Properties

Label 3654.2.f.b.755.17
Level $3654$
Weight $2$
Character 3654.755
Analytic conductor $29.177$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3654,2,Mod(755,3654)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3654, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3654.755"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3654 = 2 \cdot 3^{2} \cdot 7 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3654.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,-40,0,0,-4,0,0,0,0,0,0,0,0,40,0,0,0,0,0,8,0,0,64] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(25)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.1773368986\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 755.17
Character \(\chi\) \(=\) 3654.755
Dual form 3654.2.f.b.755.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000 q^{4} -2.53682 q^{5} +(2.41720 + 1.07570i) q^{7} +1.00000i q^{8} +2.53682i q^{10} -0.368727i q^{11} -4.14980i q^{13} +(1.07570 - 2.41720i) q^{14} +1.00000 q^{16} +1.90402 q^{17} -2.46622i q^{19} +2.53682 q^{20} -0.368727 q^{22} +5.83815i q^{23} +1.43544 q^{25} -4.14980 q^{26} +(-2.41720 - 1.07570i) q^{28} -1.00000i q^{29} +7.24557i q^{31} -1.00000i q^{32} -1.90402i q^{34} +(-6.13201 - 2.72885i) q^{35} +4.79505 q^{37} -2.46622 q^{38} -2.53682i q^{40} -5.25760 q^{41} +12.0588 q^{43} +0.368727i q^{44} +5.83815 q^{46} -7.92810 q^{47} +(4.68575 + 5.20036i) q^{49} -1.43544i q^{50} +4.14980i q^{52} -2.22615i q^{53} +0.935394i q^{55} +(-1.07570 + 2.41720i) q^{56} -1.00000 q^{58} -0.966966 q^{59} -12.9452i q^{61} +7.24557 q^{62} -1.00000 q^{64} +10.5273i q^{65} -4.76675 q^{67} -1.90402 q^{68} +(-2.72885 + 6.13201i) q^{70} +6.68361i q^{71} -1.99007i q^{73} -4.79505i q^{74} +2.46622i q^{76} +(0.396639 - 0.891290i) q^{77} -0.227826 q^{79} -2.53682 q^{80} +5.25760i q^{82} +8.72527 q^{83} -4.83015 q^{85} -12.0588i q^{86} +0.368727 q^{88} +4.99081 q^{89} +(4.46393 - 10.0309i) q^{91} -5.83815i q^{92} +7.92810i q^{94} +6.25634i q^{95} -9.46666i q^{97} +(5.20036 - 4.68575i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 40 q^{4} - 4 q^{7} + 40 q^{16} + 8 q^{22} + 64 q^{25} + 4 q^{28} - 48 q^{37} - 8 q^{43} + 8 q^{46} + 36 q^{49} - 40 q^{58} - 40 q^{64} + 24 q^{67} + 28 q^{70} - 144 q^{79} - 24 q^{85} - 8 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3654\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\) \(2089\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) −2.53682 −1.13450 −0.567250 0.823546i \(-0.691993\pi\)
−0.567250 + 0.823546i \(0.691993\pi\)
\(6\) 0 0
\(7\) 2.41720 + 1.07570i 0.913617 + 0.406575i
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 2.53682i 0.802212i
\(11\) 0.368727i 0.111176i −0.998454 0.0555878i \(-0.982297\pi\)
0.998454 0.0555878i \(-0.0177033\pi\)
\(12\) 0 0
\(13\) 4.14980i 1.15095i −0.817820 0.575474i \(-0.804818\pi\)
0.817820 0.575474i \(-0.195182\pi\)
\(14\) 1.07570 2.41720i 0.287492 0.646025i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 1.90402 0.461792 0.230896 0.972978i \(-0.425834\pi\)
0.230896 + 0.972978i \(0.425834\pi\)
\(18\) 0 0
\(19\) 2.46622i 0.565789i −0.959151 0.282894i \(-0.908705\pi\)
0.959151 0.282894i \(-0.0912946\pi\)
\(20\) 2.53682 0.567250
\(21\) 0 0
\(22\) −0.368727 −0.0786130
\(23\) 5.83815i 1.21734i 0.793424 + 0.608669i \(0.208296\pi\)
−0.793424 + 0.608669i \(0.791704\pi\)
\(24\) 0 0
\(25\) 1.43544 0.287089
\(26\) −4.14980 −0.813843
\(27\) 0 0
\(28\) −2.41720 1.07570i −0.456809 0.203288i
\(29\) 1.00000i 0.185695i
\(30\) 0 0
\(31\) 7.24557i 1.30134i 0.759359 + 0.650672i \(0.225513\pi\)
−0.759359 + 0.650672i \(0.774487\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 1.90402i 0.326536i
\(35\) −6.13201 2.72885i −1.03650 0.461259i
\(36\) 0 0
\(37\) 4.79505 0.788301 0.394151 0.919046i \(-0.371039\pi\)
0.394151 + 0.919046i \(0.371039\pi\)
\(38\) −2.46622 −0.400073
\(39\) 0 0
\(40\) 2.53682i 0.401106i
\(41\) −5.25760 −0.821099 −0.410550 0.911838i \(-0.634663\pi\)
−0.410550 + 0.911838i \(0.634663\pi\)
\(42\) 0 0
\(43\) 12.0588 1.83896 0.919478 0.393142i \(-0.128612\pi\)
0.919478 + 0.393142i \(0.128612\pi\)
\(44\) 0.368727i 0.0555878i
\(45\) 0 0
\(46\) 5.83815 0.860788
\(47\) −7.92810 −1.15643 −0.578216 0.815883i \(-0.696251\pi\)
−0.578216 + 0.815883i \(0.696251\pi\)
\(48\) 0 0
\(49\) 4.68575 + 5.20036i 0.669393 + 0.742909i
\(50\) 1.43544i 0.203002i
\(51\) 0 0
\(52\) 4.14980i 0.575474i
\(53\) 2.22615i 0.305785i −0.988243 0.152893i \(-0.951141\pi\)
0.988243 0.152893i \(-0.0488588\pi\)
\(54\) 0 0
\(55\) 0.935394i 0.126129i
\(56\) −1.07570 + 2.41720i −0.143746 + 0.323012i
\(57\) 0 0
\(58\) −1.00000 −0.131306
\(59\) −0.966966 −0.125888 −0.0629441 0.998017i \(-0.520049\pi\)
−0.0629441 + 0.998017i \(0.520049\pi\)
\(60\) 0 0
\(61\) 12.9452i 1.65746i −0.559645 0.828732i \(-0.689063\pi\)
0.559645 0.828732i \(-0.310937\pi\)
\(62\) 7.24557 0.920189
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 10.5273i 1.30575i
\(66\) 0 0
\(67\) −4.76675 −0.582351 −0.291175 0.956670i \(-0.594046\pi\)
−0.291175 + 0.956670i \(0.594046\pi\)
\(68\) −1.90402 −0.230896
\(69\) 0 0
\(70\) −2.72885 + 6.13201i −0.326160 + 0.732915i
\(71\) 6.68361i 0.793199i 0.917992 + 0.396599i \(0.129810\pi\)
−0.917992 + 0.396599i \(0.870190\pi\)
\(72\) 0 0
\(73\) 1.99007i 0.232920i −0.993195 0.116460i \(-0.962845\pi\)
0.993195 0.116460i \(-0.0371546\pi\)
\(74\) 4.79505i 0.557413i
\(75\) 0 0
\(76\) 2.46622i 0.282894i
\(77\) 0.396639 0.891290i 0.0452012 0.101572i
\(78\) 0 0
\(79\) −0.227826 −0.0256325 −0.0128162 0.999918i \(-0.504080\pi\)
−0.0128162 + 0.999918i \(0.504080\pi\)
\(80\) −2.53682 −0.283625
\(81\) 0 0
\(82\) 5.25760i 0.580605i
\(83\) 8.72527 0.957723 0.478862 0.877890i \(-0.341050\pi\)
0.478862 + 0.877890i \(0.341050\pi\)
\(84\) 0 0
\(85\) −4.83015 −0.523903
\(86\) 12.0588i 1.30034i
\(87\) 0 0
\(88\) 0.368727 0.0393065
\(89\) 4.99081 0.529025 0.264512 0.964382i \(-0.414789\pi\)
0.264512 + 0.964382i \(0.414789\pi\)
\(90\) 0 0
\(91\) 4.46393 10.0309i 0.467947 1.05153i
\(92\) 5.83815i 0.608669i
\(93\) 0 0
\(94\) 7.92810i 0.817722i
\(95\) 6.25634i 0.641887i
\(96\) 0 0
\(97\) 9.46666i 0.961194i −0.876942 0.480597i \(-0.840420\pi\)
0.876942 0.480597i \(-0.159580\pi\)
\(98\) 5.20036 4.68575i 0.525316 0.473332i
\(99\) 0 0
\(100\) −1.43544 −0.143544
\(101\) 11.4978 1.14408 0.572038 0.820227i \(-0.306153\pi\)
0.572038 + 0.820227i \(0.306153\pi\)
\(102\) 0 0
\(103\) 2.65737i 0.261838i −0.991393 0.130919i \(-0.958207\pi\)
0.991393 0.130919i \(-0.0417928\pi\)
\(104\) 4.14980 0.406921
\(105\) 0 0
\(106\) −2.22615 −0.216223
\(107\) 4.77936i 0.462038i −0.972949 0.231019i \(-0.925794\pi\)
0.972949 0.231019i \(-0.0742060\pi\)
\(108\) 0 0
\(109\) 15.9604 1.52873 0.764364 0.644785i \(-0.223053\pi\)
0.764364 + 0.644785i \(0.223053\pi\)
\(110\) 0.935394 0.0891864
\(111\) 0 0
\(112\) 2.41720 + 1.07570i 0.228404 + 0.101644i
\(113\) 14.7288i 1.38557i −0.721143 0.692786i \(-0.756383\pi\)
0.721143 0.692786i \(-0.243617\pi\)
\(114\) 0 0
\(115\) 14.8103i 1.38107i
\(116\) 1.00000i 0.0928477i
\(117\) 0 0
\(118\) 0.966966i 0.0890164i
\(119\) 4.60240 + 2.04815i 0.421901 + 0.187753i
\(120\) 0 0
\(121\) 10.8640 0.987640
\(122\) −12.9452 −1.17200
\(123\) 0 0
\(124\) 7.24557i 0.650672i
\(125\) 9.04263 0.808797
\(126\) 0 0
\(127\) 7.62356 0.676481 0.338241 0.941060i \(-0.390168\pi\)
0.338241 + 0.941060i \(0.390168\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) 10.5273 0.923304
\(131\) −5.89606 −0.515141 −0.257571 0.966259i \(-0.582922\pi\)
−0.257571 + 0.966259i \(0.582922\pi\)
\(132\) 0 0
\(133\) 2.65290 5.96135i 0.230036 0.516914i
\(134\) 4.76675i 0.411784i
\(135\) 0 0
\(136\) 1.90402i 0.163268i
\(137\) 14.6126i 1.24844i −0.781249 0.624219i \(-0.785417\pi\)
0.781249 0.624219i \(-0.214583\pi\)
\(138\) 0 0
\(139\) 4.60820i 0.390863i −0.980717 0.195431i \(-0.937389\pi\)
0.980717 0.195431i \(-0.0626107\pi\)
\(140\) 6.13201 + 2.72885i 0.518249 + 0.230630i
\(141\) 0 0
\(142\) 6.68361 0.560876
\(143\) −1.53015 −0.127957
\(144\) 0 0
\(145\) 2.53682i 0.210671i
\(146\) −1.99007 −0.164699
\(147\) 0 0
\(148\) −4.79505 −0.394151
\(149\) 3.31339i 0.271443i −0.990747 0.135722i \(-0.956665\pi\)
0.990747 0.135722i \(-0.0433353\pi\)
\(150\) 0 0
\(151\) 16.7171 1.36042 0.680209 0.733018i \(-0.261889\pi\)
0.680209 + 0.733018i \(0.261889\pi\)
\(152\) 2.46622 0.200037
\(153\) 0 0
\(154\) −0.891290 0.396639i −0.0718222 0.0319621i
\(155\) 18.3807i 1.47637i
\(156\) 0 0
\(157\) 3.08156i 0.245935i 0.992411 + 0.122968i \(0.0392411\pi\)
−0.992411 + 0.122968i \(0.960759\pi\)
\(158\) 0.227826i 0.0181249i
\(159\) 0 0
\(160\) 2.53682i 0.200553i
\(161\) −6.28008 + 14.1120i −0.494940 + 1.11218i
\(162\) 0 0
\(163\) −7.73491 −0.605845 −0.302922 0.953015i \(-0.597962\pi\)
−0.302922 + 0.953015i \(0.597962\pi\)
\(164\) 5.25760 0.410550
\(165\) 0 0
\(166\) 8.72527i 0.677212i
\(167\) 0.112969 0.00874178 0.00437089 0.999990i \(-0.498609\pi\)
0.00437089 + 0.999990i \(0.498609\pi\)
\(168\) 0 0
\(169\) −4.22084 −0.324680
\(170\) 4.83015i 0.370455i
\(171\) 0 0
\(172\) −12.0588 −0.919478
\(173\) 15.5070 1.17897 0.589487 0.807778i \(-0.299330\pi\)
0.589487 + 0.807778i \(0.299330\pi\)
\(174\) 0 0
\(175\) 3.46976 + 1.54410i 0.262289 + 0.116723i
\(176\) 0.368727i 0.0277939i
\(177\) 0 0
\(178\) 4.99081i 0.374077i
\(179\) 1.04867i 0.0783814i 0.999232 + 0.0391907i \(0.0124780\pi\)
−0.999232 + 0.0391907i \(0.987522\pi\)
\(180\) 0 0
\(181\) 13.1774i 0.979471i −0.871871 0.489736i \(-0.837093\pi\)
0.871871 0.489736i \(-0.162907\pi\)
\(182\) −10.0309 4.46393i −0.743541 0.330888i
\(183\) 0 0
\(184\) −5.83815 −0.430394
\(185\) −12.1642 −0.894327
\(186\) 0 0
\(187\) 0.702064i 0.0513400i
\(188\) 7.92810 0.578216
\(189\) 0 0
\(190\) 6.25634 0.453883
\(191\) 5.69346i 0.411964i 0.978556 + 0.205982i \(0.0660389\pi\)
−0.978556 + 0.205982i \(0.933961\pi\)
\(192\) 0 0
\(193\) 9.71538 0.699328 0.349664 0.936875i \(-0.386296\pi\)
0.349664 + 0.936875i \(0.386296\pi\)
\(194\) −9.46666 −0.679667
\(195\) 0 0
\(196\) −4.68575 5.20036i −0.334696 0.371454i
\(197\) 20.1969i 1.43897i −0.694510 0.719483i \(-0.744379\pi\)
0.694510 0.719483i \(-0.255621\pi\)
\(198\) 0 0
\(199\) 4.35582i 0.308776i 0.988010 + 0.154388i \(0.0493406\pi\)
−0.988010 + 0.154388i \(0.950659\pi\)
\(200\) 1.43544i 0.101501i
\(201\) 0 0
\(202\) 11.4978i 0.808984i
\(203\) 1.07570 2.41720i 0.0754992 0.169654i
\(204\) 0 0
\(205\) 13.3376 0.931537
\(206\) −2.65737 −0.185148
\(207\) 0 0
\(208\) 4.14980i 0.287737i
\(209\) −0.909362 −0.0629019
\(210\) 0 0
\(211\) −3.85376 −0.265304 −0.132652 0.991163i \(-0.542349\pi\)
−0.132652 + 0.991163i \(0.542349\pi\)
\(212\) 2.22615i 0.152893i
\(213\) 0 0
\(214\) −4.77936 −0.326710
\(215\) −30.5911 −2.08629
\(216\) 0 0
\(217\) −7.79405 + 17.5140i −0.529094 + 1.18893i
\(218\) 15.9604i 1.08097i
\(219\) 0 0
\(220\) 0.935394i 0.0630643i
\(221\) 7.90129i 0.531499i
\(222\) 0 0
\(223\) 20.3202i 1.36074i −0.732869 0.680370i \(-0.761819\pi\)
0.732869 0.680370i \(-0.238181\pi\)
\(224\) 1.07570 2.41720i 0.0718731 0.161506i
\(225\) 0 0
\(226\) −14.7288 −0.979748
\(227\) −10.4603 −0.694275 −0.347138 0.937814i \(-0.612846\pi\)
−0.347138 + 0.937814i \(0.612846\pi\)
\(228\) 0 0
\(229\) 12.9271i 0.854248i 0.904193 + 0.427124i \(0.140473\pi\)
−0.904193 + 0.427124i \(0.859527\pi\)
\(230\) −14.8103 −0.976563
\(231\) 0 0
\(232\) 1.00000 0.0656532
\(233\) 10.8665i 0.711885i 0.934508 + 0.355943i \(0.115840\pi\)
−0.934508 + 0.355943i \(0.884160\pi\)
\(234\) 0 0
\(235\) 20.1122 1.31197
\(236\) 0.966966 0.0629441
\(237\) 0 0
\(238\) 2.04815 4.60240i 0.132762 0.298329i
\(239\) 10.7624i 0.696163i −0.937464 0.348082i \(-0.886833\pi\)
0.937464 0.348082i \(-0.113167\pi\)
\(240\) 0 0
\(241\) 14.8239i 0.954889i −0.878662 0.477445i \(-0.841563\pi\)
0.878662 0.477445i \(-0.158437\pi\)
\(242\) 10.8640i 0.698367i
\(243\) 0 0
\(244\) 12.9452i 0.828732i
\(245\) −11.8869 13.1924i −0.759426 0.842829i
\(246\) 0 0
\(247\) −10.2343 −0.651193
\(248\) −7.24557 −0.460094
\(249\) 0 0
\(250\) 9.04263i 0.571906i
\(251\) −27.9058 −1.76140 −0.880698 0.473678i \(-0.842926\pi\)
−0.880698 + 0.473678i \(0.842926\pi\)
\(252\) 0 0
\(253\) 2.15269 0.135338
\(254\) 7.62356i 0.478345i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 17.7089 1.10465 0.552326 0.833628i \(-0.313740\pi\)
0.552326 + 0.833628i \(0.313740\pi\)
\(258\) 0 0
\(259\) 11.5906 + 5.15802i 0.720206 + 0.320504i
\(260\) 10.5273i 0.652875i
\(261\) 0 0
\(262\) 5.89606i 0.364260i
\(263\) 19.9029i 1.22726i −0.789592 0.613632i \(-0.789708\pi\)
0.789592 0.613632i \(-0.210292\pi\)
\(264\) 0 0
\(265\) 5.64733i 0.346913i
\(266\) −5.96135 2.65290i −0.365514 0.162660i
\(267\) 0 0
\(268\) 4.76675 0.291175
\(269\) 16.4333 1.00196 0.500979 0.865459i \(-0.332973\pi\)
0.500979 + 0.865459i \(0.332973\pi\)
\(270\) 0 0
\(271\) 3.56501i 0.216559i −0.994120 0.108279i \(-0.965466\pi\)
0.994120 0.108279i \(-0.0345341\pi\)
\(272\) 1.90402 0.115448
\(273\) 0 0
\(274\) −14.6126 −0.882780
\(275\) 0.529287i 0.0319172i
\(276\) 0 0
\(277\) −17.0617 −1.02514 −0.512569 0.858646i \(-0.671306\pi\)
−0.512569 + 0.858646i \(0.671306\pi\)
\(278\) −4.60820 −0.276382
\(279\) 0 0
\(280\) 2.72885 6.13201i 0.163080 0.366457i
\(281\) 18.6570i 1.11298i −0.830854 0.556491i \(-0.812147\pi\)
0.830854 0.556491i \(-0.187853\pi\)
\(282\) 0 0
\(283\) 26.6294i 1.58295i 0.611201 + 0.791475i \(0.290687\pi\)
−0.611201 + 0.791475i \(0.709313\pi\)
\(284\) 6.68361i 0.396599i
\(285\) 0 0
\(286\) 1.53015i 0.0904794i
\(287\) −12.7087 5.65559i −0.750171 0.333839i
\(288\) 0 0
\(289\) −13.3747 −0.786748
\(290\) 2.53682 0.148967
\(291\) 0 0
\(292\) 1.99007i 0.116460i
\(293\) 12.0659 0.704899 0.352450 0.935831i \(-0.385349\pi\)
0.352450 + 0.935831i \(0.385349\pi\)
\(294\) 0 0
\(295\) 2.45302 0.142820
\(296\) 4.79505i 0.278707i
\(297\) 0 0
\(298\) −3.31339 −0.191940
\(299\) 24.2271 1.40109
\(300\) 0 0
\(301\) 29.1487 + 12.9717i 1.68010 + 0.747674i
\(302\) 16.7171i 0.961961i
\(303\) 0 0
\(304\) 2.46622i 0.141447i
\(305\) 32.8396i 1.88039i
\(306\) 0 0
\(307\) 21.2649i 1.21365i −0.794835 0.606825i \(-0.792443\pi\)
0.794835 0.606825i \(-0.207557\pi\)
\(308\) −0.396639 + 0.891290i −0.0226006 + 0.0507859i
\(309\) 0 0
\(310\) −18.3807 −1.04395
\(311\) −6.27453 −0.355796 −0.177898 0.984049i \(-0.556930\pi\)
−0.177898 + 0.984049i \(0.556930\pi\)
\(312\) 0 0
\(313\) 5.57141i 0.314915i 0.987526 + 0.157457i \(0.0503297\pi\)
−0.987526 + 0.157457i \(0.949670\pi\)
\(314\) 3.08156 0.173903
\(315\) 0 0
\(316\) 0.227826 0.0128162
\(317\) 2.91135i 0.163518i 0.996652 + 0.0817588i \(0.0260537\pi\)
−0.996652 + 0.0817588i \(0.973946\pi\)
\(318\) 0 0
\(319\) −0.368727 −0.0206448
\(320\) 2.53682 0.141812
\(321\) 0 0
\(322\) 14.1120 + 6.28008i 0.786431 + 0.349975i
\(323\) 4.69572i 0.261277i
\(324\) 0 0
\(325\) 5.95680i 0.330424i
\(326\) 7.73491i 0.428397i
\(327\) 0 0
\(328\) 5.25760i 0.290302i
\(329\) −19.1638 8.52824i −1.05654 0.470177i
\(330\) 0 0
\(331\) 12.0652 0.663166 0.331583 0.943426i \(-0.392417\pi\)
0.331583 + 0.943426i \(0.392417\pi\)
\(332\) −8.72527 −0.478862
\(333\) 0 0
\(334\) 0.112969i 0.00618137i
\(335\) 12.0924 0.660676
\(336\) 0 0
\(337\) 6.12184 0.333478 0.166739 0.986001i \(-0.446676\pi\)
0.166739 + 0.986001i \(0.446676\pi\)
\(338\) 4.22084i 0.229583i
\(339\) 0 0
\(340\) 4.83015 0.261951
\(341\) 2.67164 0.144678
\(342\) 0 0
\(343\) 5.73240 + 17.6108i 0.309521 + 0.950893i
\(344\) 12.0588i 0.650169i
\(345\) 0 0
\(346\) 15.5070i 0.833660i
\(347\) 9.47108i 0.508434i 0.967147 + 0.254217i \(0.0818178\pi\)
−0.967147 + 0.254217i \(0.918182\pi\)
\(348\) 0 0
\(349\) 0.612881i 0.0328068i −0.999865 0.0164034i \(-0.994778\pi\)
0.999865 0.0164034i \(-0.00522159\pi\)
\(350\) 1.54410 3.46976i 0.0825358 0.185466i
\(351\) 0 0
\(352\) −0.368727 −0.0196532
\(353\) −10.6174 −0.565108 −0.282554 0.959251i \(-0.591182\pi\)
−0.282554 + 0.959251i \(0.591182\pi\)
\(354\) 0 0
\(355\) 16.9551i 0.899883i
\(356\) −4.99081 −0.264512
\(357\) 0 0
\(358\) 1.04867 0.0554240
\(359\) 29.5978i 1.56211i 0.624460 + 0.781057i \(0.285319\pi\)
−0.624460 + 0.781057i \(0.714681\pi\)
\(360\) 0 0
\(361\) 12.9178 0.679883
\(362\) −13.1774 −0.692591
\(363\) 0 0
\(364\) −4.46393 + 10.0309i −0.233973 + 0.525763i
\(365\) 5.04843i 0.264247i
\(366\) 0 0
\(367\) 1.88880i 0.0985946i 0.998784 + 0.0492973i \(0.0156982\pi\)
−0.998784 + 0.0492973i \(0.984302\pi\)
\(368\) 5.83815i 0.304334i
\(369\) 0 0
\(370\) 12.1642i 0.632385i
\(371\) 2.39466 5.38106i 0.124325 0.279371i
\(372\) 0 0
\(373\) −25.8181 −1.33681 −0.668406 0.743797i \(-0.733023\pi\)
−0.668406 + 0.743797i \(0.733023\pi\)
\(374\) −0.702064 −0.0363029
\(375\) 0 0
\(376\) 7.92810i 0.408861i
\(377\) −4.14980 −0.213726
\(378\) 0 0
\(379\) −18.2508 −0.937483 −0.468741 0.883335i \(-0.655292\pi\)
−0.468741 + 0.883335i \(0.655292\pi\)
\(380\) 6.25634i 0.320944i
\(381\) 0 0
\(382\) 5.69346 0.291303
\(383\) 15.3875 0.786265 0.393132 0.919482i \(-0.371391\pi\)
0.393132 + 0.919482i \(0.371391\pi\)
\(384\) 0 0
\(385\) −1.00620 + 2.26104i −0.0512808 + 0.115233i
\(386\) 9.71538i 0.494500i
\(387\) 0 0
\(388\) 9.46666i 0.480597i
\(389\) 12.4856i 0.633045i 0.948585 + 0.316522i \(0.102515\pi\)
−0.948585 + 0.316522i \(0.897485\pi\)
\(390\) 0 0
\(391\) 11.1159i 0.562157i
\(392\) −5.20036 + 4.68575i −0.262658 + 0.236666i
\(393\) 0 0
\(394\) −20.1969 −1.01750
\(395\) 0.577954 0.0290800
\(396\) 0 0
\(397\) 34.1206i 1.71246i 0.516593 + 0.856231i \(0.327200\pi\)
−0.516593 + 0.856231i \(0.672800\pi\)
\(398\) 4.35582 0.218337
\(399\) 0 0
\(400\) 1.43544 0.0717722
\(401\) 21.8765i 1.09246i −0.837636 0.546229i \(-0.816063\pi\)
0.837636 0.546229i \(-0.183937\pi\)
\(402\) 0 0
\(403\) 30.0677 1.49778
\(404\) −11.4978 −0.572038
\(405\) 0 0
\(406\) −2.41720 1.07570i −0.119964 0.0533860i
\(407\) 1.76807i 0.0876398i
\(408\) 0 0
\(409\) 13.8313i 0.683916i 0.939715 + 0.341958i \(0.111090\pi\)
−0.939715 + 0.341958i \(0.888910\pi\)
\(410\) 13.3376i 0.658696i
\(411\) 0 0
\(412\) 2.65737i 0.130919i
\(413\) −2.33735 1.04016i −0.115014 0.0511830i
\(414\) 0 0
\(415\) −22.1344 −1.08654
\(416\) −4.14980 −0.203461
\(417\) 0 0
\(418\) 0.909362i 0.0444783i
\(419\) 20.4414 0.998626 0.499313 0.866422i \(-0.333586\pi\)
0.499313 + 0.866422i \(0.333586\pi\)
\(420\) 0 0
\(421\) 17.6489 0.860154 0.430077 0.902792i \(-0.358486\pi\)
0.430077 + 0.902792i \(0.358486\pi\)
\(422\) 3.85376i 0.187598i
\(423\) 0 0
\(424\) 2.22615 0.108111
\(425\) 2.73311 0.132575
\(426\) 0 0
\(427\) 13.9251 31.2912i 0.673884 1.51429i
\(428\) 4.77936i 0.231019i
\(429\) 0 0
\(430\) 30.5911i 1.47523i
\(431\) 6.07161i 0.292459i −0.989251 0.146230i \(-0.953286\pi\)
0.989251 0.146230i \(-0.0467139\pi\)
\(432\) 0 0
\(433\) 26.3646i 1.26700i 0.773742 + 0.633501i \(0.218383\pi\)
−0.773742 + 0.633501i \(0.781617\pi\)
\(434\) 17.5140 + 7.79405i 0.840700 + 0.374126i
\(435\) 0 0
\(436\) −15.9604 −0.764364
\(437\) 14.3981 0.688756
\(438\) 0 0
\(439\) 27.3138i 1.30362i 0.758383 + 0.651809i \(0.225990\pi\)
−0.758383 + 0.651809i \(0.774010\pi\)
\(440\) −0.935394 −0.0445932
\(441\) 0 0
\(442\) −7.90129 −0.375826
\(443\) 23.8216i 1.13180i 0.824474 + 0.565899i \(0.191471\pi\)
−0.824474 + 0.565899i \(0.808529\pi\)
\(444\) 0 0
\(445\) −12.6608 −0.600178
\(446\) −20.3202 −0.962189
\(447\) 0 0
\(448\) −2.41720 1.07570i −0.114202 0.0508219i
\(449\) 29.4708i 1.39081i −0.718616 0.695407i \(-0.755224\pi\)
0.718616 0.695407i \(-0.244776\pi\)
\(450\) 0 0
\(451\) 1.93862i 0.0912862i
\(452\) 14.7288i 0.692786i
\(453\) 0 0
\(454\) 10.4603i 0.490927i
\(455\) −11.3242 + 25.4466i −0.530885 + 1.19295i
\(456\) 0 0
\(457\) 9.59622 0.448892 0.224446 0.974487i \(-0.427943\pi\)
0.224446 + 0.974487i \(0.427943\pi\)
\(458\) 12.9271 0.604044
\(459\) 0 0
\(460\) 14.8103i 0.690534i
\(461\) 23.0246 1.07236 0.536181 0.844103i \(-0.319867\pi\)
0.536181 + 0.844103i \(0.319867\pi\)
\(462\) 0 0
\(463\) 2.99885 0.139368 0.0696842 0.997569i \(-0.477801\pi\)
0.0696842 + 0.997569i \(0.477801\pi\)
\(464\) 1.00000i 0.0464238i
\(465\) 0 0
\(466\) 10.8665 0.503379
\(467\) 42.1930 1.95246 0.976230 0.216738i \(-0.0695417\pi\)
0.976230 + 0.216738i \(0.0695417\pi\)
\(468\) 0 0
\(469\) −11.5222 5.12758i −0.532046 0.236769i
\(470\) 20.1122i 0.927705i
\(471\) 0 0
\(472\) 0.966966i 0.0445082i
\(473\) 4.44643i 0.204447i
\(474\) 0 0
\(475\) 3.54011i 0.162432i
\(476\) −4.60240 2.04815i −0.210951 0.0938767i
\(477\) 0 0
\(478\) −10.7624 −0.492262
\(479\) 0.981120 0.0448285 0.0224143 0.999749i \(-0.492865\pi\)
0.0224143 + 0.999749i \(0.492865\pi\)
\(480\) 0 0
\(481\) 19.8985i 0.907293i
\(482\) −14.8239 −0.675209
\(483\) 0 0
\(484\) −10.8640 −0.493820
\(485\) 24.0152i 1.09047i
\(486\) 0 0
\(487\) −35.9998 −1.63131 −0.815654 0.578540i \(-0.803623\pi\)
−0.815654 + 0.578540i \(0.803623\pi\)
\(488\) 12.9452 0.586002
\(489\) 0 0
\(490\) −13.1924 + 11.8869i −0.595970 + 0.536995i
\(491\) 21.5000i 0.970281i 0.874436 + 0.485141i \(0.161232\pi\)
−0.874436 + 0.485141i \(0.838768\pi\)
\(492\) 0 0
\(493\) 1.90402i 0.0857527i
\(494\) 10.2343i 0.460463i
\(495\) 0 0
\(496\) 7.24557i 0.325336i
\(497\) −7.18954 + 16.1556i −0.322495 + 0.724680i
\(498\) 0 0
\(499\) 31.8156 1.42426 0.712131 0.702046i \(-0.247730\pi\)
0.712131 + 0.702046i \(0.247730\pi\)
\(500\) −9.04263 −0.404399
\(501\) 0 0
\(502\) 27.9058i 1.24550i
\(503\) −35.5044 −1.58306 −0.791532 0.611128i \(-0.790716\pi\)
−0.791532 + 0.611128i \(0.790716\pi\)
\(504\) 0 0
\(505\) −29.1679 −1.29795
\(506\) 2.15269i 0.0956985i
\(507\) 0 0
\(508\) −7.62356 −0.338241
\(509\) 5.35311 0.237273 0.118636 0.992938i \(-0.462148\pi\)
0.118636 + 0.992938i \(0.462148\pi\)
\(510\) 0 0
\(511\) 2.14071 4.81040i 0.0946994 0.212799i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 17.7089i 0.781108i
\(515\) 6.74126i 0.297055i
\(516\) 0 0
\(517\) 2.92331i 0.128567i
\(518\) 5.15802 11.5906i 0.226630 0.509262i
\(519\) 0 0
\(520\) −10.5273 −0.461652
\(521\) 18.8059 0.823902 0.411951 0.911206i \(-0.364847\pi\)
0.411951 + 0.911206i \(0.364847\pi\)
\(522\) 0 0
\(523\) 14.7727i 0.645966i −0.946405 0.322983i \(-0.895314\pi\)
0.946405 0.322983i \(-0.104686\pi\)
\(524\) 5.89606 0.257571
\(525\) 0 0
\(526\) −19.9029 −0.867807
\(527\) 13.7957i 0.600950i
\(528\) 0 0
\(529\) −11.0840 −0.481911
\(530\) 5.64733 0.245305
\(531\) 0 0
\(532\) −2.65290 + 5.96135i −0.115018 + 0.258457i
\(533\) 21.8180i 0.945042i
\(534\) 0 0
\(535\) 12.1244i 0.524182i
\(536\) 4.76675i 0.205892i
\(537\) 0 0
\(538\) 16.4333i 0.708491i
\(539\) 1.91752 1.72777i 0.0825932 0.0744201i
\(540\) 0 0
\(541\) −6.23509 −0.268067 −0.134034 0.990977i \(-0.542793\pi\)
−0.134034 + 0.990977i \(0.542793\pi\)
\(542\) −3.56501 −0.153130
\(543\) 0 0
\(544\) 1.90402i 0.0816341i
\(545\) −40.4886 −1.73434
\(546\) 0 0
\(547\) 8.72732 0.373153 0.186577 0.982440i \(-0.440261\pi\)
0.186577 + 0.982440i \(0.440261\pi\)
\(548\) 14.6126i 0.624219i
\(549\) 0 0
\(550\) −0.529287 −0.0225689
\(551\) −2.46622 −0.105064
\(552\) 0 0
\(553\) −0.550703 0.245072i −0.0234183 0.0104215i
\(554\) 17.0617i 0.724882i
\(555\) 0 0
\(556\) 4.60820i 0.195431i
\(557\) 8.50314i 0.360290i −0.983640 0.180145i \(-0.942343\pi\)
0.983640 0.180145i \(-0.0576567\pi\)
\(558\) 0 0
\(559\) 50.0418i 2.11654i
\(560\) −6.13201 2.72885i −0.259125 0.115315i
\(561\) 0 0
\(562\) −18.6570 −0.786997
\(563\) −29.9941 −1.26410 −0.632050 0.774928i \(-0.717786\pi\)
−0.632050 + 0.774928i \(0.717786\pi\)
\(564\) 0 0
\(565\) 37.3644i 1.57193i
\(566\) 26.6294 1.11932
\(567\) 0 0
\(568\) −6.68361 −0.280438
\(569\) 23.8331i 0.999134i 0.866275 + 0.499567i \(0.166508\pi\)
−0.866275 + 0.499567i \(0.833492\pi\)
\(570\) 0 0
\(571\) −18.8833 −0.790243 −0.395121 0.918629i \(-0.629298\pi\)
−0.395121 + 0.918629i \(0.629298\pi\)
\(572\) 1.53015 0.0639786
\(573\) 0 0
\(574\) −5.65559 + 12.7087i −0.236060 + 0.530451i
\(575\) 8.38033i 0.349484i
\(576\) 0 0
\(577\) 27.8156i 1.15798i −0.815335 0.578990i \(-0.803447\pi\)
0.815335 0.578990i \(-0.196553\pi\)
\(578\) 13.3747i 0.556315i
\(579\) 0 0
\(580\) 2.53682i 0.105336i
\(581\) 21.0908 + 9.38575i 0.874992 + 0.389387i
\(582\) 0 0
\(583\) −0.820842 −0.0339958
\(584\) 1.99007 0.0823495
\(585\) 0 0
\(586\) 12.0659i 0.498439i
\(587\) 37.9404 1.56597 0.782985 0.622041i \(-0.213696\pi\)
0.782985 + 0.622041i \(0.213696\pi\)
\(588\) 0 0
\(589\) 17.8692 0.736286
\(590\) 2.45302i 0.100989i
\(591\) 0 0
\(592\) 4.79505 0.197075
\(593\) 14.4804 0.594640 0.297320 0.954778i \(-0.403907\pi\)
0.297320 + 0.954778i \(0.403907\pi\)
\(594\) 0 0
\(595\) −11.6755 5.19578i −0.478647 0.213006i
\(596\) 3.31339i 0.135722i
\(597\) 0 0
\(598\) 24.2271i 0.990722i
\(599\) 14.9799i 0.612062i −0.952021 0.306031i \(-0.900999\pi\)
0.952021 0.306031i \(-0.0990012\pi\)
\(600\) 0 0
\(601\) 34.9192i 1.42438i −0.701984 0.712192i \(-0.747702\pi\)
0.701984 0.712192i \(-0.252298\pi\)
\(602\) 12.9717 29.1487i 0.528685 1.18801i
\(603\) 0 0
\(604\) −16.7171 −0.680209
\(605\) −27.5601 −1.12048
\(606\) 0 0
\(607\) 17.8793i 0.725699i 0.931848 + 0.362849i \(0.118196\pi\)
−0.931848 + 0.362849i \(0.881804\pi\)
\(608\) −2.46622 −0.100018
\(609\) 0 0
\(610\) 32.8396 1.32964
\(611\) 32.9000i 1.33099i
\(612\) 0 0
\(613\) −39.5347 −1.59679 −0.798396 0.602133i \(-0.794318\pi\)
−0.798396 + 0.602133i \(0.794318\pi\)
\(614\) −21.2649 −0.858180
\(615\) 0 0
\(616\) 0.891290 + 0.396639i 0.0359111 + 0.0159810i
\(617\) 37.6172i 1.51441i −0.653176 0.757206i \(-0.726564\pi\)
0.653176 0.757206i \(-0.273436\pi\)
\(618\) 0 0
\(619\) 15.6572i 0.629314i 0.949205 + 0.314657i \(0.101890\pi\)
−0.949205 + 0.314657i \(0.898110\pi\)
\(620\) 18.3807i 0.738187i
\(621\) 0 0
\(622\) 6.27453i 0.251586i
\(623\) 12.0638 + 5.36860i 0.483326 + 0.215088i
\(624\) 0 0
\(625\) −30.1167 −1.20467
\(626\) 5.57141 0.222678
\(627\) 0 0
\(628\) 3.08156i 0.122968i
\(629\) 9.12986 0.364031
\(630\) 0 0
\(631\) −8.43047 −0.335612 −0.167806 0.985820i \(-0.553668\pi\)
−0.167806 + 0.985820i \(0.553668\pi\)
\(632\) 0.227826i 0.00906245i
\(633\) 0 0
\(634\) 2.91135 0.115624
\(635\) −19.3396 −0.767468
\(636\) 0 0
\(637\) 21.5805 19.4449i 0.855049 0.770436i
\(638\) 0.368727i 0.0145981i
\(639\) 0 0
\(640\) 2.53682i 0.100277i
\(641\) 4.26393i 0.168415i 0.996448 + 0.0842075i \(0.0268359\pi\)
−0.996448 + 0.0842075i \(0.973164\pi\)
\(642\) 0 0
\(643\) 44.3604i 1.74941i −0.484660 0.874703i \(-0.661057\pi\)
0.484660 0.874703i \(-0.338943\pi\)
\(644\) 6.28008 14.1120i 0.247470 0.556090i
\(645\) 0 0
\(646\) −4.69572 −0.184751
\(647\) 44.7238 1.75827 0.879137 0.476568i \(-0.158119\pi\)
0.879137 + 0.476568i \(0.158119\pi\)
\(648\) 0 0
\(649\) 0.356547i 0.0139957i
\(650\) −5.95680 −0.233645
\(651\) 0 0
\(652\) 7.73491 0.302922
\(653\) 18.3560i 0.718326i −0.933275 0.359163i \(-0.883062\pi\)
0.933275 0.359163i \(-0.116938\pi\)
\(654\) 0 0
\(655\) 14.9572 0.584427
\(656\) −5.25760 −0.205275
\(657\) 0 0
\(658\) −8.52824 + 19.1638i −0.332465 + 0.747085i
\(659\) 36.7210i 1.43045i 0.698897 + 0.715223i \(0.253675\pi\)
−0.698897 + 0.715223i \(0.746325\pi\)
\(660\) 0 0
\(661\) 25.3874i 0.987457i 0.869616 + 0.493728i \(0.164366\pi\)
−0.869616 + 0.493728i \(0.835634\pi\)
\(662\) 12.0652i 0.468929i
\(663\) 0 0
\(664\) 8.72527i 0.338606i
\(665\) −6.72993 + 15.1229i −0.260975 + 0.586439i
\(666\) 0 0
\(667\) 5.83815 0.226054
\(668\) −0.112969 −0.00437089
\(669\) 0 0
\(670\) 12.0924i 0.467169i
\(671\) −4.77326 −0.184270
\(672\) 0 0
\(673\) −23.5006 −0.905881 −0.452940 0.891541i \(-0.649625\pi\)
−0.452940 + 0.891541i \(0.649625\pi\)
\(674\) 6.12184i 0.235805i
\(675\) 0 0
\(676\) 4.22084 0.162340
\(677\) 21.0630 0.809515 0.404757 0.914424i \(-0.367356\pi\)
0.404757 + 0.914424i \(0.367356\pi\)
\(678\) 0 0
\(679\) 10.1833 22.8829i 0.390798 0.878164i
\(680\) 4.83015i 0.185228i
\(681\) 0 0
\(682\) 2.67164i 0.102302i
\(683\) 33.9689i 1.29978i 0.760027 + 0.649891i \(0.225186\pi\)
−0.760027 + 0.649891i \(0.774814\pi\)
\(684\) 0 0
\(685\) 37.0695i 1.41635i
\(686\) 17.6108 5.73240i 0.672383 0.218864i
\(687\) 0 0
\(688\) 12.0588 0.459739
\(689\) −9.23807 −0.351943
\(690\) 0 0
\(691\) 9.61070i 0.365608i 0.983149 + 0.182804i \(0.0585174\pi\)
−0.983149 + 0.182804i \(0.941483\pi\)
\(692\) −15.5070 −0.589487
\(693\) 0 0
\(694\) 9.47108 0.359517
\(695\) 11.6902i 0.443433i
\(696\) 0 0
\(697\) −10.0106 −0.379177
\(698\) −0.612881 −0.0231979
\(699\) 0 0
\(700\) −3.46976 1.54410i −0.131145 0.0583616i
\(701\) 34.6335i 1.30809i −0.756456 0.654044i \(-0.773071\pi\)
0.756456 0.654044i \(-0.226929\pi\)
\(702\) 0 0
\(703\) 11.8256i 0.446012i
\(704\) 0.368727i 0.0138969i
\(705\) 0 0
\(706\) 10.6174i 0.399592i
\(707\) 27.7926 + 12.3682i 1.04525 + 0.465153i
\(708\) 0 0
\(709\) −51.5502 −1.93601 −0.968004 0.250935i \(-0.919262\pi\)
−0.968004 + 0.250935i \(0.919262\pi\)
\(710\) −16.9551 −0.636314
\(711\) 0 0
\(712\) 4.99081i 0.187038i
\(713\) −42.3007 −1.58417
\(714\) 0 0
\(715\) 3.88170 0.145167
\(716\) 1.04867i 0.0391907i
\(717\) 0 0
\(718\) 29.5978 1.10458
\(719\) 40.1463 1.49721 0.748603 0.663018i \(-0.230725\pi\)
0.748603 + 0.663018i \(0.230725\pi\)
\(720\) 0 0
\(721\) 2.85852 6.42340i 0.106457 0.239220i
\(722\) 12.9178i 0.480750i
\(723\) 0 0
\(724\) 13.1774i 0.489736i
\(725\) 1.43544i 0.0533110i
\(726\) 0 0
\(727\) 31.0243i 1.15063i −0.817933 0.575314i \(-0.804880\pi\)
0.817933 0.575314i \(-0.195120\pi\)
\(728\) 10.0309 + 4.46393i 0.371770 + 0.165444i
\(729\) 0 0
\(730\) 5.04843 0.186851
\(731\) 22.9603 0.849216
\(732\) 0 0
\(733\) 29.3018i 1.08229i −0.840930 0.541144i \(-0.817991\pi\)
0.840930 0.541144i \(-0.182009\pi\)
\(734\) 1.88880 0.0697169
\(735\) 0 0
\(736\) 5.83815 0.215197
\(737\) 1.75763i 0.0647431i
\(738\) 0 0
\(739\) −21.9736 −0.808313 −0.404157 0.914690i \(-0.632435\pi\)
−0.404157 + 0.914690i \(0.632435\pi\)
\(740\) 12.1642 0.447164
\(741\) 0 0
\(742\) −5.38106 2.39466i −0.197545 0.0879108i
\(743\) 22.2285i 0.815484i 0.913097 + 0.407742i \(0.133684\pi\)
−0.913097 + 0.407742i \(0.866316\pi\)
\(744\) 0 0
\(745\) 8.40546i 0.307952i
\(746\) 25.8181i 0.945268i
\(747\) 0 0
\(748\) 0.702064i 0.0256700i
\(749\) 5.14114 11.5527i 0.187853 0.422126i
\(750\) 0 0
\(751\) 12.0845 0.440971 0.220485 0.975390i \(-0.429236\pi\)
0.220485 + 0.975390i \(0.429236\pi\)
\(752\) −7.92810 −0.289108
\(753\) 0 0
\(754\) 4.14980i 0.151127i
\(755\) −42.4082 −1.54339
\(756\) 0 0
\(757\) 29.4694 1.07108 0.535541 0.844509i \(-0.320108\pi\)
0.535541 + 0.844509i \(0.320108\pi\)
\(758\) 18.2508i 0.662900i
\(759\) 0 0
\(760\) −6.25634 −0.226941
\(761\) −29.8713 −1.08283 −0.541417 0.840754i \(-0.682112\pi\)
−0.541417 + 0.840754i \(0.682112\pi\)
\(762\) 0 0
\(763\) 38.5795 + 17.1685i 1.39667 + 0.621543i
\(764\) 5.69346i 0.205982i
\(765\) 0 0
\(766\) 15.3875i 0.555973i
\(767\) 4.01271i 0.144891i
\(768\) 0 0
\(769\) 49.3711i 1.78037i 0.455602 + 0.890183i \(0.349424\pi\)
−0.455602 + 0.890183i \(0.650576\pi\)
\(770\) 2.26104 + 1.00620i 0.0814822 + 0.0362610i
\(771\) 0 0
\(772\) −9.71538 −0.349664
\(773\) −32.2350 −1.15941 −0.579706 0.814826i \(-0.696832\pi\)
−0.579706 + 0.814826i \(0.696832\pi\)
\(774\) 0 0
\(775\) 10.4006i 0.373601i
\(776\) 9.46666 0.339833
\(777\) 0 0
\(778\) 12.4856 0.447630
\(779\) 12.9664i 0.464569i
\(780\) 0 0
\(781\) 2.46443 0.0881843
\(782\) 11.1159 0.397505
\(783\) 0 0
\(784\) 4.68575 + 5.20036i 0.167348 + 0.185727i
\(785\) 7.81736i 0.279013i
\(786\) 0 0
\(787\) 39.9126i 1.42273i −0.702823 0.711365i \(-0.748077\pi\)
0.702823 0.711365i \(-0.251923\pi\)
\(788\) 20.1969i 0.719483i
\(789\) 0 0
\(790\) 0.577954i 0.0205627i
\(791\) 15.8438 35.6026i 0.563340 1.26588i
\(792\) 0 0
\(793\) −53.7201 −1.90765
\(794\) 34.1206 1.21089
\(795\) 0 0
\(796\) 4.35582i 0.154388i
\(797\) 28.2498 1.00066 0.500330 0.865835i \(-0.333212\pi\)
0.500330 + 0.865835i \(0.333212\pi\)
\(798\) 0 0
\(799\) −15.0953 −0.534032
\(800\) 1.43544i 0.0507506i
\(801\) 0 0
\(802\) −21.8765 −0.772485
\(803\) −0.733792 −0.0258950
\(804\) 0 0
\(805\) 15.9314 35.7995i 0.561509 1.26177i
\(806\) 30.0677i 1.05909i
\(807\) 0 0
\(808\) 11.4978i 0.404492i
\(809\) 2.08396i 0.0732682i −0.999329 0.0366341i \(-0.988336\pi\)
0.999329 0.0366341i \(-0.0116636\pi\)
\(810\) 0 0
\(811\) 24.3914i 0.856497i 0.903661 + 0.428249i \(0.140869\pi\)
−0.903661 + 0.428249i \(0.859131\pi\)
\(812\) −1.07570 + 2.41720i −0.0377496 + 0.0848272i
\(813\) 0 0
\(814\) −1.76807 −0.0619707
\(815\) 19.6220 0.687330
\(816\) 0 0
\(817\) 29.7397i 1.04046i
\(818\) 13.8313 0.483602
\(819\) 0 0
\(820\) −13.3376 −0.465768
\(821\) 18.3927i 0.641911i −0.947094 0.320956i \(-0.895996\pi\)
0.947094 0.320956i \(-0.104004\pi\)
\(822\) 0 0
\(823\) 51.0597 1.77983 0.889914 0.456127i \(-0.150764\pi\)
0.889914 + 0.456127i \(0.150764\pi\)
\(824\) 2.65737 0.0925738
\(825\) 0 0
\(826\) −1.04016 + 2.33735i −0.0361919 + 0.0813269i
\(827\) 36.8496i 1.28139i −0.767797 0.640693i \(-0.778647\pi\)
0.767797 0.640693i \(-0.221353\pi\)
\(828\) 0 0
\(829\) 21.2708i 0.738765i −0.929277 0.369383i \(-0.879569\pi\)
0.929277 0.369383i \(-0.120431\pi\)
\(830\) 22.1344i 0.768297i
\(831\) 0 0
\(832\) 4.14980i 0.143868i
\(833\) 8.92175 + 9.90158i 0.309120 + 0.343069i
\(834\) 0 0
\(835\) −0.286581 −0.00991754
\(836\) 0.909362 0.0314509
\(837\) 0 0
\(838\) 20.4414i 0.706135i
\(839\) 14.0472 0.484964 0.242482 0.970156i \(-0.422038\pi\)
0.242482 + 0.970156i \(0.422038\pi\)
\(840\) 0 0
\(841\) −1.00000 −0.0344828
\(842\) 17.6489i 0.608221i
\(843\) 0 0
\(844\) 3.85376 0.132652
\(845\) 10.7075 0.368349
\(846\) 0 0
\(847\) 26.2606 + 11.6864i 0.902325 + 0.401550i
\(848\) 2.22615i 0.0764463i
\(849\) 0 0
\(850\) 2.73311i 0.0937449i
\(851\) 27.9942i 0.959629i
\(852\) 0 0
\(853\) 54.8330i 1.87745i 0.344671 + 0.938724i \(0.387991\pi\)
−0.344671 + 0.938724i \(0.612009\pi\)
\(854\) −31.2912 13.9251i −1.07076 0.476508i
\(855\) 0 0
\(856\) 4.77936 0.163355
\(857\) −44.4145 −1.51717 −0.758585 0.651575i \(-0.774109\pi\)
−0.758585 + 0.651575i \(0.774109\pi\)
\(858\) 0 0
\(859\) 7.16208i 0.244367i 0.992508 + 0.122184i \(0.0389897\pi\)
−0.992508 + 0.122184i \(0.961010\pi\)
\(860\) 30.5911 1.04315
\(861\) 0 0
\(862\) −6.07161 −0.206800
\(863\) 33.9163i 1.15453i 0.816558 + 0.577263i \(0.195879\pi\)
−0.816558 + 0.577263i \(0.804121\pi\)
\(864\) 0 0
\(865\) −39.3384 −1.33755
\(866\) 26.3646 0.895905
\(867\) 0 0
\(868\) 7.79405 17.5140i 0.264547 0.594465i
\(869\) 0.0840059i 0.00284970i
\(870\) 0 0
\(871\) 19.7810i 0.670255i
\(872\) 15.9604i 0.540487i
\(873\) 0 0
\(874\) 14.3981i 0.487024i
\(875\) 21.8579 + 9.72713i 0.738931 + 0.328837i
\(876\) 0 0
\(877\) 37.1782 1.25542 0.627710 0.778448i \(-0.283993\pi\)
0.627710 + 0.778448i \(0.283993\pi\)
\(878\) 27.3138 0.921797
\(879\) 0 0
\(880\) 0.935394i 0.0315321i
\(881\) 6.81184 0.229497 0.114748 0.993395i \(-0.463394\pi\)
0.114748 + 0.993395i \(0.463394\pi\)
\(882\) 0 0
\(883\) −23.4622 −0.789565 −0.394783 0.918775i \(-0.629180\pi\)
−0.394783 + 0.918775i \(0.629180\pi\)
\(884\) 7.90129i 0.265749i
\(885\) 0 0
\(886\) 23.8216 0.800302
\(887\) −45.7869 −1.53738 −0.768688 0.639624i \(-0.779090\pi\)
−0.768688 + 0.639624i \(0.779090\pi\)
\(888\) 0 0
\(889\) 18.4277 + 8.20064i 0.618045 + 0.275041i
\(890\) 12.6608i 0.424390i
\(891\) 0 0
\(892\) 20.3202i 0.680370i
\(893\) 19.5524i 0.654297i
\(894\) 0 0
\(895\) 2.66029i 0.0889237i
\(896\) −1.07570 + 2.41720i −0.0359365 + 0.0807531i
\(897\) 0 0
\(898\) −29.4708 −0.983454
\(899\) 7.24557 0.241653
\(900\) 0 0
\(901\) 4.23863i 0.141209i
\(902\) 1.93862 0.0645491
\(903\) 0 0
\(904\) 14.7288 0.489874
\(905\) 33.4288i 1.11121i
\(906\) 0 0
\(907\) 47.4624 1.57596 0.787982 0.615698i \(-0.211126\pi\)
0.787982 + 0.615698i \(0.211126\pi\)
\(908\) 10.4603 0.347138
\(909\) 0 0
\(910\) 25.4466 + 11.3242i 0.843546 + 0.375393i
\(911\) 38.7767i 1.28473i −0.766399 0.642365i \(-0.777953\pi\)
0.766399 0.642365i \(-0.222047\pi\)
\(912\) 0 0
\(913\) 3.21725i 0.106475i
\(914\) 9.59622i 0.317415i
\(915\) 0 0
\(916\) 12.9271i 0.427124i
\(917\) −14.2520 6.34238i −0.470642 0.209444i
\(918\) 0 0
\(919\) −19.6619 −0.648586 −0.324293 0.945957i \(-0.605126\pi\)
−0.324293 + 0.945957i \(0.605126\pi\)
\(920\) 14.8103 0.488282
\(921\) 0 0
\(922\) 23.0246i 0.758274i
\(923\) 27.7356 0.912930
\(924\) 0 0
\(925\) 6.88302 0.226312
\(926\) 2.99885i 0.0985484i
\(927\) 0 0
\(928\) −1.00000 −0.0328266
\(929\) −22.4413 −0.736275 −0.368137 0.929771i \(-0.620004\pi\)
−0.368137 + 0.929771i \(0.620004\pi\)
\(930\) 0 0
\(931\) 12.8252 11.5561i 0.420329 0.378735i
\(932\) 10.8665i 0.355943i
\(933\) 0 0
\(934\) 42.1930i 1.38060i
\(935\) 1.78101i 0.0582452i
\(936\) 0 0
\(937\) 51.7289i 1.68991i 0.534838 + 0.844955i \(0.320373\pi\)
−0.534838 + 0.844955i \(0.679627\pi\)
\(938\) −5.12758 + 11.5222i −0.167421 + 0.376213i
\(939\) 0 0
\(940\) −20.1122 −0.655986
\(941\) 3.78935 0.123529 0.0617646 0.998091i \(-0.480327\pi\)
0.0617646 + 0.998091i \(0.480327\pi\)
\(942\) 0 0
\(943\) 30.6947i 0.999555i
\(944\) −0.966966 −0.0314721
\(945\) 0 0
\(946\) −4.44643 −0.144566
\(947\) 46.8050i 1.52096i 0.649363 + 0.760478i \(0.275036\pi\)
−0.649363 + 0.760478i \(0.724964\pi\)
\(948\) 0 0
\(949\) −8.25838 −0.268078
\(950\) −3.54011 −0.114856
\(951\) 0 0
\(952\) −2.04815 + 4.60240i −0.0663808 + 0.149165i
\(953\) 36.5161i 1.18287i 0.806352 + 0.591436i \(0.201439\pi\)
−0.806352 + 0.591436i \(0.798561\pi\)
\(954\) 0 0
\(955\) 14.4433i 0.467373i
\(956\) 10.7624i 0.348082i
\(957\) 0 0
\(958\) 0.981120i 0.0316986i
\(959\) 15.7187 35.3216i 0.507585 1.14060i
\(960\) 0 0
\(961\) −21.4984 −0.693495
\(962\) −19.8985 −0.641553
\(963\) 0 0
\(964\) 14.8239i 0.477445i
\(965\) −24.6461 −0.793387
\(966\) 0 0
\(967\) −36.9577 −1.18848 −0.594239 0.804288i \(-0.702547\pi\)
−0.594239 + 0.804288i \(0.702547\pi\)
\(968\) 10.8640i 0.349183i
\(969\) 0 0
\(970\) 24.0152 0.771082
\(971\) −16.9611 −0.544308 −0.272154 0.962254i \(-0.587736\pi\)
−0.272154 + 0.962254i \(0.587736\pi\)
\(972\) 0 0
\(973\) 4.95703 11.1390i 0.158915 0.357099i
\(974\) 35.9998i 1.15351i
\(975\) 0 0
\(976\) 12.9452i 0.414366i
\(977\) 17.2686i 0.552472i 0.961090 + 0.276236i \(0.0890871\pi\)
−0.961090 + 0.276236i \(0.910913\pi\)
\(978\) 0 0
\(979\) 1.84025i 0.0588146i
\(980\) 11.8869 + 13.1924i 0.379713 + 0.421415i
\(981\) 0 0
\(982\) 21.5000 0.686093
\(983\) 36.6197 1.16799 0.583994 0.811758i \(-0.301489\pi\)
0.583994 + 0.811758i \(0.301489\pi\)
\(984\) 0 0
\(985\) 51.2357i 1.63251i
\(986\) −1.90402 −0.0606363
\(987\) 0 0
\(988\) 10.2343 0.325597
\(989\) 70.4013i 2.23863i
\(990\) 0 0
\(991\) −38.5856 −1.22571 −0.612857 0.790194i \(-0.709980\pi\)
−0.612857 + 0.790194i \(0.709980\pi\)
\(992\) 7.24557 0.230047
\(993\) 0 0
\(994\) 16.1556 + 7.18954i 0.512426 + 0.228038i
\(995\) 11.0499i 0.350306i
\(996\) 0 0
\(997\) 19.1516i 0.606537i −0.952905 0.303268i \(-0.901922\pi\)
0.952905 0.303268i \(-0.0980779\pi\)
\(998\) 31.8156i 1.00711i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3654.2.f.b.755.17 40
3.2 odd 2 inner 3654.2.f.b.755.24 yes 40
7.6 odd 2 inner 3654.2.f.b.755.23 yes 40
21.20 even 2 inner 3654.2.f.b.755.18 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3654.2.f.b.755.17 40 1.1 even 1 trivial
3654.2.f.b.755.18 yes 40 21.20 even 2 inner
3654.2.f.b.755.23 yes 40 7.6 odd 2 inner
3654.2.f.b.755.24 yes 40 3.2 odd 2 inner