Properties

Label 3654.2.a.bi
Level $3654$
Weight $2$
Character orbit 3654.a
Self dual yes
Analytic conductor $29.177$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3654,2,Mod(1,3654)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3654.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3654, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3654 = 2 \cdot 3^{2} \cdot 7 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3654.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-5,0,5,0,0,-5,-5,0,0,-5,0,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.1773368986\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.3241536.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 10x^{3} - 2x^{2} + 15x - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + q^{4} + \beta_{3} q^{5} - q^{7} - q^{8} - \beta_{3} q^{10} + (\beta_{3} + \beta_{2} - 1) q^{11} + ( - \beta_{2} + \beta_1 + 1) q^{13} + q^{14} + q^{16} + (\beta_{4} + \beta_{3} + \beta_1 - 2) q^{17}+ \cdots - q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 5 q^{2} + 5 q^{4} - 5 q^{7} - 5 q^{8} - 5 q^{11} + 5 q^{13} + 5 q^{14} + 5 q^{16} - 8 q^{17} + 7 q^{19} + 5 q^{22} - 5 q^{23} + 7 q^{25} - 5 q^{26} - 5 q^{28} + 5 q^{29} + 8 q^{31} - 5 q^{32} + 8 q^{34}+ \cdots - 5 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 10x^{3} - 2x^{2} + 15x - 6 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{4} - 9\nu^{2} - 4\nu + 8 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( 2\nu^{4} + 2\nu^{3} - 20\nu^{2} - 22\nu + 22 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{4} - 2\beta_{3} + 2\beta_{2} + 7\beta _1 + 2 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{3} + 9\beta_{2} + 2\beta _1 + 28 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.80248
3.04124
0.785690
−2.56712
0.542666
−1.00000 0 1.00000 −3.47489 0 −1.00000 −1.00000 0 3.47489
1.2 −1.00000 0 1.00000 −1.86045 0 −1.00000 −1.00000 0 1.86045
1.3 −1.00000 0 1.00000 −0.317476 0 −1.00000 −1.00000 0 0.317476
1.4 −1.00000 0 1.00000 2.38713 0 −1.00000 −1.00000 0 −2.38713
1.5 −1.00000 0 1.00000 3.26568 0 −1.00000 −1.00000 0 −3.26568
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(7\) \( +1 \)
\(29\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3654.2.a.bi 5
3.b odd 2 1 3654.2.a.bj yes 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3654.2.a.bi 5 1.a even 1 1 trivial
3654.2.a.bj yes 5 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3654))\):

\( T_{5}^{5} - 16T_{5}^{3} + 52T_{5} + 16 \) Copy content Toggle raw display
\( T_{11}^{5} + 5T_{11}^{4} - 24T_{11}^{3} - 104T_{11}^{2} + 144T_{11} + 336 \) Copy content Toggle raw display
\( T_{13}^{5} - 5T_{13}^{4} - 48T_{13}^{3} + 248T_{13}^{2} + 156T_{13} - 788 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{5} \) Copy content Toggle raw display
$3$ \( T^{5} \) Copy content Toggle raw display
$5$ \( T^{5} - 16 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$7$ \( (T + 1)^{5} \) Copy content Toggle raw display
$11$ \( T^{5} + 5 T^{4} + \cdots + 336 \) Copy content Toggle raw display
$13$ \( T^{5} - 5 T^{4} + \cdots - 788 \) Copy content Toggle raw display
$17$ \( T^{5} + 8 T^{4} + \cdots - 224 \) Copy content Toggle raw display
$19$ \( T^{5} - 7 T^{4} + \cdots + 1344 \) Copy content Toggle raw display
$23$ \( T^{5} + 5 T^{4} + \cdots + 448 \) Copy content Toggle raw display
$29$ \( (T - 1)^{5} \) Copy content Toggle raw display
$31$ \( T^{5} - 8 T^{4} + \cdots + 432 \) Copy content Toggle raw display
$37$ \( T^{5} + 7 T^{4} + \cdots - 1744 \) Copy content Toggle raw display
$41$ \( T^{5} + 12 T^{4} + \cdots + 32848 \) Copy content Toggle raw display
$43$ \( T^{5} - 8 T^{4} + \cdots - 896 \) Copy content Toggle raw display
$47$ \( T^{5} + 15 T^{4} + \cdots - 164 \) Copy content Toggle raw display
$53$ \( T^{5} - 3 T^{4} + \cdots - 20272 \) Copy content Toggle raw display
$59$ \( T^{5} - T^{4} + \cdots + 29724 \) Copy content Toggle raw display
$61$ \( T^{5} - 22 T^{4} + \cdots + 13216 \) Copy content Toggle raw display
$67$ \( T^{5} - 13 T^{4} + \cdots - 71232 \) Copy content Toggle raw display
$71$ \( T^{5} + 8 T^{4} + \cdots + 20992 \) Copy content Toggle raw display
$73$ \( T^{5} - 13 T^{4} + \cdots - 27604 \) Copy content Toggle raw display
$79$ \( T^{5} - 12 T^{4} + \cdots - 28416 \) Copy content Toggle raw display
$83$ \( T^{5} + 11 T^{4} + \cdots + 67052 \) Copy content Toggle raw display
$89$ \( T^{5} - 4 T^{4} + \cdots - 49072 \) Copy content Toggle raw display
$97$ \( T^{5} - 43 T^{4} + \cdots - 3148 \) Copy content Toggle raw display
show more
show less