Properties

Label 3654.2.f.b.755.4
Level $3654$
Weight $2$
Character 3654.755
Analytic conductor $29.177$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3654,2,Mod(755,3654)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3654.755"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3654, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3654 = 2 \cdot 3^{2} \cdot 7 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3654.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,-40,0,0,-4,0,0,0,0,0,0,0,0,40,0,0,0,0,0,8,0,0,64] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(25)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.1773368986\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 755.4
Character \(\chi\) \(=\) 3654.755
Dual form 3654.2.f.b.755.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{4} +1.81839 q^{5} +(-0.812712 + 2.51784i) q^{7} -1.00000i q^{8} +1.81839i q^{10} -6.05565i q^{11} -2.51029i q^{13} +(-2.51784 - 0.812712i) q^{14} +1.00000 q^{16} +4.50010 q^{17} +4.56140i q^{19} -1.81839 q^{20} +6.05565 q^{22} -6.67026i q^{23} -1.69344 q^{25} +2.51029 q^{26} +(0.812712 - 2.51784i) q^{28} +1.00000i q^{29} -7.40750i q^{31} +1.00000i q^{32} +4.50010i q^{34} +(-1.47783 + 4.57842i) q^{35} -6.58716 q^{37} -4.56140 q^{38} -1.81839i q^{40} -8.46644 q^{41} -5.99014 q^{43} +6.05565i q^{44} +6.67026 q^{46} -5.40101 q^{47} +(-5.67900 - 4.09255i) q^{49} -1.69344i q^{50} +2.51029i q^{52} +0.309506i q^{53} -11.0115i q^{55} +(2.51784 + 0.812712i) q^{56} -1.00000 q^{58} -3.41718 q^{59} -10.0528i q^{61} +7.40750 q^{62} -1.00000 q^{64} -4.56470i q^{65} +15.2036 q^{67} -4.50010 q^{68} +(-4.57842 - 1.47783i) q^{70} +2.60992i q^{71} -6.17049i q^{73} -6.58716i q^{74} -4.56140i q^{76} +(15.2471 + 4.92149i) q^{77} -9.93366 q^{79} +1.81839 q^{80} -8.46644i q^{82} -13.0032 q^{83} +8.18295 q^{85} -5.99014i q^{86} -6.05565 q^{88} +10.4760 q^{89} +(6.32051 + 2.04015i) q^{91} +6.67026i q^{92} -5.40101i q^{94} +8.29442i q^{95} -9.92501i q^{97} +(4.09255 - 5.67900i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 40 q^{4} - 4 q^{7} + 40 q^{16} + 8 q^{22} + 64 q^{25} + 4 q^{28} - 48 q^{37} - 8 q^{43} + 8 q^{46} + 36 q^{49} - 40 q^{58} - 40 q^{64} + 24 q^{67} + 28 q^{70} - 144 q^{79} - 24 q^{85} - 8 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3654\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\) \(2089\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 1.81839 0.813211 0.406605 0.913604i \(-0.366712\pi\)
0.406605 + 0.913604i \(0.366712\pi\)
\(6\) 0 0
\(7\) −0.812712 + 2.51784i −0.307176 + 0.951653i
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 1.81839i 0.575027i
\(11\) 6.05565i 1.82585i −0.408132 0.912923i \(-0.633820\pi\)
0.408132 0.912923i \(-0.366180\pi\)
\(12\) 0 0
\(13\) 2.51029i 0.696230i −0.937452 0.348115i \(-0.886822\pi\)
0.937452 0.348115i \(-0.113178\pi\)
\(14\) −2.51784 0.812712i −0.672920 0.217206i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 4.50010 1.09143 0.545717 0.837970i \(-0.316257\pi\)
0.545717 + 0.837970i \(0.316257\pi\)
\(18\) 0 0
\(19\) 4.56140i 1.04646i 0.852192 + 0.523228i \(0.175273\pi\)
−0.852192 + 0.523228i \(0.824727\pi\)
\(20\) −1.81839 −0.406605
\(21\) 0 0
\(22\) 6.05565 1.29107
\(23\) 6.67026i 1.39085i −0.718601 0.695423i \(-0.755217\pi\)
0.718601 0.695423i \(-0.244783\pi\)
\(24\) 0 0
\(25\) −1.69344 −0.338689
\(26\) 2.51029 0.492309
\(27\) 0 0
\(28\) 0.812712 2.51784i 0.153588 0.475826i
\(29\) 1.00000i 0.185695i
\(30\) 0 0
\(31\) 7.40750i 1.33043i −0.746654 0.665213i \(-0.768341\pi\)
0.746654 0.665213i \(-0.231659\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 4.50010i 0.771760i
\(35\) −1.47783 + 4.57842i −0.249799 + 0.773894i
\(36\) 0 0
\(37\) −6.58716 −1.08292 −0.541461 0.840726i \(-0.682129\pi\)
−0.541461 + 0.840726i \(0.682129\pi\)
\(38\) −4.56140 −0.739957
\(39\) 0 0
\(40\) 1.81839i 0.287513i
\(41\) −8.46644 −1.32224 −0.661118 0.750282i \(-0.729918\pi\)
−0.661118 + 0.750282i \(0.729918\pi\)
\(42\) 0 0
\(43\) −5.99014 −0.913487 −0.456744 0.889598i \(-0.650984\pi\)
−0.456744 + 0.889598i \(0.650984\pi\)
\(44\) 6.05565i 0.912923i
\(45\) 0 0
\(46\) 6.67026 0.983476
\(47\) −5.40101 −0.787818 −0.393909 0.919150i \(-0.628877\pi\)
−0.393909 + 0.919150i \(0.628877\pi\)
\(48\) 0 0
\(49\) −5.67900 4.09255i −0.811286 0.584650i
\(50\) 1.69344i 0.239489i
\(51\) 0 0
\(52\) 2.51029i 0.348115i
\(53\) 0.309506i 0.0425139i 0.999774 + 0.0212570i \(0.00676681\pi\)
−0.999774 + 0.0212570i \(0.993233\pi\)
\(54\) 0 0
\(55\) 11.0115i 1.48480i
\(56\) 2.51784 + 0.812712i 0.336460 + 0.108603i
\(57\) 0 0
\(58\) −1.00000 −0.131306
\(59\) −3.41718 −0.444879 −0.222439 0.974947i \(-0.571402\pi\)
−0.222439 + 0.974947i \(0.571402\pi\)
\(60\) 0 0
\(61\) 10.0528i 1.28713i −0.765391 0.643565i \(-0.777454\pi\)
0.765391 0.643565i \(-0.222546\pi\)
\(62\) 7.40750 0.940753
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 4.56470i 0.566182i
\(66\) 0 0
\(67\) 15.2036 1.85742 0.928711 0.370805i \(-0.120918\pi\)
0.928711 + 0.370805i \(0.120918\pi\)
\(68\) −4.50010 −0.545717
\(69\) 0 0
\(70\) −4.57842 1.47783i −0.547226 0.176635i
\(71\) 2.60992i 0.309740i 0.987935 + 0.154870i \(0.0494959\pi\)
−0.987935 + 0.154870i \(0.950504\pi\)
\(72\) 0 0
\(73\) 6.17049i 0.722201i −0.932527 0.361101i \(-0.882401\pi\)
0.932527 0.361101i \(-0.117599\pi\)
\(74\) 6.58716i 0.765742i
\(75\) 0 0
\(76\) 4.56140i 0.523228i
\(77\) 15.2471 + 4.92149i 1.73757 + 0.560856i
\(78\) 0 0
\(79\) −9.93366 −1.11762 −0.558812 0.829294i \(-0.688743\pi\)
−0.558812 + 0.829294i \(0.688743\pi\)
\(80\) 1.81839 0.203303
\(81\) 0 0
\(82\) 8.46644i 0.934962i
\(83\) −13.0032 −1.42728 −0.713642 0.700510i \(-0.752956\pi\)
−0.713642 + 0.700510i \(0.752956\pi\)
\(84\) 0 0
\(85\) 8.18295 0.887566
\(86\) 5.99014i 0.645933i
\(87\) 0 0
\(88\) −6.05565 −0.645534
\(89\) 10.4760 1.11045 0.555226 0.831700i \(-0.312632\pi\)
0.555226 + 0.831700i \(0.312632\pi\)
\(90\) 0 0
\(91\) 6.32051 + 2.04015i 0.662570 + 0.213865i
\(92\) 6.67026i 0.695423i
\(93\) 0 0
\(94\) 5.40101i 0.557071i
\(95\) 8.29442i 0.850990i
\(96\) 0 0
\(97\) 9.92501i 1.00773i −0.863782 0.503866i \(-0.831911\pi\)
0.863782 0.503866i \(-0.168089\pi\)
\(98\) 4.09255 5.67900i 0.413410 0.573666i
\(99\) 0 0
\(100\) 1.69344 0.169344
\(101\) 16.0644 1.59847 0.799235 0.601019i \(-0.205239\pi\)
0.799235 + 0.601019i \(0.205239\pi\)
\(102\) 0 0
\(103\) 0.332202i 0.0327328i 0.999866 + 0.0163664i \(0.00520982\pi\)
−0.999866 + 0.0163664i \(0.994790\pi\)
\(104\) −2.51029 −0.246155
\(105\) 0 0
\(106\) −0.309506 −0.0300619
\(107\) 15.3799i 1.48683i −0.668831 0.743415i \(-0.733205\pi\)
0.668831 0.743415i \(-0.266795\pi\)
\(108\) 0 0
\(109\) 5.70082 0.546039 0.273020 0.962008i \(-0.411978\pi\)
0.273020 + 0.962008i \(0.411978\pi\)
\(110\) 11.0115 1.04991
\(111\) 0 0
\(112\) −0.812712 + 2.51784i −0.0767940 + 0.237913i
\(113\) 1.14651i 0.107855i −0.998545 0.0539274i \(-0.982826\pi\)
0.998545 0.0539274i \(-0.0171740\pi\)
\(114\) 0 0
\(115\) 12.1292i 1.13105i
\(116\) 1.00000i 0.0928477i
\(117\) 0 0
\(118\) 3.41718i 0.314577i
\(119\) −3.65728 + 11.3305i −0.335262 + 1.03867i
\(120\) 0 0
\(121\) −25.6708 −2.33371
\(122\) 10.0528 0.910139
\(123\) 0 0
\(124\) 7.40750i 0.665213i
\(125\) −12.1713 −1.08864
\(126\) 0 0
\(127\) −9.94342 −0.882336 −0.441168 0.897425i \(-0.645436\pi\)
−0.441168 + 0.897425i \(0.645436\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) 4.56470 0.400351
\(131\) 3.35409 0.293048 0.146524 0.989207i \(-0.453191\pi\)
0.146524 + 0.989207i \(0.453191\pi\)
\(132\) 0 0
\(133\) −11.4849 3.70710i −0.995864 0.321447i
\(134\) 15.2036i 1.31340i
\(135\) 0 0
\(136\) 4.50010i 0.385880i
\(137\) 14.5958i 1.24700i 0.781822 + 0.623501i \(0.214290\pi\)
−0.781822 + 0.623501i \(0.785710\pi\)
\(138\) 0 0
\(139\) 5.95257i 0.504891i −0.967611 0.252445i \(-0.918765\pi\)
0.967611 0.252445i \(-0.0812348\pi\)
\(140\) 1.47783 4.57842i 0.124899 0.386947i
\(141\) 0 0
\(142\) −2.60992 −0.219019
\(143\) −15.2015 −1.27121
\(144\) 0 0
\(145\) 1.81839i 0.151009i
\(146\) 6.17049 0.510674
\(147\) 0 0
\(148\) 6.58716 0.541461
\(149\) 15.2344i 1.24805i 0.781404 + 0.624025i \(0.214504\pi\)
−0.781404 + 0.624025i \(0.785496\pi\)
\(150\) 0 0
\(151\) −5.39307 −0.438882 −0.219441 0.975626i \(-0.570423\pi\)
−0.219441 + 0.975626i \(0.570423\pi\)
\(152\) 4.56140 0.369978
\(153\) 0 0
\(154\) −4.92149 + 15.2471i −0.396585 + 1.22865i
\(155\) 13.4698i 1.08192i
\(156\) 0 0
\(157\) 5.90694i 0.471425i 0.971823 + 0.235712i \(0.0757424\pi\)
−0.971823 + 0.235712i \(0.924258\pi\)
\(158\) 9.93366i 0.790280i
\(159\) 0 0
\(160\) 1.81839i 0.143757i
\(161\) 16.7946 + 5.42100i 1.32360 + 0.427234i
\(162\) 0 0
\(163\) 10.6581 0.834805 0.417402 0.908722i \(-0.362941\pi\)
0.417402 + 0.908722i \(0.362941\pi\)
\(164\) 8.46644 0.661118
\(165\) 0 0
\(166\) 13.0032i 1.00924i
\(167\) 10.7289 0.830223 0.415112 0.909770i \(-0.363742\pi\)
0.415112 + 0.909770i \(0.363742\pi\)
\(168\) 0 0
\(169\) 6.69842 0.515263
\(170\) 8.18295i 0.627604i
\(171\) 0 0
\(172\) 5.99014 0.456744
\(173\) 23.0797 1.75472 0.877360 0.479833i \(-0.159303\pi\)
0.877360 + 0.479833i \(0.159303\pi\)
\(174\) 0 0
\(175\) 1.37628 4.26381i 0.104037 0.322314i
\(176\) 6.05565i 0.456461i
\(177\) 0 0
\(178\) 10.4760i 0.785207i
\(179\) 16.6281i 1.24284i −0.783477 0.621421i \(-0.786556\pi\)
0.783477 0.621421i \(-0.213444\pi\)
\(180\) 0 0
\(181\) 5.27347i 0.391974i −0.980607 0.195987i \(-0.937209\pi\)
0.980607 0.195987i \(-0.0627910\pi\)
\(182\) −2.04015 + 6.32051i −0.151226 + 0.468507i
\(183\) 0 0
\(184\) −6.67026 −0.491738
\(185\) −11.9781 −0.880644
\(186\) 0 0
\(187\) 27.2510i 1.99279i
\(188\) 5.40101 0.393909
\(189\) 0 0
\(190\) −8.29442 −0.601741
\(191\) 10.2997i 0.745257i −0.927981 0.372629i \(-0.878457\pi\)
0.927981 0.372629i \(-0.121543\pi\)
\(192\) 0 0
\(193\) 13.3100 0.958078 0.479039 0.877794i \(-0.340985\pi\)
0.479039 + 0.877794i \(0.340985\pi\)
\(194\) 9.92501 0.712574
\(195\) 0 0
\(196\) 5.67900 + 4.09255i 0.405643 + 0.292325i
\(197\) 18.2881i 1.30297i 0.758660 + 0.651487i \(0.225855\pi\)
−0.758660 + 0.651487i \(0.774145\pi\)
\(198\) 0 0
\(199\) 8.30887i 0.589000i 0.955651 + 0.294500i \(0.0951531\pi\)
−0.955651 + 0.294500i \(0.904847\pi\)
\(200\) 1.69344i 0.119744i
\(201\) 0 0
\(202\) 16.0644i 1.13029i
\(203\) −2.51784 0.812712i −0.176717 0.0570412i
\(204\) 0 0
\(205\) −15.3953 −1.07526
\(206\) −0.332202 −0.0231456
\(207\) 0 0
\(208\) 2.51029i 0.174058i
\(209\) 27.6222 1.91067
\(210\) 0 0
\(211\) −23.4970 −1.61760 −0.808799 0.588085i \(-0.799882\pi\)
−0.808799 + 0.588085i \(0.799882\pi\)
\(212\) 0.309506i 0.0212570i
\(213\) 0 0
\(214\) 15.3799 1.05135
\(215\) −10.8924 −0.742857
\(216\) 0 0
\(217\) 18.6509 + 6.02016i 1.26610 + 0.408675i
\(218\) 5.70082i 0.386108i
\(219\) 0 0
\(220\) 11.0115i 0.742399i
\(221\) 11.2966i 0.759889i
\(222\) 0 0
\(223\) 8.34460i 0.558796i −0.960175 0.279398i \(-0.909865\pi\)
0.960175 0.279398i \(-0.0901348\pi\)
\(224\) −2.51784 0.812712i −0.168230 0.0543016i
\(225\) 0 0
\(226\) 1.14651 0.0762649
\(227\) 13.0567 0.866600 0.433300 0.901250i \(-0.357349\pi\)
0.433300 + 0.901250i \(0.357349\pi\)
\(228\) 0 0
\(229\) 10.5442i 0.696779i −0.937350 0.348390i \(-0.886729\pi\)
0.937350 0.348390i \(-0.113271\pi\)
\(230\) 12.1292 0.799773
\(231\) 0 0
\(232\) 1.00000 0.0656532
\(233\) 15.6046i 1.02229i −0.859493 0.511147i \(-0.829221\pi\)
0.859493 0.511147i \(-0.170779\pi\)
\(234\) 0 0
\(235\) −9.82116 −0.640662
\(236\) 3.41718 0.222439
\(237\) 0 0
\(238\) −11.3305 3.65728i −0.734448 0.237066i
\(239\) 9.94549i 0.643320i −0.946855 0.321660i \(-0.895759\pi\)
0.946855 0.321660i \(-0.104241\pi\)
\(240\) 0 0
\(241\) 25.6474i 1.65210i 0.563599 + 0.826049i \(0.309416\pi\)
−0.563599 + 0.826049i \(0.690584\pi\)
\(242\) 25.6708i 1.65018i
\(243\) 0 0
\(244\) 10.0528i 0.643565i
\(245\) −10.3267 7.44187i −0.659746 0.475444i
\(246\) 0 0
\(247\) 11.4505 0.728575
\(248\) −7.40750 −0.470377
\(249\) 0 0
\(250\) 12.1713i 0.769782i
\(251\) 0.195266 0.0123251 0.00616254 0.999981i \(-0.498038\pi\)
0.00616254 + 0.999981i \(0.498038\pi\)
\(252\) 0 0
\(253\) −40.3927 −2.53947
\(254\) 9.94342i 0.623906i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 3.37691 0.210646 0.105323 0.994438i \(-0.466412\pi\)
0.105323 + 0.994438i \(0.466412\pi\)
\(258\) 0 0
\(259\) 5.35346 16.5854i 0.332648 1.03057i
\(260\) 4.56470i 0.283091i
\(261\) 0 0
\(262\) 3.35409i 0.207216i
\(263\) 2.02058i 0.124595i −0.998058 0.0622973i \(-0.980157\pi\)
0.998058 0.0622973i \(-0.0198427\pi\)
\(264\) 0 0
\(265\) 0.562804i 0.0345728i
\(266\) 3.70710 11.4849i 0.227297 0.704182i
\(267\) 0 0
\(268\) −15.2036 −0.928711
\(269\) 18.4193 1.12304 0.561522 0.827462i \(-0.310216\pi\)
0.561522 + 0.827462i \(0.310216\pi\)
\(270\) 0 0
\(271\) 24.5042i 1.48853i 0.667887 + 0.744263i \(0.267199\pi\)
−0.667887 + 0.744263i \(0.732801\pi\)
\(272\) 4.50010 0.272858
\(273\) 0 0
\(274\) −14.5958 −0.881764
\(275\) 10.2549i 0.618393i
\(276\) 0 0
\(277\) 12.1782 0.731717 0.365859 0.930670i \(-0.380775\pi\)
0.365859 + 0.930670i \(0.380775\pi\)
\(278\) 5.95257 0.357011
\(279\) 0 0
\(280\) 4.57842 + 1.47783i 0.273613 + 0.0883173i
\(281\) 11.5814i 0.690888i 0.938439 + 0.345444i \(0.112272\pi\)
−0.938439 + 0.345444i \(0.887728\pi\)
\(282\) 0 0
\(283\) 27.1540i 1.61414i −0.590458 0.807068i \(-0.701053\pi\)
0.590458 0.807068i \(-0.298947\pi\)
\(284\) 2.60992i 0.154870i
\(285\) 0 0
\(286\) 15.2015i 0.898881i
\(287\) 6.88078 21.3171i 0.406159 1.25831i
\(288\) 0 0
\(289\) 3.25087 0.191228
\(290\) −1.81839 −0.106780
\(291\) 0 0
\(292\) 6.17049i 0.361101i
\(293\) −31.7235 −1.85331 −0.926655 0.375914i \(-0.877329\pi\)
−0.926655 + 0.375914i \(0.877329\pi\)
\(294\) 0 0
\(295\) −6.21377 −0.361780
\(296\) 6.58716i 0.382871i
\(297\) 0 0
\(298\) −15.2344 −0.882505
\(299\) −16.7443 −0.968349
\(300\) 0 0
\(301\) 4.86825 15.0822i 0.280601 0.869323i
\(302\) 5.39307i 0.310336i
\(303\) 0 0
\(304\) 4.56140i 0.261614i
\(305\) 18.2800i 1.04671i
\(306\) 0 0
\(307\) 2.72493i 0.155520i −0.996972 0.0777601i \(-0.975223\pi\)
0.996972 0.0777601i \(-0.0247768\pi\)
\(308\) −15.2471 4.92149i −0.868785 0.280428i
\(309\) 0 0
\(310\) 13.4698 0.765030
\(311\) −7.74611 −0.439241 −0.219621 0.975585i \(-0.570482\pi\)
−0.219621 + 0.975585i \(0.570482\pi\)
\(312\) 0 0
\(313\) 26.8167i 1.51577i −0.652390 0.757884i \(-0.726233\pi\)
0.652390 0.757884i \(-0.273767\pi\)
\(314\) −5.90694 −0.333348
\(315\) 0 0
\(316\) 9.93366 0.558812
\(317\) 15.0707i 0.846458i −0.906023 0.423229i \(-0.860897\pi\)
0.906023 0.423229i \(-0.139103\pi\)
\(318\) 0 0
\(319\) 6.05565 0.339051
\(320\) −1.81839 −0.101651
\(321\) 0 0
\(322\) −5.42100 + 16.7946i −0.302100 + 0.935928i
\(323\) 20.5267i 1.14214i
\(324\) 0 0
\(325\) 4.25104i 0.235805i
\(326\) 10.6581i 0.590296i
\(327\) 0 0
\(328\) 8.46644i 0.467481i
\(329\) 4.38946 13.5988i 0.241999 0.749729i
\(330\) 0 0
\(331\) 1.24808 0.0686004 0.0343002 0.999412i \(-0.489080\pi\)
0.0343002 + 0.999412i \(0.489080\pi\)
\(332\) 13.0032 0.713642
\(333\) 0 0
\(334\) 10.7289i 0.587057i
\(335\) 27.6462 1.51047
\(336\) 0 0
\(337\) 13.1359 0.715560 0.357780 0.933806i \(-0.383534\pi\)
0.357780 + 0.933806i \(0.383534\pi\)
\(338\) 6.69842i 0.364346i
\(339\) 0 0
\(340\) −8.18295 −0.443783
\(341\) −44.8572 −2.42915
\(342\) 0 0
\(343\) 14.9198 10.9727i 0.805591 0.592472i
\(344\) 5.99014i 0.322966i
\(345\) 0 0
\(346\) 23.0797i 1.24077i
\(347\) 29.5484i 1.58624i 0.609065 + 0.793120i \(0.291545\pi\)
−0.609065 + 0.793120i \(0.708455\pi\)
\(348\) 0 0
\(349\) 19.2752i 1.03178i −0.856655 0.515889i \(-0.827462\pi\)
0.856655 0.515889i \(-0.172538\pi\)
\(350\) 4.26381 + 1.37628i 0.227910 + 0.0735653i
\(351\) 0 0
\(352\) 6.05565 0.322767
\(353\) −8.50869 −0.452872 −0.226436 0.974026i \(-0.572707\pi\)
−0.226436 + 0.974026i \(0.572707\pi\)
\(354\) 0 0
\(355\) 4.74586i 0.251884i
\(356\) −10.4760 −0.555226
\(357\) 0 0
\(358\) 16.6281 0.878822
\(359\) 7.94081i 0.419100i −0.977798 0.209550i \(-0.932800\pi\)
0.977798 0.209550i \(-0.0671999\pi\)
\(360\) 0 0
\(361\) −1.80637 −0.0950722
\(362\) 5.27347 0.277167
\(363\) 0 0
\(364\) −6.32051 2.04015i −0.331285 0.106933i
\(365\) 11.2204i 0.587302i
\(366\) 0 0
\(367\) 36.3595i 1.89795i −0.315348 0.948976i \(-0.602121\pi\)
0.315348 0.948976i \(-0.397879\pi\)
\(368\) 6.67026i 0.347711i
\(369\) 0 0
\(370\) 11.9781i 0.622709i
\(371\) −0.779285 0.251539i −0.0404585 0.0130593i
\(372\) 0 0
\(373\) 31.4672 1.62931 0.814656 0.579944i \(-0.196926\pi\)
0.814656 + 0.579944i \(0.196926\pi\)
\(374\) 27.2510 1.40912
\(375\) 0 0
\(376\) 5.40101i 0.278536i
\(377\) 2.51029 0.129287
\(378\) 0 0
\(379\) 16.8128 0.863617 0.431809 0.901965i \(-0.357876\pi\)
0.431809 + 0.901965i \(0.357876\pi\)
\(380\) 8.29442i 0.425495i
\(381\) 0 0
\(382\) 10.2997 0.526976
\(383\) 20.1586 1.03006 0.515029 0.857173i \(-0.327781\pi\)
0.515029 + 0.857173i \(0.327781\pi\)
\(384\) 0 0
\(385\) 27.7253 + 8.94922i 1.41301 + 0.456094i
\(386\) 13.3100i 0.677464i
\(387\) 0 0
\(388\) 9.92501i 0.503866i
\(389\) 34.6042i 1.75450i 0.480033 + 0.877251i \(0.340625\pi\)
−0.480033 + 0.877251i \(0.659375\pi\)
\(390\) 0 0
\(391\) 30.0168i 1.51802i
\(392\) −4.09255 + 5.67900i −0.206705 + 0.286833i
\(393\) 0 0
\(394\) −18.2881 −0.921342
\(395\) −18.0633 −0.908864
\(396\) 0 0
\(397\) 28.8882i 1.44986i 0.688823 + 0.724929i \(0.258128\pi\)
−0.688823 + 0.724929i \(0.741872\pi\)
\(398\) −8.30887 −0.416486
\(399\) 0 0
\(400\) −1.69344 −0.0846721
\(401\) 18.5186i 0.924774i −0.886678 0.462387i \(-0.846993\pi\)
0.886678 0.462387i \(-0.153007\pi\)
\(402\) 0 0
\(403\) −18.5950 −0.926283
\(404\) −16.0644 −0.799235
\(405\) 0 0
\(406\) 0.812712 2.51784i 0.0403342 0.124958i
\(407\) 39.8895i 1.97725i
\(408\) 0 0
\(409\) 22.0226i 1.08895i 0.838777 + 0.544475i \(0.183271\pi\)
−0.838777 + 0.544475i \(0.816729\pi\)
\(410\) 15.3953i 0.760321i
\(411\) 0 0
\(412\) 0.332202i 0.0163664i
\(413\) 2.77718 8.60389i 0.136656 0.423370i
\(414\) 0 0
\(415\) −23.6449 −1.16068
\(416\) 2.51029 0.123077
\(417\) 0 0
\(418\) 27.6222i 1.35105i
\(419\) 35.3086 1.72494 0.862468 0.506111i \(-0.168917\pi\)
0.862468 + 0.506111i \(0.168917\pi\)
\(420\) 0 0
\(421\) 5.21246 0.254040 0.127020 0.991900i \(-0.459459\pi\)
0.127020 + 0.991900i \(0.459459\pi\)
\(422\) 23.4970i 1.14382i
\(423\) 0 0
\(424\) 0.309506 0.0150309
\(425\) −7.62066 −0.369656
\(426\) 0 0
\(427\) 25.3113 + 8.17004i 1.22490 + 0.395376i
\(428\) 15.3799i 0.743415i
\(429\) 0 0
\(430\) 10.8924i 0.525280i
\(431\) 4.01661i 0.193474i −0.995310 0.0967368i \(-0.969160\pi\)
0.995310 0.0967368i \(-0.0308405\pi\)
\(432\) 0 0
\(433\) 2.36693i 0.113748i −0.998381 0.0568738i \(-0.981887\pi\)
0.998381 0.0568738i \(-0.0181133\pi\)
\(434\) −6.02016 + 18.6509i −0.288977 + 0.895270i
\(435\) 0 0
\(436\) −5.70082 −0.273020
\(437\) 30.4257 1.45546
\(438\) 0 0
\(439\) 14.4641i 0.690334i −0.938541 0.345167i \(-0.887822\pi\)
0.938541 0.345167i \(-0.112178\pi\)
\(440\) −11.0115 −0.524955
\(441\) 0 0
\(442\) 11.2966 0.537323
\(443\) 7.09574i 0.337129i 0.985691 + 0.168564i \(0.0539131\pi\)
−0.985691 + 0.168564i \(0.946087\pi\)
\(444\) 0 0
\(445\) 19.0495 0.903031
\(446\) 8.34460 0.395128
\(447\) 0 0
\(448\) 0.812712 2.51784i 0.0383970 0.118957i
\(449\) 22.9034i 1.08088i 0.841383 + 0.540440i \(0.181742\pi\)
−0.841383 + 0.540440i \(0.818258\pi\)
\(450\) 0 0
\(451\) 51.2698i 2.41420i
\(452\) 1.14651i 0.0539274i
\(453\) 0 0
\(454\) 13.0567i 0.612779i
\(455\) 11.4932 + 3.70979i 0.538809 + 0.173918i
\(456\) 0 0
\(457\) −8.71177 −0.407519 −0.203760 0.979021i \(-0.565316\pi\)
−0.203760 + 0.979021i \(0.565316\pi\)
\(458\) 10.5442 0.492697
\(459\) 0 0
\(460\) 12.1292i 0.565525i
\(461\) 25.0888 1.16850 0.584252 0.811572i \(-0.301388\pi\)
0.584252 + 0.811572i \(0.301388\pi\)
\(462\) 0 0
\(463\) −18.0716 −0.839860 −0.419930 0.907557i \(-0.637945\pi\)
−0.419930 + 0.907557i \(0.637945\pi\)
\(464\) 1.00000i 0.0464238i
\(465\) 0 0
\(466\) 15.6046 0.722871
\(467\) −26.3517 −1.21941 −0.609706 0.792627i \(-0.708713\pi\)
−0.609706 + 0.792627i \(0.708713\pi\)
\(468\) 0 0
\(469\) −12.3562 + 38.2803i −0.570556 + 1.76762i
\(470\) 9.82116i 0.453016i
\(471\) 0 0
\(472\) 3.41718i 0.157288i
\(473\) 36.2741i 1.66789i
\(474\) 0 0
\(475\) 7.72447i 0.354423i
\(476\) 3.65728 11.3305i 0.167631 0.519333i
\(477\) 0 0
\(478\) 9.94549 0.454896
\(479\) 15.0834 0.689177 0.344588 0.938754i \(-0.388018\pi\)
0.344588 + 0.938754i \(0.388018\pi\)
\(480\) 0 0
\(481\) 16.5357i 0.753963i
\(482\) −25.6474 −1.16821
\(483\) 0 0
\(484\) 25.6708 1.16686
\(485\) 18.0476i 0.819498i
\(486\) 0 0
\(487\) −13.8291 −0.626658 −0.313329 0.949645i \(-0.601444\pi\)
−0.313329 + 0.949645i \(0.601444\pi\)
\(488\) −10.0528 −0.455069
\(489\) 0 0
\(490\) 7.44187 10.3267i 0.336189 0.466511i
\(491\) 6.77918i 0.305940i −0.988231 0.152970i \(-0.951116\pi\)
0.988231 0.152970i \(-0.0488838\pi\)
\(492\) 0 0
\(493\) 4.50010i 0.202674i
\(494\) 11.4505i 0.515180i
\(495\) 0 0
\(496\) 7.40750i 0.332606i
\(497\) −6.57134 2.12111i −0.294765 0.0951448i
\(498\) 0 0
\(499\) −20.2540 −0.906695 −0.453347 0.891334i \(-0.649770\pi\)
−0.453347 + 0.891334i \(0.649770\pi\)
\(500\) 12.1713 0.544318
\(501\) 0 0
\(502\) 0.195266i 0.00871515i
\(503\) −18.4959 −0.824693 −0.412346 0.911027i \(-0.635291\pi\)
−0.412346 + 0.911027i \(0.635291\pi\)
\(504\) 0 0
\(505\) 29.2114 1.29989
\(506\) 40.3927i 1.79568i
\(507\) 0 0
\(508\) 9.94342 0.441168
\(509\) −8.26194 −0.366204 −0.183102 0.983094i \(-0.558614\pi\)
−0.183102 + 0.983094i \(0.558614\pi\)
\(510\) 0 0
\(511\) 15.5363 + 5.01483i 0.687285 + 0.221843i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 3.37691i 0.148949i
\(515\) 0.604073i 0.0266187i
\(516\) 0 0
\(517\) 32.7066i 1.43843i
\(518\) 16.5854 + 5.35346i 0.728720 + 0.235218i
\(519\) 0 0
\(520\) −4.56470 −0.200176
\(521\) 9.44983 0.414005 0.207002 0.978340i \(-0.433629\pi\)
0.207002 + 0.978340i \(0.433629\pi\)
\(522\) 0 0
\(523\) 27.7171i 1.21198i 0.795470 + 0.605992i \(0.207224\pi\)
−0.795470 + 0.605992i \(0.792776\pi\)
\(524\) −3.35409 −0.146524
\(525\) 0 0
\(526\) 2.02058 0.0881016
\(527\) 33.3345i 1.45207i
\(528\) 0 0
\(529\) −21.4924 −0.934450
\(530\) −0.562804 −0.0244466
\(531\) 0 0
\(532\) 11.4849 + 3.70710i 0.497932 + 0.160723i
\(533\) 21.2533i 0.920581i
\(534\) 0 0
\(535\) 27.9667i 1.20911i
\(536\) 15.2036i 0.656698i
\(537\) 0 0
\(538\) 18.4193i 0.794113i
\(539\) −24.7830 + 34.3900i −1.06748 + 1.48128i
\(540\) 0 0
\(541\) −6.11681 −0.262982 −0.131491 0.991317i \(-0.541977\pi\)
−0.131491 + 0.991317i \(0.541977\pi\)
\(542\) −24.5042 −1.05255
\(543\) 0 0
\(544\) 4.50010i 0.192940i
\(545\) 10.3663 0.444045
\(546\) 0 0
\(547\) −45.0722 −1.92715 −0.963573 0.267445i \(-0.913821\pi\)
−0.963573 + 0.267445i \(0.913821\pi\)
\(548\) 14.5958i 0.623501i
\(549\) 0 0
\(550\) −10.2549 −0.437270
\(551\) −4.56140 −0.194322
\(552\) 0 0
\(553\) 8.07321 25.0113i 0.343308 1.06359i
\(554\) 12.1782i 0.517402i
\(555\) 0 0
\(556\) 5.95257i 0.252445i
\(557\) 3.74211i 0.158558i 0.996852 + 0.0792792i \(0.0252619\pi\)
−0.996852 + 0.0792792i \(0.974738\pi\)
\(558\) 0 0
\(559\) 15.0370i 0.635998i
\(560\) −1.47783 + 4.57842i −0.0624497 + 0.193474i
\(561\) 0 0
\(562\) −11.5814 −0.488532
\(563\) −13.8494 −0.583683 −0.291841 0.956467i \(-0.594268\pi\)
−0.291841 + 0.956467i \(0.594268\pi\)
\(564\) 0 0
\(565\) 2.08481i 0.0877087i
\(566\) 27.1540 1.14137
\(567\) 0 0
\(568\) 2.60992 0.109510
\(569\) 0.00674482i 0.000282758i 1.00000 0.000141379i \(4.50023e-5\pi\)
−1.00000 0.000141379i \(0.999955\pi\)
\(570\) 0 0
\(571\) −36.7110 −1.53631 −0.768155 0.640264i \(-0.778825\pi\)
−0.768155 + 0.640264i \(0.778825\pi\)
\(572\) 15.2015 0.635605
\(573\) 0 0
\(574\) 21.3171 + 6.88078i 0.889759 + 0.287198i
\(575\) 11.2957i 0.471063i
\(576\) 0 0
\(577\) 21.5738i 0.898127i −0.893500 0.449064i \(-0.851758\pi\)
0.893500 0.449064i \(-0.148242\pi\)
\(578\) 3.25087i 0.135218i
\(579\) 0 0
\(580\) 1.81839i 0.0755047i
\(581\) 10.5678 32.7399i 0.438428 1.35828i
\(582\) 0 0
\(583\) 1.87426 0.0776239
\(584\) −6.17049 −0.255337
\(585\) 0 0
\(586\) 31.7235i 1.31049i
\(587\) 9.51169 0.392590 0.196295 0.980545i \(-0.437109\pi\)
0.196295 + 0.980545i \(0.437109\pi\)
\(588\) 0 0
\(589\) 33.7886 1.39223
\(590\) 6.21377i 0.255817i
\(591\) 0 0
\(592\) −6.58716 −0.270731
\(593\) −28.5199 −1.17117 −0.585585 0.810611i \(-0.699135\pi\)
−0.585585 + 0.810611i \(0.699135\pi\)
\(594\) 0 0
\(595\) −6.65038 + 20.6033i −0.272639 + 0.844654i
\(596\) 15.2344i 0.624025i
\(597\) 0 0
\(598\) 16.7443i 0.684726i
\(599\) 41.3490i 1.68948i −0.535180 0.844738i \(-0.679756\pi\)
0.535180 0.844738i \(-0.320244\pi\)
\(600\) 0 0
\(601\) 35.2793i 1.43907i 0.694455 + 0.719536i \(0.255646\pi\)
−0.694455 + 0.719536i \(0.744354\pi\)
\(602\) 15.0822 + 4.86825i 0.614704 + 0.198415i
\(603\) 0 0
\(604\) 5.39307 0.219441
\(605\) −46.6797 −1.89780
\(606\) 0 0
\(607\) 20.6794i 0.839353i −0.907674 0.419676i \(-0.862144\pi\)
0.907674 0.419676i \(-0.137856\pi\)
\(608\) −4.56140 −0.184989
\(609\) 0 0
\(610\) 18.2800 0.740135
\(611\) 13.5581i 0.548503i
\(612\) 0 0
\(613\) −24.9741 −1.00869 −0.504347 0.863501i \(-0.668267\pi\)
−0.504347 + 0.863501i \(0.668267\pi\)
\(614\) 2.72493 0.109969
\(615\) 0 0
\(616\) 4.92149 15.2471i 0.198293 0.614324i
\(617\) 9.90881i 0.398914i −0.979907 0.199457i \(-0.936082\pi\)
0.979907 0.199457i \(-0.0639178\pi\)
\(618\) 0 0
\(619\) 23.4963i 0.944396i 0.881492 + 0.472198i \(0.156539\pi\)
−0.881492 + 0.472198i \(0.843461\pi\)
\(620\) 13.4698i 0.540958i
\(621\) 0 0
\(622\) 7.74611i 0.310591i
\(623\) −8.51395 + 26.3768i −0.341104 + 1.05676i
\(624\) 0 0
\(625\) −13.6650 −0.546602
\(626\) 26.8167 1.07181
\(627\) 0 0
\(628\) 5.90694i 0.235712i
\(629\) −29.6429 −1.18194
\(630\) 0 0
\(631\) 26.8846 1.07026 0.535129 0.844770i \(-0.320263\pi\)
0.535129 + 0.844770i \(0.320263\pi\)
\(632\) 9.93366i 0.395140i
\(633\) 0 0
\(634\) 15.0707 0.598536
\(635\) −18.0811 −0.717525
\(636\) 0 0
\(637\) −10.2735 + 14.2560i −0.407051 + 0.564842i
\(638\) 6.05565i 0.239745i
\(639\) 0 0
\(640\) 1.81839i 0.0718783i
\(641\) 31.7461i 1.25389i 0.779062 + 0.626947i \(0.215696\pi\)
−0.779062 + 0.626947i \(0.784304\pi\)
\(642\) 0 0
\(643\) 13.1293i 0.517768i −0.965908 0.258884i \(-0.916645\pi\)
0.965908 0.258884i \(-0.0833547\pi\)
\(644\) −16.7946 5.42100i −0.661801 0.213617i
\(645\) 0 0
\(646\) −20.5267 −0.807614
\(647\) −1.96318 −0.0771805 −0.0385902 0.999255i \(-0.512287\pi\)
−0.0385902 + 0.999255i \(0.512287\pi\)
\(648\) 0 0
\(649\) 20.6932i 0.812280i
\(650\) −4.25104 −0.166739
\(651\) 0 0
\(652\) −10.6581 −0.417402
\(653\) 2.19506i 0.0858993i 0.999077 + 0.0429497i \(0.0136755\pi\)
−0.999077 + 0.0429497i \(0.986324\pi\)
\(654\) 0 0
\(655\) 6.09906 0.238310
\(656\) −8.46644 −0.330559
\(657\) 0 0
\(658\) 13.5988 + 4.38946i 0.530138 + 0.171119i
\(659\) 9.97577i 0.388601i 0.980942 + 0.194300i \(0.0622436\pi\)
−0.980942 + 0.194300i \(0.937756\pi\)
\(660\) 0 0
\(661\) 11.9875i 0.466259i −0.972446 0.233130i \(-0.925103\pi\)
0.972446 0.233130i \(-0.0748966\pi\)
\(662\) 1.24808i 0.0485078i
\(663\) 0 0
\(664\) 13.0032i 0.504621i
\(665\) −20.8840 6.74098i −0.809847 0.261404i
\(666\) 0 0
\(667\) 6.67026 0.258273
\(668\) −10.7289 −0.415112
\(669\) 0 0
\(670\) 27.6462i 1.06807i
\(671\) −60.8763 −2.35010
\(672\) 0 0
\(673\) 29.2508 1.12754 0.563769 0.825933i \(-0.309351\pi\)
0.563769 + 0.825933i \(0.309351\pi\)
\(674\) 13.1359i 0.505977i
\(675\) 0 0
\(676\) −6.69842 −0.257632
\(677\) −22.2483 −0.855071 −0.427535 0.903999i \(-0.640618\pi\)
−0.427535 + 0.903999i \(0.640618\pi\)
\(678\) 0 0
\(679\) 24.9896 + 8.06617i 0.959011 + 0.309551i
\(680\) 8.18295i 0.313802i
\(681\) 0 0
\(682\) 44.8572i 1.71767i
\(683\) 29.1501i 1.11540i −0.830043 0.557700i \(-0.811684\pi\)
0.830043 0.557700i \(-0.188316\pi\)
\(684\) 0 0
\(685\) 26.5409i 1.01408i
\(686\) 10.9727 + 14.9198i 0.418941 + 0.569639i
\(687\) 0 0
\(688\) −5.99014 −0.228372
\(689\) 0.776951 0.0295995
\(690\) 0 0
\(691\) 12.4910i 0.475181i 0.971365 + 0.237591i \(0.0763577\pi\)
−0.971365 + 0.237591i \(0.923642\pi\)
\(692\) −23.0797 −0.877360
\(693\) 0 0
\(694\) −29.5484 −1.12164
\(695\) 10.8241i 0.410582i
\(696\) 0 0
\(697\) −38.0998 −1.44313
\(698\) 19.2752 0.729577
\(699\) 0 0
\(700\) −1.37628 + 4.26381i −0.0520185 + 0.161157i
\(701\) 39.2074i 1.48084i 0.672142 + 0.740422i \(0.265374\pi\)
−0.672142 + 0.740422i \(0.734626\pi\)
\(702\) 0 0
\(703\) 30.0467i 1.13323i
\(704\) 6.05565i 0.228231i
\(705\) 0 0
\(706\) 8.50869i 0.320229i
\(707\) −13.0557 + 40.4476i −0.491012 + 1.52119i
\(708\) 0 0
\(709\) 21.8254 0.819672 0.409836 0.912159i \(-0.365586\pi\)
0.409836 + 0.912159i \(0.365586\pi\)
\(710\) −4.74586 −0.178109
\(711\) 0 0
\(712\) 10.4760i 0.392604i
\(713\) −49.4099 −1.85042
\(714\) 0 0
\(715\) −27.6422 −1.03376
\(716\) 16.6281i 0.621421i
\(717\) 0 0
\(718\) 7.94081 0.296348
\(719\) 23.6604 0.882385 0.441193 0.897412i \(-0.354556\pi\)
0.441193 + 0.897412i \(0.354556\pi\)
\(720\) 0 0
\(721\) −0.836429 0.269984i −0.0311502 0.0100547i
\(722\) 1.80637i 0.0672262i
\(723\) 0 0
\(724\) 5.27347i 0.195987i
\(725\) 1.69344i 0.0628929i
\(726\) 0 0
\(727\) 31.4492i 1.16638i −0.812334 0.583192i \(-0.801803\pi\)
0.812334 0.583192i \(-0.198197\pi\)
\(728\) 2.04015 6.32051i 0.0756128 0.234254i
\(729\) 0 0
\(730\) 11.2204 0.415285
\(731\) −26.9562 −0.997011
\(732\) 0 0
\(733\) 24.5013i 0.904976i −0.891770 0.452488i \(-0.850537\pi\)
0.891770 0.452488i \(-0.149463\pi\)
\(734\) 36.3595 1.34205
\(735\) 0 0
\(736\) 6.67026 0.245869
\(737\) 92.0679i 3.39136i
\(738\) 0 0
\(739\) 10.2134 0.375707 0.187854 0.982197i \(-0.439847\pi\)
0.187854 + 0.982197i \(0.439847\pi\)
\(740\) 11.9781 0.440322
\(741\) 0 0
\(742\) 0.251539 0.779285i 0.00923429 0.0286085i
\(743\) 5.32104i 0.195210i −0.995225 0.0976050i \(-0.968882\pi\)
0.995225 0.0976050i \(-0.0311182\pi\)
\(744\) 0 0
\(745\) 27.7021i 1.01493i
\(746\) 31.4672i 1.15210i
\(747\) 0 0
\(748\) 27.2510i 0.996395i
\(749\) 38.7240 + 12.4994i 1.41495 + 0.456719i
\(750\) 0 0
\(751\) −37.2309 −1.35857 −0.679287 0.733873i \(-0.737711\pi\)
−0.679287 + 0.733873i \(0.737711\pi\)
\(752\) −5.40101 −0.196954
\(753\) 0 0
\(754\) 2.51029i 0.0914195i
\(755\) −9.80672 −0.356903
\(756\) 0 0
\(757\) −41.0652 −1.49254 −0.746270 0.665644i \(-0.768157\pi\)
−0.746270 + 0.665644i \(0.768157\pi\)
\(758\) 16.8128i 0.610670i
\(759\) 0 0
\(760\) 8.29442 0.300870
\(761\) 39.4965 1.43175 0.715874 0.698230i \(-0.246029\pi\)
0.715874 + 0.698230i \(0.246029\pi\)
\(762\) 0 0
\(763\) −4.63312 + 14.3537i −0.167730 + 0.519640i
\(764\) 10.2997i 0.372629i
\(765\) 0 0
\(766\) 20.1586i 0.728361i
\(767\) 8.57812i 0.309738i
\(768\) 0 0
\(769\) 30.2630i 1.09131i 0.838009 + 0.545656i \(0.183719\pi\)
−0.838009 + 0.545656i \(0.816281\pi\)
\(770\) −8.94922 + 27.7253i −0.322507 + 0.999150i
\(771\) 0 0
\(772\) −13.3100 −0.479039
\(773\) −54.9880 −1.97778 −0.988890 0.148647i \(-0.952508\pi\)
−0.988890 + 0.148647i \(0.952508\pi\)
\(774\) 0 0
\(775\) 12.5442i 0.450600i
\(776\) −9.92501 −0.356287
\(777\) 0 0
\(778\) −34.6042 −1.24062
\(779\) 38.6188i 1.38366i
\(780\) 0 0
\(781\) 15.8047 0.565538
\(782\) 30.0168 1.07340
\(783\) 0 0
\(784\) −5.67900 4.09255i −0.202821 0.146163i
\(785\) 10.7411i 0.383368i
\(786\) 0 0
\(787\) 21.1533i 0.754034i 0.926206 + 0.377017i \(0.123050\pi\)
−0.926206 + 0.377017i \(0.876950\pi\)
\(788\) 18.2881i 0.651487i
\(789\) 0 0
\(790\) 18.0633i 0.642664i
\(791\) 2.88673 + 0.931784i 0.102640 + 0.0331304i
\(792\) 0 0
\(793\) −25.2355 −0.896140
\(794\) −28.8882 −1.02520
\(795\) 0 0
\(796\) 8.30887i 0.294500i
\(797\) 42.6655 1.51129 0.755645 0.654981i \(-0.227324\pi\)
0.755645 + 0.654981i \(0.227324\pi\)
\(798\) 0 0
\(799\) −24.3051 −0.859851
\(800\) 1.69344i 0.0598722i
\(801\) 0 0
\(802\) 18.5186 0.653914
\(803\) −37.3663 −1.31863
\(804\) 0 0
\(805\) 30.5392 + 9.85751i 1.07637 + 0.347432i
\(806\) 18.5950i 0.654981i
\(807\) 0 0
\(808\) 16.0644i 0.565144i
\(809\) 10.9426i 0.384722i 0.981324 + 0.192361i \(0.0616145\pi\)
−0.981324 + 0.192361i \(0.938386\pi\)
\(810\) 0 0
\(811\) 38.1748i 1.34050i 0.742137 + 0.670248i \(0.233812\pi\)
−0.742137 + 0.670248i \(0.766188\pi\)
\(812\) 2.51784 + 0.812712i 0.0883587 + 0.0285206i
\(813\) 0 0
\(814\) −39.8895 −1.39813
\(815\) 19.3806 0.678872
\(816\) 0 0
\(817\) 27.3234i 0.955925i
\(818\) −22.0226 −0.770004
\(819\) 0 0
\(820\) 15.3953 0.537628
\(821\) 3.40618i 0.118876i 0.998232 + 0.0594382i \(0.0189309\pi\)
−0.998232 + 0.0594382i \(0.981069\pi\)
\(822\) 0 0
\(823\) −1.26763 −0.0441867 −0.0220934 0.999756i \(-0.507033\pi\)
−0.0220934 + 0.999756i \(0.507033\pi\)
\(824\) 0.332202 0.0115728
\(825\) 0 0
\(826\) 8.60389 + 2.77718i 0.299368 + 0.0966304i
\(827\) 35.1059i 1.22075i 0.792112 + 0.610376i \(0.208982\pi\)
−0.792112 + 0.610376i \(0.791018\pi\)
\(828\) 0 0
\(829\) 43.1802i 1.49971i −0.661601 0.749856i \(-0.730123\pi\)
0.661601 0.749856i \(-0.269877\pi\)
\(830\) 23.6449i 0.820727i
\(831\) 0 0
\(832\) 2.51029i 0.0870288i
\(833\) −25.5560 18.4169i −0.885465 0.638107i
\(834\) 0 0
\(835\) 19.5093 0.675146
\(836\) −27.6222 −0.955334
\(837\) 0 0
\(838\) 35.3086i 1.21971i
\(839\) −21.1455 −0.730023 −0.365012 0.931003i \(-0.618935\pi\)
−0.365012 + 0.931003i \(0.618935\pi\)
\(840\) 0 0
\(841\) −1.00000 −0.0344828
\(842\) 5.21246i 0.179633i
\(843\) 0 0
\(844\) 23.4970 0.808799
\(845\) 12.1804 0.419017
\(846\) 0 0
\(847\) 20.8630 64.6350i 0.716861 2.22088i
\(848\) 0.309506i 0.0106285i
\(849\) 0 0
\(850\) 7.62066i 0.261386i
\(851\) 43.9381i 1.50618i
\(852\) 0 0
\(853\) 23.7703i 0.813880i −0.913455 0.406940i \(-0.866596\pi\)
0.913455 0.406940i \(-0.133404\pi\)
\(854\) −8.17004 + 25.3113i −0.279573 + 0.866136i
\(855\) 0 0
\(856\) −15.3799 −0.525674
\(857\) 6.61694 0.226030 0.113015 0.993593i \(-0.463949\pi\)
0.113015 + 0.993593i \(0.463949\pi\)
\(858\) 0 0
\(859\) 7.17360i 0.244760i 0.992483 + 0.122380i \(0.0390527\pi\)
−0.992483 + 0.122380i \(0.960947\pi\)
\(860\) 10.8924 0.371429
\(861\) 0 0
\(862\) 4.01661 0.136806
\(863\) 47.7103i 1.62408i 0.583604 + 0.812038i \(0.301642\pi\)
−0.583604 + 0.812038i \(0.698358\pi\)
\(864\) 0 0
\(865\) 41.9681 1.42696
\(866\) 2.36693 0.0804317
\(867\) 0 0
\(868\) −18.6509 6.02016i −0.633052 0.204338i
\(869\) 60.1547i 2.04061i
\(870\) 0 0
\(871\) 38.1656i 1.29319i
\(872\) 5.70082i 0.193054i
\(873\) 0 0
\(874\) 30.4257i 1.02917i
\(875\) 9.89177 30.6454i 0.334403 1.03600i
\(876\) 0 0
\(877\) −30.7609 −1.03872 −0.519361 0.854555i \(-0.673830\pi\)
−0.519361 + 0.854555i \(0.673830\pi\)
\(878\) 14.4641 0.488140
\(879\) 0 0
\(880\) 11.0115i 0.371199i
\(881\) 5.28813 0.178162 0.0890808 0.996024i \(-0.471607\pi\)
0.0890808 + 0.996024i \(0.471607\pi\)
\(882\) 0 0
\(883\) 25.7628 0.866988 0.433494 0.901156i \(-0.357281\pi\)
0.433494 + 0.901156i \(0.357281\pi\)
\(884\) 11.2966i 0.379945i
\(885\) 0 0
\(886\) −7.09574 −0.238386
\(887\) 19.9871 0.671101 0.335551 0.942022i \(-0.391078\pi\)
0.335551 + 0.942022i \(0.391078\pi\)
\(888\) 0 0
\(889\) 8.08113 25.0359i 0.271033 0.839677i
\(890\) 19.0495i 0.638539i
\(891\) 0 0
\(892\) 8.34460i 0.279398i
\(893\) 24.6361i 0.824417i
\(894\) 0 0
\(895\) 30.2364i 1.01069i
\(896\) 2.51784 + 0.812712i 0.0841150 + 0.0271508i
\(897\) 0 0
\(898\) −22.9034 −0.764297
\(899\) 7.40750 0.247054
\(900\) 0 0
\(901\) 1.39281i 0.0464011i
\(902\) −51.2698 −1.70710
\(903\) 0 0
\(904\) −1.14651 −0.0381324
\(905\) 9.58924i 0.318757i
\(906\) 0 0
\(907\) −46.1269 −1.53162 −0.765809 0.643068i \(-0.777661\pi\)
−0.765809 + 0.643068i \(0.777661\pi\)
\(908\) −13.0567 −0.433300
\(909\) 0 0
\(910\) −3.70979 + 11.4932i −0.122978 + 0.380995i
\(911\) 35.7417i 1.18418i −0.805873 0.592088i \(-0.798304\pi\)
0.805873 0.592088i \(-0.201696\pi\)
\(912\) 0 0
\(913\) 78.7427i 2.60600i
\(914\) 8.71177i 0.288160i
\(915\) 0 0
\(916\) 10.5442i 0.348390i
\(917\) −2.72591 + 8.44505i −0.0900174 + 0.278880i
\(918\) 0 0
\(919\) 36.5080 1.20429 0.602145 0.798387i \(-0.294313\pi\)
0.602145 + 0.798387i \(0.294313\pi\)
\(920\) −12.1292 −0.399887
\(921\) 0 0
\(922\) 25.0888i 0.826257i
\(923\) 6.55166 0.215650
\(924\) 0 0
\(925\) 11.1550 0.366773
\(926\) 18.0716i 0.593870i
\(927\) 0 0
\(928\) −1.00000 −0.0328266
\(929\) 18.8445 0.618269 0.309135 0.951018i \(-0.399961\pi\)
0.309135 + 0.951018i \(0.399961\pi\)
\(930\) 0 0
\(931\) 18.6678 25.9042i 0.611811 0.848975i
\(932\) 15.6046i 0.511147i
\(933\) 0 0
\(934\) 26.3517i 0.862255i
\(935\) 49.5530i 1.62056i
\(936\) 0 0
\(937\) 37.0437i 1.21017i 0.796162 + 0.605083i \(0.206860\pi\)
−0.796162 + 0.605083i \(0.793140\pi\)
\(938\) −38.2803 12.3562i −1.24990 0.403444i
\(939\) 0 0
\(940\) 9.82116 0.320331
\(941\) 31.4026 1.02369 0.511847 0.859077i \(-0.328961\pi\)
0.511847 + 0.859077i \(0.328961\pi\)
\(942\) 0 0
\(943\) 56.4733i 1.83903i
\(944\) −3.41718 −0.111220
\(945\) 0 0
\(946\) −36.2741 −1.17937
\(947\) 13.9045i 0.451837i −0.974146 0.225919i \(-0.927462\pi\)
0.974146 0.225919i \(-0.0725383\pi\)
\(948\) 0 0
\(949\) −15.4898 −0.502819
\(950\) 7.72447 0.250615
\(951\) 0 0
\(952\) 11.3305 + 3.65728i 0.367224 + 0.118533i
\(953\) 51.0716i 1.65437i 0.561928 + 0.827186i \(0.310060\pi\)
−0.561928 + 0.827186i \(0.689940\pi\)
\(954\) 0 0
\(955\) 18.7288i 0.606051i
\(956\) 9.94549i 0.321660i
\(957\) 0 0
\(958\) 15.0834i 0.487322i
\(959\) −36.7498 11.8622i −1.18671 0.383050i
\(960\) 0 0
\(961\) −23.8710 −0.770033
\(962\) −16.5357 −0.533133
\(963\) 0 0
\(964\) 25.6474i 0.826049i
\(965\) 24.2029 0.779119
\(966\) 0 0
\(967\) −18.5529 −0.596620 −0.298310 0.954469i \(-0.596423\pi\)
−0.298310 + 0.954469i \(0.596423\pi\)
\(968\) 25.6708i 0.825092i
\(969\) 0 0
\(970\) 18.0476 0.579473
\(971\) −23.6943 −0.760388 −0.380194 0.924907i \(-0.624143\pi\)
−0.380194 + 0.924907i \(0.624143\pi\)
\(972\) 0 0
\(973\) 14.9876 + 4.83772i 0.480480 + 0.155090i
\(974\) 13.8291i 0.443114i
\(975\) 0 0
\(976\) 10.0528i 0.321783i
\(977\) 46.6304i 1.49184i −0.666036 0.745920i \(-0.732010\pi\)
0.666036 0.745920i \(-0.267990\pi\)
\(978\) 0 0
\(979\) 63.4388i 2.02751i
\(980\) 10.3267 + 7.44187i 0.329873 + 0.237722i
\(981\) 0 0
\(982\) 6.77918 0.216332
\(983\) −1.23148 −0.0392781 −0.0196390 0.999807i \(-0.506252\pi\)
−0.0196390 + 0.999807i \(0.506252\pi\)
\(984\) 0 0
\(985\) 33.2550i 1.05959i
\(986\) −4.50010 −0.143312
\(987\) 0 0
\(988\) −11.4505 −0.364288
\(989\) 39.9558i 1.27052i
\(990\) 0 0
\(991\) 2.29700 0.0729666 0.0364833 0.999334i \(-0.488384\pi\)
0.0364833 + 0.999334i \(0.488384\pi\)
\(992\) 7.40750 0.235188
\(993\) 0 0
\(994\) 2.12111 6.57134i 0.0672775 0.208430i
\(995\) 15.1088i 0.478981i
\(996\) 0 0
\(997\) 11.4488i 0.362588i 0.983429 + 0.181294i \(0.0580286\pi\)
−0.983429 + 0.181294i \(0.941971\pi\)
\(998\) 20.2540i 0.641130i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3654.2.f.b.755.4 yes 40
3.2 odd 2 inner 3654.2.f.b.755.37 yes 40
7.6 odd 2 inner 3654.2.f.b.755.38 yes 40
21.20 even 2 inner 3654.2.f.b.755.3 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3654.2.f.b.755.3 40 21.20 even 2 inner
3654.2.f.b.755.4 yes 40 1.1 even 1 trivial
3654.2.f.b.755.37 yes 40 3.2 odd 2 inner
3654.2.f.b.755.38 yes 40 7.6 odd 2 inner