Properties

Label 3654.2.a.be
Level $3654$
Weight $2$
Character orbit 3654.a
Self dual yes
Analytic conductor $29.177$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3654,2,Mod(1,3654)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3654, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3654.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3654 = 2 \cdot 3^{2} \cdot 7 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3654.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,3,0,3,0,0,-3,3,0,0,-1,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.1773368986\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.229.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 4x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1218)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + q^{4} + (\beta_{2} - \beta_1) q^{5} - q^{7} + q^{8} + (\beta_{2} - \beta_1) q^{10} + (2 \beta_{2} - \beta_1) q^{11} - \beta_{2} q^{13} - q^{14} + q^{16} + ( - \beta_{2} + \beta_1) q^{17}+ \cdots + q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + 3 q^{4} - 3 q^{7} + 3 q^{8} - q^{11} + q^{13} - 3 q^{14} + 3 q^{16} + q^{19} - q^{22} - 9 q^{23} + 17 q^{25} + q^{26} - 3 q^{28} + 3 q^{29} + 18 q^{31} + 3 q^{32} + 9 q^{37} + q^{38}+ \cdots + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 4x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} + \nu - 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{2} + \beta _1 + 6 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.11491
−0.254102
−1.86081
1.00000 0 1.00000 −4.22982 0 −1.00000 1.00000 0 −4.22982
1.2 1.00000 0 1.00000 0.508203 0 −1.00000 1.00000 0 0.508203
1.3 1.00000 0 1.00000 3.72161 0 −1.00000 1.00000 0 3.72161
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(7\) \( +1 \)
\(29\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3654.2.a.be 3
3.b odd 2 1 1218.2.a.p 3
12.b even 2 1 9744.2.a.bh 3
21.c even 2 1 8526.2.a.bo 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1218.2.a.p 3 3.b odd 2 1
3654.2.a.be 3 1.a even 1 1 trivial
8526.2.a.bo 3 21.c even 2 1
9744.2.a.bh 3 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3654))\):

\( T_{5}^{3} - 16T_{5} + 8 \) Copy content Toggle raw display
\( T_{11}^{3} + T_{11}^{2} - 32T_{11} - 64 \) Copy content Toggle raw display
\( T_{13}^{3} - T_{13}^{2} - 6T_{13} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 16T + 8 \) Copy content Toggle raw display
$7$ \( (T + 1)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} + T^{2} + \cdots - 64 \) Copy content Toggle raw display
$13$ \( T^{3} - T^{2} - 6T + 4 \) Copy content Toggle raw display
$17$ \( T^{3} - 16T - 8 \) Copy content Toggle raw display
$19$ \( T^{3} - T^{2} + \cdots + 16 \) Copy content Toggle raw display
$23$ \( T^{3} + 9 T^{2} + \cdots - 208 \) Copy content Toggle raw display
$29$ \( (T - 1)^{3} \) Copy content Toggle raw display
$31$ \( T^{3} - 18 T^{2} + \cdots - 112 \) Copy content Toggle raw display
$37$ \( T^{3} - 9 T^{2} + \cdots + 628 \) Copy content Toggle raw display
$41$ \( T^{3} - 10 T^{2} + \cdots + 64 \) Copy content Toggle raw display
$43$ \( T^{3} - 10 T^{2} + \cdots + 32 \) Copy content Toggle raw display
$47$ \( T^{3} - T^{2} + \cdots + 556 \) Copy content Toggle raw display
$53$ \( T^{3} + 17 T^{2} + \cdots + 124 \) Copy content Toggle raw display
$59$ \( T^{3} - 9 T^{2} + \cdots + 1388 \) Copy content Toggle raw display
$61$ \( T^{3} - 4 T^{2} + \cdots - 256 \) Copy content Toggle raw display
$67$ \( T^{3} - 5 T^{2} + \cdots - 112 \) Copy content Toggle raw display
$71$ \( T^{3} - 16 T^{2} + \cdots + 512 \) Copy content Toggle raw display
$73$ \( T^{3} + 7 T^{2} + \cdots - 116 \) Copy content Toggle raw display
$79$ \( T^{3} - 16 T^{2} + \cdots + 512 \) Copy content Toggle raw display
$83$ \( T^{3} - 13 T^{2} + \cdots + 364 \) Copy content Toggle raw display
$89$ \( T^{3} - 14 T^{2} + \cdots + 368 \) Copy content Toggle raw display
$97$ \( T^{3} + 5 T^{2} + \cdots - 692 \) Copy content Toggle raw display
show more
show less