −0.0245217 −0.0122609 0.999925i \(-0.503903\pi\)
−0.0122609 + 0.999925i \(0.503903\pi\)
\(588\) 0 0
\(589\) 5.90315 0.243235
\(590\) 13.0469i 0.537131i
\(591\) 0 0
\(592\) −1.46824 −0.0603443
\(593\) −30.0394 −1.23357 −0.616786 0.787131i \(-0.711566\pi\)
−0.616786 + 0.787131i \(0.711566\pi\)
\(594\) 0 0
\(595\) 0.411993 + 0.214177i 0.0168901 + 0.00878040i
\(596\) 6.42874i 0.263332i
\(597\) 0 0
\(598\) 28.9026i 1.18191i
\(599\) 30.3348i 1.23944i −0.784821 0.619722i \(-0.787245\pi\)
0.784821 0.619722i \(-0.212755\pi\)
\(600\) 0 0
\(601\) 6.04673i 0.246651i 0.992366 + 0.123326i \(0.0393560\pi\)
−0.992366 + 0.123326i \(0.960644\pi\)
\(602\) −8.55485 + 16.4562i −0.348670 + 0.670705i
\(603\) 0 0
\(604\) 12.1904 0.496020
\(605\) 31.1237 1.26536
\(606\) 0 0
\(607\) 20.4214i 0.828879i 0.910077 + 0.414439i \(0.136022\pi\)
−0.910077 + 0.414439i \(0.863978\pi\)
\(608\) 2.68374 0.108840
\(609\) 0 0
\(610\) 0.354103 0.0143372
\(611\) 57.4411i 2.32382i
\(612\) 0 0
\(613\) 20.4858 0.827412 0.413706 0.910410i \(-0.364234\pi\)
0.413706 + 0.910410i \(0.364234\pi\)
\(614\) 11.1820 0.451268
\(615\) 0 0
\(616\) 11.9385 + 6.20628i 0.481014 + 0.250058i
\(617\) 16.0855i 0.647577i 0.946129 + 0.323789i \(0.104957\pi\)
−0.946129 + 0.323789i \(0.895043\pi\)
\(618\) 0 0
\(619\) 11.6153i 0.466860i −0.972374 0.233430i \(-0.925005\pi\)
0.972374 0.233430i \(-0.0749949\pi\)
\(620\) 4.60588i 0.184977i
\(621\) 0 0
\(622\) 23.5365i 0.943729i
\(623\) 30.5315 + 15.8720i 1.22322 + 0.635897i
\(624\) 0 0
\(625\) −21.5448 −0.861792
\(626\) −23.8054 −0.951457
\(627\) 0 0
\(628\) 8.65041i 0.345189i
\(629\) −0.123059 −0.00490668
\(630\) 0 0
\(631\) 32.9932 1.31344 0.656719 0.754135i \(-0.271944\pi\)
0.656719 + 0.754135i \(0.271944\pi\)
\(632\) 6.53737i 0.260043i
\(633\) 0 0
\(634\) −22.6738 −0.900493
\(635\) −12.8124 −0.508445
\(636\) 0 0
\(637\) −32.8239 + 23.0384i −1.30053 + 0.912814i
\(638\) 5.08562i 0.201342i
\(639\) 0 0
\(640\) 2.09396i 0.0827712i
\(641\) 12.4544i 0.491919i 0.969280 + 0.245960i \(0.0791030\pi\)
−0.969280 + 0.245960i \(0.920897\pi\)
\(642\) 0 0
\(643\) 38.4148i 1.51493i −0.652874 0.757466i \(-0.726437\pi\)
0.652874 0.757466i \(-0.273563\pi\)
\(644\) 6.15680 11.8433i 0.242612 0.466691i
\(645\) 0 0
\(646\) 0.224935 0.00884995
\(647\) −8.14883 −0.320363 −0.160182 0.987088i \(-0.551208\pi\)
−0.160182 + 0.987088i \(0.551208\pi\)
\(648\) 0 0
\(649\) 31.6870i 1.24382i
\(650\) −3.52506 −0.138264
\(651\) 0 0
\(652\) −22.7342 −0.890341
\(653\) 40.6424i 1.59046i 0.606309 + 0.795229i \(0.292650\pi\)
−0.606309 + 0.795229i \(0.707350\pi\)
\(654\) 0 0
\(655\) 3.74691 0.146404
\(656\) 6.62193 0.258543
\(657\) 0 0
\(658\) 12.2360 23.5374i 0.477011 0.917584i
\(659\) 18.1503i 0.707034i 0.935428 + 0.353517i \(0.115014\pi\)
−0.935428 + 0.353517i \(0.884986\pi\)
\(660\) 0 0
\(661\) 23.4847i 0.913448i −0.889608 0.456724i \(-0.849023\pi\)
0.889608 0.456724i \(-0.150977\pi\)
\(662\) 18.0202i 0.700375i
\(663\) 0 0
\(664\) 7.54921i 0.292966i
\(665\) −6.85799 + 13.1921i −0.265941 + 0.511568i
\(666\) 0 0
\(667\) −5.04508 −0.195346
\(668\) 8.25057 0.319224
\(669\) 0 0
\(670\) 1.39354i 0.0538372i
\(671\) 0.860013 0.0332004
\(672\) 0 0
\(673\) 15.8132 0.609553 0.304776 0.952424i \(-0.401418\pi\)
0.304776 + 0.952424i \(0.401418\pi\)
\(674\) 15.8472i 0.610410i
\(675\) 0 0
\(676\) 19.8199 0.762305
\(677\) −26.9488 −1.03573 −0.517864 0.855463i \(-0.673273\pi\)
−0.517864 + 0.855463i \(0.673273\pi\)
\(678\) 0 0
\(679\) 8.56079 16.4676i 0.328533 0.631970i
\(680\) 0.175503i 0.00673025i
\(681\) 0 0
\(682\) 11.1863i 0.428347i
\(683\) 15.4122i 0.589731i 0.955539 + 0.294865i \(0.0952748\pi\)
−0.955539 + 0.294865i \(0.904725\pi\)
\(684\) 0 0
\(685\) 20.0699i 0.766831i
\(686\) −18.3577 + 2.44823i −0.700901 + 0.0934737i
\(687\) 0 0
\(688\) 7.01012 0.267258
\(689\) 17.9249 0.682883
\(690\) 0 0
\(691\) 13.3947i 0.509559i −0.966999 0.254780i \(-0.917997\pi\)
0.966999 0.254780i \(-0.0820029\pi\)
\(692\) −23.0659 −0.876834
\(693\) 0 0
\(694\) −10.6587 −0.404597
\(695\) 8.34063i 0.316378i
\(696\) 0 0
\(697\) 0.555010 0.0210225
\(698\) 28.9116 1.09432
\(699\) 0 0
\(700\) −1.44445 0.750905i −0.0545950 0.0283815i
\(701\) 10.7595i 0.406382i −0.979139 0.203191i \(-0.934869\pi\)
0.979139 0.203191i \(-0.0651312\pi\)
\(702\) 0 0
\(703\) 3.94037i 0.148614i
\(704\) 5.08562i 0.191672i
\(705\) 0 0
\(706\) 21.2889i 0.801218i
\(707\) 27.5880 + 14.3418i 1.03755 + 0.539377i
\(708\) 0 0
\(709\) −30.3384 −1.13938 −0.569691 0.821859i \(-0.692937\pi\)
−0.569691 + 0.821859i \(0.692937\pi\)
\(710\) 31.0599 1.16566
\(711\) 0 0
\(712\) 13.0060i 0.487421i
\(713\) −11.0971 −0.415592
\(714\) 0 0
\(715\) 61.0073 2.28154
\(716\) 12.2767i 0.458801i
\(717\) 0 0
\(718\) −10.5541 −0.393875
\(719\) −17.5915 −0.656052 −0.328026 0.944669i \(-0.606383\pi\)
−0.328026 + 0.944669i \(0.606383\pi\)
\(720\) 0 0
\(721\) 20.7392 39.8942i 0.772368 1.48574i
\(722\) 11.7975i 0.439059i
\(723\) 0 0
\(724\) 16.2132i 0.602558i
\(725\) 0.615315i 0.0228522i
\(726\) 0 0
\(727\) 22.6997i 0.841885i −0.907087 0.420942i \(-0.861699\pi\)
0.907087 0.420942i \(-0.138301\pi\)
\(728\) 13.4485 + 6.99127i 0.498434 + 0.259114i
\(729\) 0 0
\(730\) 6.60961 0.244633
\(731\) 0.587546 0.0217312
\(732\) 0 0
\(733\) 33.0984i 1.22252i −0.791431 0.611259i \(-0.790664\pi\)
0.791431 0.611259i \(-0.209336\pi\)
\(734\) 30.1107 1.11141
\(735\) 0 0
\(736\) −5.04508 −0.185964
\(737\) 3.38450i 0.124670i
\(738\) 0 0
\(739\) −28.2258 −1.03830 −0.519151 0.854683i \(-0.673752\pi\)
−0.519151 + 0.854683i \(0.673752\pi\)
\(740\) −3.07444 −0.113019
\(741\) 0 0
\(742\) 7.34500 + 3.81834i 0.269644 + 0.140176i
\(743\) 6.40900i 0.235123i 0.993066 + 0.117562i \(0.0375078\pi\)
−0.993066 + 0.117562i \(0.962492\pi\)
\(744\) 0 0
\(745\) 13.4616i 0.493193i
\(746\) 0.225433i 0.00825370i
\(747\) 0 0
\(748\) 0.426246i 0.0155851i
\(749\) −9.52136 + 18.3154i −0.347903 + 0.669230i
\(750\) 0 0
\(751\) −23.8444 −0.870094 −0.435047 0.900408i \(-0.643268\pi\)
−0.435047 + 0.900408i \(0.643268\pi\)
\(752\) −10.0266 −0.365633
\(753\) 0 0
\(754\) 5.72887i 0.208633i
\(755\) 25.5263 0.928996
\(756\) 0 0
\(757\) 30.2068 1.09789 0.548943 0.835860i \(-0.315030\pi\)
0.548943 + 0.835860i \(0.315030\pi\)
\(758\) 21.9143i 0.795964i
\(759\) 0 0
\(760\) 5.61966 0.203846
\(761\) −18.5750 −0.673343 −0.336672 0.941622i \(-0.609301\pi\)
−0.336672 + 0.941622i \(0.609301\pi\)
\(762\) 0 0
\(763\) 1.23234 + 0.640637i 0.0446136 + 0.0231926i
\(764\) 3.14319i 0.113717i
\(765\) 0 0
\(766\) 13.2298i 0.478013i
\(767\) 35.6949i 1.28887i
\(768\) 0 0
\(769\) 42.7354i 1.54108i 0.637392 + 0.770539i \(0.280013\pi\)
−0.637392 + 0.770539i \(0.719987\pi\)
\(770\) 24.9987 + 12.9957i 0.900891 + 0.468333i
\(771\) 0 0
\(772\) 0.241791 0.00870225
\(773\) −12.7089 −0.457108 −0.228554 0.973531i \(-0.573400\pi\)
−0.228554 + 0.973531i \(0.573400\pi\)
\(774\) 0 0
\(775\) 1.35345i 0.0486173i
\(776\) −7.01498 −0.251823
\(777\) 0 0
\(778\) 20.3750 0.730477
\(779\) 17.7715i 0.636731i
\(780\) 0 0
\(781\) 75.4354 2.69929
\(782\) −0.422848 −0.0151210
\(783\) 0 0
\(784\) 4.02146 + 5.72956i 0.143623 + 0.204627i
\(785\) 18.1137i 0.646504i
\(786\) 0 0
\(787\) 6.13579i 0.218717i −0.994002 0.109359i \(-0.965120\pi\)
0.994002 0.109359i \(-0.0348797\pi\)
\(788\) 24.6873i 0.879448i
\(789\) 0 0
\(790\) 13.6890i 0.487034i
\(791\) −11.8554 + 22.8052i −0.421529 + 0.810858i
\(792\) 0 0
\(793\) 0.968790 0.0344027
\(794\) 16.6678 0.591517
\(795\) 0 0
\(796\) 24.5655i 0.870701i
\(797\) 18.9255 0.670374 0.335187 0.942152i \(-0.391200\pi\)
0.335187 + 0.942152i \(0.391200\pi\)
\(798\) 0 0
\(799\) −0.840370 −0.0297302
\(800\) 0.615315i 0.0217547i
\(801\) 0 0
\(802\) −15.7493 −0.556129
\(803\) 16.0528 0.566491
\(804\) 0 0
\(805\) 12.8921 24.7994i 0.454387 0.874065i
\(806\) 12.6012i 0.443859i
\(807\) 0 0
\(808\) 11.7521i 0.413437i
\(809\) 37.7996i 1.32896i 0.747305 + 0.664481i \(0.231347\pi\)
−0.747305 + 0.664481i \(0.768653\pi\)
\(810\) 0 0
\(811\) 18.9933i 0.666946i −0.942760 0.333473i \(-0.891779\pi\)
0.942760 0.333473i \(-0.108221\pi\)
\(812\) 1.22036 2.34749i 0.0428262 0.0823809i
\(813\) 0 0
\(814\) −7.46691 −0.261715
\(815\) −47.6046 −1.66752
\(816\) 0 0
\(817\) 18.8133i 0.658196i
\(818\) −17.0312 −0.595482
\(819\) 0 0
\(820\) 13.8661 0.484224
\(821\) 1.93324i 0.0674705i −0.999431 0.0337353i \(-0.989260\pi\)
0.999431 0.0337353i \(-0.0107403\pi\)
\(822\) 0 0
\(823\) 21.0869 0.735044 0.367522 0.930015i \(-0.380206\pi\)
0.367522 + 0.930015i \(0.380206\pi\)
\(824\) −16.9944 −0.592027
\(825\) 0 0
\(826\) 7.60369 14.6265i 0.264566 0.508922i
\(827\) 27.1054i 0.942547i −0.881987 0.471273i \(-0.843794\pi\)
0.881987 0.471273i \(-0.156206\pi\)
\(828\) 0 0
\(829\) 2.17373i 0.0754966i 0.999287 + 0.0377483i \(0.0120185\pi\)
−0.999287 + 0.0377483i \(0.987981\pi\)
\(830\) 15.8078i 0.548696i
\(831\) 0 0
\(832\) 5.72887i 0.198613i
\(833\) 0.337054 + 0.480218i 0.0116782 + 0.0166386i
\(834\) 0 0
\(835\) 17.2764 0.597874
\(836\) 13.6485 0.472043
\(837\) 0 0
\(838\) 11.5262i 0.398167i
\(839\) −39.7166 −1.37117 −0.685585 0.727993i \(-0.740453\pi\)
−0.685585 + 0.727993i \(0.740453\pi\)
\(840\) 0 0
\(841\) −1.00000 −0.0344828
\(842\) 21.5417i 0.742376i
\(843\) 0 0
\(844\) 6.52086 0.224457
\(845\) 41.5022 1.42772
\(846\) 0 0
\(847\) 34.8921 + 18.1388i 1.19891 + 0.623258i
\(848\) 3.12887i 0.107446i
\(849\) 0 0
\(850\) 0.0515720i 0.00176891i
\(851\) 7.40738i 0.253922i
\(852\) 0 0
\(853\) 44.6701i 1.52947i 0.644342 + 0.764737i \(0.277131\pi\)
−0.644342 + 0.764737i \(0.722869\pi\)
\(854\) 0.396977 + 0.206371i 0.0135843 + 0.00706186i
\(855\) 0 0
\(856\) 7.80211 0.266671
\(857\) 0.487280 0.0166452 0.00832259 0.999965i \(-0.497351\pi\)
0.00832259 + 0.999965i \(0.497351\pi\)
\(858\) 0 0
\(859\) 9.16916i 0.312848i 0.987690 + 0.156424i \(0.0499966\pi\)
−0.987690 + 0.156424i \(0.950003\pi\)
\(860\) 14.6789 0.500548
\(861\) 0 0
\(862\) −14.9330 −0.508621
\(863\) 32.0533i 1.09111i −0.838076 0.545553i \(-0.816320\pi\)
0.838076 0.545553i \(-0.183680\pi\)
\(864\) 0 0
\(865\) −48.2992 −1.64222
\(866\) −16.3522 −0.555671
\(867\) 0 0
\(868\) 2.68430 5.16354i 0.0911110 0.175262i
\(869\) 33.2466i 1.12781i
\(870\) 0 0
\(871\) 3.81258i 0.129184i
\(872\) 0.524959i 0.0177773i
\(873\) 0 0
\(874\) 13.5397i 0.457987i
\(875\) −27.6025 14.3493i −0.933133 0.485095i
\(876\) 0 0
\(877\) −5.69375 −0.192264 −0.0961321 0.995369i \(-0.530647\pi\)
−0.0961321 + 0.995369i \(0.530647\pi\)
\(878\) 20.9177 0.705938
\(879\) 0 0
\(880\) 10.6491i 0.358981i
\(881\) 8.40319 0.283111 0.141555 0.989930i \(-0.454790\pi\)
0.141555 + 0.989930i \(0.454790\pi\)
\(882\) 0 0
\(883\) 42.9878 1.44665 0.723327 0.690506i \(-0.242612\pi\)
0.723327 + 0.690506i \(0.242612\pi\)
\(884\) 0.480159i 0.0161495i
\(885\) 0 0
\(886\) 17.2290 0.578820
\(887\) 0.0859168 0.00288480 0.00144240 0.999999i \(-0.499541\pi\)
0.00144240 + 0.999999i \(0.499541\pi\)
\(888\) 0 0
\(889\) −14.3637 7.46705i −0.481743 0.250437i
\(890\) 27.2341i 0.912890i
\(891\) 0 0
\(892\) 27.8778i 0.933417i
\(893\) 26.9088i 0.900469i
\(894\) 0 0
\(895\) 25.7069i 0.859288i
\(896\) 1.22036 2.34749i 0.0407693 0.0784243i
\(897\) 0 0
\(898\) −19.5036 −0.650845
\(899\) −2.19960 −0.0733607
\(900\) 0 0
\(901\) 0.262243i 0.00873658i
\(902\) 33.6766 1.12131
\(903\) 0 0
\(904\) 9.71468 0.323105
\(905\) 33.9498i 1.12853i
\(906\) 0 0
\(907\) −46.7163 −1.55119 −0.775594 0.631232i \(-0.782549\pi\)
−0.775594 + 0.631232i \(0.782549\pi\)
\(908\) 10.3089 0.342114
\(909\) 0 0
\(910\) 28.1606 + 14.6395i 0.933516 + 0.485293i
\(911\) 49.3108i 1.63374i 0.576821 + 0.816870i \(0.304293\pi\)
−0.576821 + 0.816870i \(0.695707\pi\)
\(912\) 0 0
\(913\) 38.3924i 1.27060i
\(914\) 22.5735i 0.746665i
\(915\) 0 0
\(916\) 3.04938i 0.100754i
\(917\) 4.20057 + 2.18369i 0.138715 + 0.0721118i
\(918\) 0 0
\(919\) 0.0433033 0.00142844 0.000714221 1.00000i \(-0.499773\pi\)
0.000714221 1.00000i \(0.499773\pi\)
\(920\) −10.5642 −0.348292
\(921\) 0 0
\(922\) 0.0153958i 0.000507034i
\(923\) 84.9767 2.79704
\(924\) 0 0
\(925\) 0.903430 0.0297046
\(926\) 12.9800i 0.426548i
\(927\) 0 0
\(928\) −1.00000 −0.0328266
\(929\) −49.6966 −1.63049 −0.815246 0.579114i \(-0.803399\pi\)
−0.815246 + 0.579114i \(0.803399\pi\)
\(930\) 0 0
\(931\) −15.3767 + 10.7925i −0.503950 + 0.353711i
\(932\) 21.3292i 0.698661i
\(933\) 0 0
\(934\) 15.2541i 0.499129i
\(935\) 0.892544i 0.0291893i
\(936\) 0 0
\(937\) 2.11204i 0.0689974i −0.999405 0.0344987i \(-0.989017\pi\)
0.999405 0.0344987i \(-0.0109835\pi\)
\(938\) 0.812153 1.56227i 0.0265177 0.0510098i
\(939\) 0 0
\(940\) −20.9954 −0.684793
\(941\) −50.9898 −1.66222 −0.831110 0.556108i \(-0.812294\pi\)
−0.831110 + 0.556108i \(0.812294\pi\)
\(942\) 0 0
\(943\) 33.4081i 1.08792i
\(944\) −6.23070 −0.202792
\(945\) 0 0
\(946\) 35.6508 1.15911
\(947\) 19.8857i 0.646197i −0.946365 0.323098i \(-0.895276\pi\)
0.946365 0.323098i \(-0.104724\pi\)
\(948\) 0 0
\(949\) 18.0832 0.587006
\(950\) −1.65135 −0.0535768
\(951\) 0 0
\(952\) 0.102283 0.196753i 0.00331501 0.00637680i
\(953\) 30.1302i 0.976012i 0.872840 + 0.488006i \(0.162276\pi\)
−0.872840 + 0.488006i \(0.837724\pi\)
\(954\) 0 0
\(955\) 6.58173i 0.212980i
\(956\) 16.6158i 0.537392i
\(957\) 0 0
\(958\) 18.0263i 0.582403i
\(959\) 11.6967 22.4999i 0.377706 0.726559i
\(960\) 0 0
\(961\) 26.1618 0.843928
\(962\) −8.41135 −0.271193
\(963\) 0 0
\(964\) 4.60540i 0.148330i
\(965\) 0.506302 0.0162984
\(966\) 0 0
\(967\) −27.0829 −0.870927 −0.435463 0.900206i \(-0.643415\pi\)
−0.435463 + 0.900206i \(0.643415\pi\)
\(968\) 14.8635i 0.477733i
\(969\) 0 0
\(970\) −14.6891 −0.471639
\(971\) −25.6204 −0.822199 −0.411100 0.911590i \(-0.634855\pi\)
−0.411100 + 0.911590i \(0.634855\pi\)
\(972\) 0 0
\(973\) 4.86090 9.35048i 0.155833 0.299763i
\(974\) 7.06154i 0.226266i
\(975\) 0 0
\(976\) 0.169107i 0.00541298i
\(977\) 5.98940i 0.191618i 0.995400 + 0.0958090i \(0.0305438\pi\)
−0.995400 + 0.0958090i \(0.969456\pi\)
\(978\) 0 0
\(979\) 66.1436i 2.11396i
\(980\) 8.42078 + 11.9975i 0.268992 + 0.383246i
\(981\) 0 0
\(982\) 23.8411 0.760800
\(983\) 14.2604 0.454835 0.227417 0.973797i \(-0.426972\pi\)
0.227417 + 0.973797i \(0.426972\pi\)
\(984\) 0 0
\(985\) 51.6943i 1.64712i
\(986\) −0.0838140 −0.00266918
\(987\) 0 0
\(988\) 15.3748 0.489137
\(989\) 35.3666i 1.12459i
\(990\) 0 0
\(991\) 16.5383 0.525356 0.262678 0.964884i \(-0.415394\pi\)
0.262678 + 0.964884i \(0.415394\pi\)
\(992\) −2.19960 −0.0698373
\(993\) 0 0
\(994\) 34.8205 + 18.1017i 1.10444 + 0.574149i
\(995\) 51.4393i 1.63073i
\(996\) 0 0
\(997\) 30.4252i 0.963575i 0.876288 + 0.481787i \(0.160012\pi\)
−0.876288 + 0.481787i \(0.839988\pi\)
\(998\) 38.1415i 1.20735i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3654.2.f.b.755.7 40
3.2 odd 2 inner 3654.2.f.b.755.34 yes 40
7.6 odd 2 inner 3654.2.f.b.755.33 yes 40
21.20 even 2 inner 3654.2.f.b.755.8 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3654.2.f.b.755.7 40 1.1 even 1 trivial
3654.2.f.b.755.8 yes 40 21.20 even 2 inner
3654.2.f.b.755.33 yes 40 7.6 odd 2 inner
3654.2.f.b.755.34 yes 40 3.2 odd 2 inner