Properties

Label 3654.2.a.bd.1.3
Level $3654$
Weight $2$
Character 3654.1
Self dual yes
Analytic conductor $29.177$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3654,2,Mod(1,3654)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3654, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3654.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3654 = 2 \cdot 3^{2} \cdot 7 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3654.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,3,0,3,-2,0,3,3,0,-2,3,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.1773368986\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.1304.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 11x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1218)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.182370\) of defining polynomial
Character \(\chi\) \(=\) 3654.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +2.89219 q^{5} +1.00000 q^{7} +1.00000 q^{8} +2.89219 q^{10} +1.18237 q^{11} +3.70982 q^{13} +1.00000 q^{14} +1.00000 q^{16} +2.89219 q^{17} +3.18237 q^{19} +2.89219 q^{20} +1.18237 q^{22} -1.18237 q^{23} +3.36474 q^{25} +3.70982 q^{26} +1.00000 q^{28} -1.00000 q^{29} -0.892186 q^{31} +1.00000 q^{32} +2.89219 q^{34} +2.89219 q^{35} -4.96674 q^{37} +3.18237 q^{38} +2.89219 q^{40} -11.0413 q^{41} +5.63526 q^{43} +1.18237 q^{44} -1.18237 q^{46} -6.43929 q^{47} +1.00000 q^{49} +3.36474 q^{50} +3.70982 q^{52} -12.7511 q^{53} +3.41963 q^{55} +1.00000 q^{56} -1.00000 q^{58} +6.43929 q^{59} -0.364739 q^{61} -0.892186 q^{62} +1.00000 q^{64} +10.7295 q^{65} +3.18237 q^{67} +2.89219 q^{68} +2.89219 q^{70} -14.1491 q^{71} +16.5884 q^{73} -4.96674 q^{74} +3.18237 q^{76} +1.18237 q^{77} +0.729478 q^{79} +2.89219 q^{80} -11.0413 q^{82} +6.43929 q^{83} +8.36474 q^{85} +5.63526 q^{86} +1.18237 q^{88} +5.25693 q^{89} +3.70982 q^{91} -1.18237 q^{92} -6.43929 q^{94} +9.20400 q^{95} -2.07456 q^{97} +1.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + 3 q^{4} - 2 q^{5} + 3 q^{7} + 3 q^{8} - 2 q^{10} + 3 q^{11} + q^{13} + 3 q^{14} + 3 q^{16} - 2 q^{17} + 9 q^{19} - 2 q^{20} + 3 q^{22} - 3 q^{23} + 9 q^{25} + q^{26} + 3 q^{28} - 3 q^{29}+ \cdots + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 2.89219 1.29342 0.646712 0.762734i \(-0.276143\pi\)
0.646712 + 0.762734i \(0.276143\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 2.89219 0.914589
\(11\) 1.18237 0.356498 0.178249 0.983985i \(-0.442957\pi\)
0.178249 + 0.983985i \(0.442957\pi\)
\(12\) 0 0
\(13\) 3.70982 1.02892 0.514459 0.857515i \(-0.327993\pi\)
0.514459 + 0.857515i \(0.327993\pi\)
\(14\) 1.00000 0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 2.89219 0.701458 0.350729 0.936477i \(-0.385934\pi\)
0.350729 + 0.936477i \(0.385934\pi\)
\(18\) 0 0
\(19\) 3.18237 0.730086 0.365043 0.930991i \(-0.381054\pi\)
0.365043 + 0.930991i \(0.381054\pi\)
\(20\) 2.89219 0.646712
\(21\) 0 0
\(22\) 1.18237 0.252082
\(23\) −1.18237 −0.246541 −0.123271 0.992373i \(-0.539338\pi\)
−0.123271 + 0.992373i \(0.539338\pi\)
\(24\) 0 0
\(25\) 3.36474 0.672948
\(26\) 3.70982 0.727555
\(27\) 0 0
\(28\) 1.00000 0.188982
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) −0.892186 −0.160241 −0.0801207 0.996785i \(-0.525531\pi\)
−0.0801207 + 0.996785i \(0.525531\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 2.89219 0.496006
\(35\) 2.89219 0.488869
\(36\) 0 0
\(37\) −4.96674 −0.816527 −0.408264 0.912864i \(-0.633866\pi\)
−0.408264 + 0.912864i \(0.633866\pi\)
\(38\) 3.18237 0.516249
\(39\) 0 0
\(40\) 2.89219 0.457295
\(41\) −11.0413 −1.72436 −0.862180 0.506601i \(-0.830902\pi\)
−0.862180 + 0.506601i \(0.830902\pi\)
\(42\) 0 0
\(43\) 5.63526 0.859369 0.429685 0.902979i \(-0.358625\pi\)
0.429685 + 0.902979i \(0.358625\pi\)
\(44\) 1.18237 0.178249
\(45\) 0 0
\(46\) −1.18237 −0.174331
\(47\) −6.43929 −0.939268 −0.469634 0.882861i \(-0.655614\pi\)
−0.469634 + 0.882861i \(0.655614\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 3.36474 0.475846
\(51\) 0 0
\(52\) 3.70982 0.514459
\(53\) −12.7511 −1.75150 −0.875750 0.482765i \(-0.839633\pi\)
−0.875750 + 0.482765i \(0.839633\pi\)
\(54\) 0 0
\(55\) 3.41963 0.461103
\(56\) 1.00000 0.133631
\(57\) 0 0
\(58\) −1.00000 −0.131306
\(59\) 6.43929 0.838325 0.419162 0.907911i \(-0.362324\pi\)
0.419162 + 0.907911i \(0.362324\pi\)
\(60\) 0 0
\(61\) −0.364739 −0.0467001 −0.0233500 0.999727i \(-0.507433\pi\)
−0.0233500 + 0.999727i \(0.507433\pi\)
\(62\) −0.892186 −0.113308
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 10.7295 1.33083
\(66\) 0 0
\(67\) 3.18237 0.388788 0.194394 0.980923i \(-0.437726\pi\)
0.194394 + 0.980923i \(0.437726\pi\)
\(68\) 2.89219 0.350729
\(69\) 0 0
\(70\) 2.89219 0.345682
\(71\) −14.1491 −1.67919 −0.839595 0.543212i \(-0.817208\pi\)
−0.839595 + 0.543212i \(0.817208\pi\)
\(72\) 0 0
\(73\) 16.5884 1.94153 0.970763 0.240040i \(-0.0771606\pi\)
0.970763 + 0.240040i \(0.0771606\pi\)
\(74\) −4.96674 −0.577372
\(75\) 0 0
\(76\) 3.18237 0.365043
\(77\) 1.18237 0.134744
\(78\) 0 0
\(79\) 0.729478 0.0820727 0.0410364 0.999158i \(-0.486934\pi\)
0.0410364 + 0.999158i \(0.486934\pi\)
\(80\) 2.89219 0.323356
\(81\) 0 0
\(82\) −11.0413 −1.21931
\(83\) 6.43929 0.706804 0.353402 0.935471i \(-0.385025\pi\)
0.353402 + 0.935471i \(0.385025\pi\)
\(84\) 0 0
\(85\) 8.36474 0.907283
\(86\) 5.63526 0.607666
\(87\) 0 0
\(88\) 1.18237 0.126041
\(89\) 5.25693 0.557233 0.278616 0.960402i \(-0.410124\pi\)
0.278616 + 0.960402i \(0.410124\pi\)
\(90\) 0 0
\(91\) 3.70982 0.388894
\(92\) −1.18237 −0.123271
\(93\) 0 0
\(94\) −6.43929 −0.664163
\(95\) 9.20400 0.944311
\(96\) 0 0
\(97\) −2.07456 −0.210639 −0.105320 0.994438i \(-0.533587\pi\)
−0.105320 + 0.994438i \(0.533587\pi\)
\(98\) 1.00000 0.101015
\(99\) 0 0
\(100\) 3.36474 0.336474
\(101\) −17.5687 −1.74816 −0.874078 0.485786i \(-0.838533\pi\)
−0.874078 + 0.485786i \(0.838533\pi\)
\(102\) 0 0
\(103\) −1.54711 −0.152441 −0.0762206 0.997091i \(-0.524285\pi\)
−0.0762206 + 0.997091i \(0.524285\pi\)
\(104\) 3.70982 0.363777
\(105\) 0 0
\(106\) −12.7511 −1.23850
\(107\) 15.4196 1.49067 0.745336 0.666689i \(-0.232289\pi\)
0.745336 + 0.666689i \(0.232289\pi\)
\(108\) 0 0
\(109\) −10.8786 −1.04198 −0.520990 0.853563i \(-0.674437\pi\)
−0.520990 + 0.853563i \(0.674437\pi\)
\(110\) 3.41963 0.326049
\(111\) 0 0
\(112\) 1.00000 0.0944911
\(113\) 3.54711 0.333684 0.166842 0.985984i \(-0.446643\pi\)
0.166842 + 0.985984i \(0.446643\pi\)
\(114\) 0 0
\(115\) −3.41963 −0.318882
\(116\) −1.00000 −0.0928477
\(117\) 0 0
\(118\) 6.43929 0.592785
\(119\) 2.89219 0.265126
\(120\) 0 0
\(121\) −9.60200 −0.872909
\(122\) −0.364739 −0.0330219
\(123\) 0 0
\(124\) −0.892186 −0.0801207
\(125\) −4.72948 −0.423017
\(126\) 0 0
\(127\) 10.4529 0.927544 0.463772 0.885955i \(-0.346496\pi\)
0.463772 + 0.885955i \(0.346496\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 10.7295 0.941037
\(131\) −3.41963 −0.298775 −0.149387 0.988779i \(-0.547730\pi\)
−0.149387 + 0.988779i \(0.547730\pi\)
\(132\) 0 0
\(133\) 3.18237 0.275946
\(134\) 3.18237 0.274915
\(135\) 0 0
\(136\) 2.89219 0.248003
\(137\) −4.60200 −0.393176 −0.196588 0.980486i \(-0.562986\pi\)
−0.196588 + 0.980486i \(0.562986\pi\)
\(138\) 0 0
\(139\) 10.6766 0.905574 0.452787 0.891619i \(-0.350430\pi\)
0.452787 + 0.891619i \(0.350430\pi\)
\(140\) 2.89219 0.244434
\(141\) 0 0
\(142\) −14.1491 −1.18737
\(143\) 4.38637 0.366807
\(144\) 0 0
\(145\) −2.89219 −0.240183
\(146\) 16.5884 1.37287
\(147\) 0 0
\(148\) −4.96674 −0.408264
\(149\) −0.751113 −0.0615336 −0.0307668 0.999527i \(-0.509795\pi\)
−0.0307668 + 0.999527i \(0.509795\pi\)
\(150\) 0 0
\(151\) −3.78437 −0.307968 −0.153984 0.988073i \(-0.549210\pi\)
−0.153984 + 0.988073i \(0.549210\pi\)
\(152\) 3.18237 0.258124
\(153\) 0 0
\(154\) 1.18237 0.0952781
\(155\) −2.58037 −0.207260
\(156\) 0 0
\(157\) 7.78437 0.621261 0.310630 0.950531i \(-0.399460\pi\)
0.310630 + 0.950531i \(0.399460\pi\)
\(158\) 0.729478 0.0580342
\(159\) 0 0
\(160\) 2.89219 0.228647
\(161\) −1.18237 −0.0931838
\(162\) 0 0
\(163\) −8.51385 −0.666856 −0.333428 0.942776i \(-0.608205\pi\)
−0.333428 + 0.942776i \(0.608205\pi\)
\(164\) −11.0413 −0.862180
\(165\) 0 0
\(166\) 6.43929 0.499786
\(167\) −16.2982 −1.26119 −0.630597 0.776110i \(-0.717190\pi\)
−0.630597 + 0.776110i \(0.717190\pi\)
\(168\) 0 0
\(169\) 0.762737 0.0586721
\(170\) 8.36474 0.641546
\(171\) 0 0
\(172\) 5.63526 0.429685
\(173\) −14.4609 −1.09944 −0.549722 0.835348i \(-0.685266\pi\)
−0.549722 + 0.835348i \(0.685266\pi\)
\(174\) 0 0
\(175\) 3.36474 0.254350
\(176\) 1.18237 0.0891245
\(177\) 0 0
\(178\) 5.25693 0.394023
\(179\) 9.20400 0.687940 0.343970 0.938981i \(-0.388228\pi\)
0.343970 + 0.938981i \(0.388228\pi\)
\(180\) 0 0
\(181\) 9.40604 0.699145 0.349573 0.936909i \(-0.386327\pi\)
0.349573 + 0.936909i \(0.386327\pi\)
\(182\) 3.70982 0.274990
\(183\) 0 0
\(184\) −1.18237 −0.0871654
\(185\) −14.3647 −1.05612
\(186\) 0 0
\(187\) 3.41963 0.250068
\(188\) −6.43929 −0.469634
\(189\) 0 0
\(190\) 9.20400 0.667729
\(191\) 20.1491 1.45794 0.728969 0.684546i \(-0.240000\pi\)
0.728969 + 0.684546i \(0.240000\pi\)
\(192\) 0 0
\(193\) −9.56874 −0.688773 −0.344387 0.938828i \(-0.611913\pi\)
−0.344387 + 0.938828i \(0.611913\pi\)
\(194\) −2.07456 −0.148944
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) 16.0826 1.14584 0.572919 0.819612i \(-0.305811\pi\)
0.572919 + 0.819612i \(0.305811\pi\)
\(198\) 0 0
\(199\) −1.54711 −0.109672 −0.0548358 0.998495i \(-0.517464\pi\)
−0.0548358 + 0.998495i \(0.517464\pi\)
\(200\) 3.36474 0.237923
\(201\) 0 0
\(202\) −17.5687 −1.23613
\(203\) −1.00000 −0.0701862
\(204\) 0 0
\(205\) −31.9335 −2.23033
\(206\) −1.54711 −0.107792
\(207\) 0 0
\(208\) 3.70982 0.257229
\(209\) 3.76274 0.260274
\(210\) 0 0
\(211\) 26.6630 1.83555 0.917777 0.397096i \(-0.129982\pi\)
0.917777 + 0.397096i \(0.129982\pi\)
\(212\) −12.7511 −0.875750
\(213\) 0 0
\(214\) 15.4196 1.05406
\(215\) 16.2982 1.11153
\(216\) 0 0
\(217\) −0.892186 −0.0605655
\(218\) −10.8786 −0.736791
\(219\) 0 0
\(220\) 3.41963 0.230552
\(221\) 10.7295 0.721743
\(222\) 0 0
\(223\) −20.3864 −1.36517 −0.682586 0.730805i \(-0.739145\pi\)
−0.682586 + 0.730805i \(0.739145\pi\)
\(224\) 1.00000 0.0668153
\(225\) 0 0
\(226\) 3.54711 0.235950
\(227\) 13.6217 0.904102 0.452051 0.891992i \(-0.350693\pi\)
0.452051 + 0.891992i \(0.350693\pi\)
\(228\) 0 0
\(229\) 0.513850 0.0339562 0.0169781 0.999856i \(-0.494595\pi\)
0.0169781 + 0.999856i \(0.494595\pi\)
\(230\) −3.41963 −0.225484
\(231\) 0 0
\(232\) −1.00000 −0.0656532
\(233\) −12.6630 −0.829578 −0.414789 0.909918i \(-0.636145\pi\)
−0.414789 + 0.909918i \(0.636145\pi\)
\(234\) 0 0
\(235\) −18.6236 −1.21487
\(236\) 6.43929 0.419162
\(237\) 0 0
\(238\) 2.89219 0.187473
\(239\) −12.5355 −0.810853 −0.405427 0.914128i \(-0.632877\pi\)
−0.405427 + 0.914128i \(0.632877\pi\)
\(240\) 0 0
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) −9.60200 −0.617240
\(243\) 0 0
\(244\) −0.364739 −0.0233500
\(245\) 2.89219 0.184775
\(246\) 0 0
\(247\) 11.8060 0.751198
\(248\) −0.892186 −0.0566539
\(249\) 0 0
\(250\) −4.72948 −0.299118
\(251\) 19.7179 1.24458 0.622290 0.782787i \(-0.286202\pi\)
0.622290 + 0.782787i \(0.286202\pi\)
\(252\) 0 0
\(253\) −1.39800 −0.0878914
\(254\) 10.4529 0.655873
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −9.24333 −0.576583 −0.288291 0.957543i \(-0.593087\pi\)
−0.288291 + 0.957543i \(0.593087\pi\)
\(258\) 0 0
\(259\) −4.96674 −0.308618
\(260\) 10.7295 0.665414
\(261\) 0 0
\(262\) −3.41963 −0.211266
\(263\) 5.78437 0.356680 0.178340 0.983969i \(-0.442927\pi\)
0.178340 + 0.983969i \(0.442927\pi\)
\(264\) 0 0
\(265\) −36.8786 −2.26543
\(266\) 3.18237 0.195124
\(267\) 0 0
\(268\) 3.18237 0.194394
\(269\) 8.90022 0.542656 0.271328 0.962487i \(-0.412537\pi\)
0.271328 + 0.962487i \(0.412537\pi\)
\(270\) 0 0
\(271\) 3.83729 0.233099 0.116549 0.993185i \(-0.462817\pi\)
0.116549 + 0.993185i \(0.462817\pi\)
\(272\) 2.89219 0.175365
\(273\) 0 0
\(274\) −4.60200 −0.278017
\(275\) 3.97837 0.239904
\(276\) 0 0
\(277\) −7.63526 −0.458758 −0.229379 0.973337i \(-0.573670\pi\)
−0.229379 + 0.973337i \(0.573670\pi\)
\(278\) 10.6766 0.640337
\(279\) 0 0
\(280\) 2.89219 0.172841
\(281\) 24.0000 1.43172 0.715860 0.698244i \(-0.246035\pi\)
0.715860 + 0.698244i \(0.246035\pi\)
\(282\) 0 0
\(283\) 5.94708 0.353517 0.176759 0.984254i \(-0.443439\pi\)
0.176759 + 0.984254i \(0.443439\pi\)
\(284\) −14.1491 −0.839595
\(285\) 0 0
\(286\) 4.38637 0.259372
\(287\) −11.0413 −0.651747
\(288\) 0 0
\(289\) −8.63526 −0.507957
\(290\) −2.89219 −0.169835
\(291\) 0 0
\(292\) 16.5884 0.970763
\(293\) 15.1159 0.883078 0.441539 0.897242i \(-0.354433\pi\)
0.441539 + 0.897242i \(0.354433\pi\)
\(294\) 0 0
\(295\) 18.6236 1.08431
\(296\) −4.96674 −0.288686
\(297\) 0 0
\(298\) −0.751113 −0.0435108
\(299\) −4.38637 −0.253671
\(300\) 0 0
\(301\) 5.63526 0.324811
\(302\) −3.78437 −0.217766
\(303\) 0 0
\(304\) 3.18237 0.182521
\(305\) −1.05489 −0.0604030
\(306\) 0 0
\(307\) −12.6685 −0.723031 −0.361515 0.932366i \(-0.617740\pi\)
−0.361515 + 0.932366i \(0.617740\pi\)
\(308\) 1.18237 0.0673718
\(309\) 0 0
\(310\) −2.58037 −0.146555
\(311\) −20.4609 −1.16023 −0.580116 0.814534i \(-0.696993\pi\)
−0.580116 + 0.814534i \(0.696993\pi\)
\(312\) 0 0
\(313\) −9.56874 −0.540857 −0.270429 0.962740i \(-0.587165\pi\)
−0.270429 + 0.962740i \(0.587165\pi\)
\(314\) 7.78437 0.439298
\(315\) 0 0
\(316\) 0.729478 0.0410364
\(317\) 29.5687 1.66075 0.830373 0.557208i \(-0.188127\pi\)
0.830373 + 0.557208i \(0.188127\pi\)
\(318\) 0 0
\(319\) −1.18237 −0.0662000
\(320\) 2.89219 0.161678
\(321\) 0 0
\(322\) −1.18237 −0.0658909
\(323\) 9.20400 0.512125
\(324\) 0 0
\(325\) 12.4826 0.692408
\(326\) −8.51385 −0.471539
\(327\) 0 0
\(328\) −11.0413 −0.609654
\(329\) −6.43929 −0.355010
\(330\) 0 0
\(331\) −2.06652 −0.113586 −0.0567930 0.998386i \(-0.518088\pi\)
−0.0567930 + 0.998386i \(0.518088\pi\)
\(332\) 6.43929 0.353402
\(333\) 0 0
\(334\) −16.2982 −0.891799
\(335\) 9.20400 0.502868
\(336\) 0 0
\(337\) 9.71785 0.529365 0.264683 0.964336i \(-0.414733\pi\)
0.264683 + 0.964336i \(0.414733\pi\)
\(338\) 0.762737 0.0414874
\(339\) 0 0
\(340\) 8.36474 0.453642
\(341\) −1.05489 −0.0571257
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 5.63526 0.303833
\(345\) 0 0
\(346\) −14.4609 −0.777424
\(347\) −7.09422 −0.380838 −0.190419 0.981703i \(-0.560985\pi\)
−0.190419 + 0.981703i \(0.560985\pi\)
\(348\) 0 0
\(349\) −30.4609 −1.63054 −0.815268 0.579084i \(-0.803410\pi\)
−0.815268 + 0.579084i \(0.803410\pi\)
\(350\) 3.36474 0.179853
\(351\) 0 0
\(352\) 1.18237 0.0630205
\(353\) 5.56874 0.296394 0.148197 0.988958i \(-0.452653\pi\)
0.148197 + 0.988958i \(0.452653\pi\)
\(354\) 0 0
\(355\) −40.9219 −2.17191
\(356\) 5.25693 0.278616
\(357\) 0 0
\(358\) 9.20400 0.486447
\(359\) 11.5687 0.610575 0.305287 0.952260i \(-0.401247\pi\)
0.305287 + 0.952260i \(0.401247\pi\)
\(360\) 0 0
\(361\) −8.87252 −0.466975
\(362\) 9.40604 0.494370
\(363\) 0 0
\(364\) 3.70982 0.194447
\(365\) 47.9768 2.51122
\(366\) 0 0
\(367\) −12.4609 −0.650455 −0.325228 0.945636i \(-0.605441\pi\)
−0.325228 + 0.945636i \(0.605441\pi\)
\(368\) −1.18237 −0.0616353
\(369\) 0 0
\(370\) −14.3647 −0.746787
\(371\) −12.7511 −0.662005
\(372\) 0 0
\(373\) 8.83927 0.457680 0.228840 0.973464i \(-0.426507\pi\)
0.228840 + 0.973464i \(0.426507\pi\)
\(374\) 3.41963 0.176825
\(375\) 0 0
\(376\) −6.43929 −0.332081
\(377\) −3.70982 −0.191065
\(378\) 0 0
\(379\) 7.56874 0.388780 0.194390 0.980924i \(-0.437727\pi\)
0.194390 + 0.980924i \(0.437727\pi\)
\(380\) 9.20400 0.472155
\(381\) 0 0
\(382\) 20.1491 1.03092
\(383\) −23.1375 −1.18227 −0.591135 0.806573i \(-0.701320\pi\)
−0.591135 + 0.806573i \(0.701320\pi\)
\(384\) 0 0
\(385\) 3.41963 0.174281
\(386\) −9.56874 −0.487036
\(387\) 0 0
\(388\) −2.07456 −0.105320
\(389\) 2.54104 0.128836 0.0644180 0.997923i \(-0.479481\pi\)
0.0644180 + 0.997923i \(0.479481\pi\)
\(390\) 0 0
\(391\) −3.41963 −0.172938
\(392\) 1.00000 0.0505076
\(393\) 0 0
\(394\) 16.0826 0.810229
\(395\) 2.10979 0.106155
\(396\) 0 0
\(397\) −18.5491 −0.930952 −0.465476 0.885061i \(-0.654117\pi\)
−0.465476 + 0.885061i \(0.654117\pi\)
\(398\) −1.54711 −0.0775496
\(399\) 0 0
\(400\) 3.36474 0.168237
\(401\) 22.7295 1.13506 0.567528 0.823354i \(-0.307900\pi\)
0.567528 + 0.823354i \(0.307900\pi\)
\(402\) 0 0
\(403\) −3.30985 −0.164875
\(404\) −17.5687 −0.874078
\(405\) 0 0
\(406\) −1.00000 −0.0496292
\(407\) −5.87252 −0.291090
\(408\) 0 0
\(409\) −17.4060 −0.860673 −0.430337 0.902669i \(-0.641605\pi\)
−0.430337 + 0.902669i \(0.641605\pi\)
\(410\) −31.9335 −1.57708
\(411\) 0 0
\(412\) −1.54711 −0.0762206
\(413\) 6.43929 0.316857
\(414\) 0 0
\(415\) 18.6236 0.914198
\(416\) 3.70982 0.181889
\(417\) 0 0
\(418\) 3.76274 0.184041
\(419\) −10.3783 −0.507015 −0.253507 0.967333i \(-0.581584\pi\)
−0.253507 + 0.967333i \(0.581584\pi\)
\(420\) 0 0
\(421\) −22.6630 −1.10453 −0.552263 0.833670i \(-0.686235\pi\)
−0.552263 + 0.833670i \(0.686235\pi\)
\(422\) 26.6630 1.29793
\(423\) 0 0
\(424\) −12.7511 −0.619249
\(425\) 9.73145 0.472045
\(426\) 0 0
\(427\) −0.364739 −0.0176510
\(428\) 15.4196 0.745336
\(429\) 0 0
\(430\) 16.2982 0.785970
\(431\) −5.87252 −0.282870 −0.141435 0.989948i \(-0.545172\pi\)
−0.141435 + 0.989948i \(0.545172\pi\)
\(432\) 0 0
\(433\) 38.7592 1.86265 0.931323 0.364194i \(-0.118656\pi\)
0.931323 + 0.364194i \(0.118656\pi\)
\(434\) −0.892186 −0.0428263
\(435\) 0 0
\(436\) −10.8786 −0.520990
\(437\) −3.76274 −0.179996
\(438\) 0 0
\(439\) 27.6297 1.31869 0.659347 0.751839i \(-0.270833\pi\)
0.659347 + 0.751839i \(0.270833\pi\)
\(440\) 3.41963 0.163025
\(441\) 0 0
\(442\) 10.7295 0.510349
\(443\) −25.1824 −1.19645 −0.598225 0.801328i \(-0.704127\pi\)
−0.598225 + 0.801328i \(0.704127\pi\)
\(444\) 0 0
\(445\) 15.2040 0.720739
\(446\) −20.3864 −0.965323
\(447\) 0 0
\(448\) 1.00000 0.0472456
\(449\) −8.27659 −0.390596 −0.195298 0.980744i \(-0.562567\pi\)
−0.195298 + 0.980744i \(0.562567\pi\)
\(450\) 0 0
\(451\) −13.0549 −0.614731
\(452\) 3.54711 0.166842
\(453\) 0 0
\(454\) 13.6217 0.639296
\(455\) 10.7295 0.503006
\(456\) 0 0
\(457\) −7.93904 −0.371373 −0.185686 0.982609i \(-0.559451\pi\)
−0.185686 + 0.982609i \(0.559451\pi\)
\(458\) 0.513850 0.0240106
\(459\) 0 0
\(460\) −3.41963 −0.159441
\(461\) 9.50778 0.442822 0.221411 0.975181i \(-0.428934\pi\)
0.221411 + 0.975181i \(0.428934\pi\)
\(462\) 0 0
\(463\) 24.6902 1.14745 0.573724 0.819048i \(-0.305498\pi\)
0.573724 + 0.819048i \(0.305498\pi\)
\(464\) −1.00000 −0.0464238
\(465\) 0 0
\(466\) −12.6630 −0.586600
\(467\) −22.5139 −1.04182 −0.520908 0.853613i \(-0.674407\pi\)
−0.520908 + 0.853613i \(0.674407\pi\)
\(468\) 0 0
\(469\) 3.18237 0.146948
\(470\) −18.6236 −0.859044
\(471\) 0 0
\(472\) 6.43929 0.296393
\(473\) 6.66296 0.306363
\(474\) 0 0
\(475\) 10.7078 0.491310
\(476\) 2.89219 0.132563
\(477\) 0 0
\(478\) −12.5355 −0.573360
\(479\) −40.6982 −1.85955 −0.929774 0.368131i \(-0.879998\pi\)
−0.929774 + 0.368131i \(0.879998\pi\)
\(480\) 0 0
\(481\) −18.4257 −0.840140
\(482\) −10.0000 −0.455488
\(483\) 0 0
\(484\) −9.60200 −0.436455
\(485\) −6.00000 −0.272446
\(486\) 0 0
\(487\) 31.1375 1.41097 0.705487 0.708723i \(-0.250728\pi\)
0.705487 + 0.708723i \(0.250728\pi\)
\(488\) −0.364739 −0.0165110
\(489\) 0 0
\(490\) 2.89219 0.130656
\(491\) 38.9002 1.75554 0.877771 0.479080i \(-0.159030\pi\)
0.877771 + 0.479080i \(0.159030\pi\)
\(492\) 0 0
\(493\) −2.89219 −0.130258
\(494\) 11.8060 0.531177
\(495\) 0 0
\(496\) −0.892186 −0.0400603
\(497\) −14.1491 −0.634674
\(498\) 0 0
\(499\) −23.8060 −1.06570 −0.532852 0.846209i \(-0.678880\pi\)
−0.532852 + 0.846209i \(0.678880\pi\)
\(500\) −4.72948 −0.211509
\(501\) 0 0
\(502\) 19.7179 0.880051
\(503\) −22.2902 −0.993870 −0.496935 0.867788i \(-0.665541\pi\)
−0.496935 + 0.867788i \(0.665541\pi\)
\(504\) 0 0
\(505\) −50.8121 −2.26111
\(506\) −1.39800 −0.0621486
\(507\) 0 0
\(508\) 10.4529 0.463772
\(509\) 0.351143 0.0155641 0.00778206 0.999970i \(-0.497523\pi\)
0.00778206 + 0.999970i \(0.497523\pi\)
\(510\) 0 0
\(511\) 16.5884 0.733828
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −9.24333 −0.407706
\(515\) −4.47453 −0.197171
\(516\) 0 0
\(517\) −7.61363 −0.334847
\(518\) −4.96674 −0.218226
\(519\) 0 0
\(520\) 10.7295 0.470519
\(521\) −1.35867 −0.0595246 −0.0297623 0.999557i \(-0.509475\pi\)
−0.0297623 + 0.999557i \(0.509475\pi\)
\(522\) 0 0
\(523\) 29.7708 1.30179 0.650893 0.759170i \(-0.274395\pi\)
0.650893 + 0.759170i \(0.274395\pi\)
\(524\) −3.41963 −0.149387
\(525\) 0 0
\(526\) 5.78437 0.252211
\(527\) −2.58037 −0.112403
\(528\) 0 0
\(529\) −21.6020 −0.939217
\(530\) −36.8786 −1.60190
\(531\) 0 0
\(532\) 3.18237 0.137973
\(533\) −40.9612 −1.77423
\(534\) 0 0
\(535\) 44.5964 1.92807
\(536\) 3.18237 0.137457
\(537\) 0 0
\(538\) 8.90022 0.383716
\(539\) 1.18237 0.0509283
\(540\) 0 0
\(541\) −16.1275 −0.693374 −0.346687 0.937981i \(-0.612693\pi\)
−0.346687 + 0.937981i \(0.612693\pi\)
\(542\) 3.83729 0.164826
\(543\) 0 0
\(544\) 2.89219 0.124001
\(545\) −31.4629 −1.34772
\(546\) 0 0
\(547\) 23.9551 1.02425 0.512123 0.858912i \(-0.328859\pi\)
0.512123 + 0.858912i \(0.328859\pi\)
\(548\) −4.60200 −0.196588
\(549\) 0 0
\(550\) 3.97837 0.169638
\(551\) −3.18237 −0.135574
\(552\) 0 0
\(553\) 0.729478 0.0310206
\(554\) −7.63526 −0.324391
\(555\) 0 0
\(556\) 10.6766 0.452787
\(557\) −3.97837 −0.168569 −0.0842844 0.996442i \(-0.526860\pi\)
−0.0842844 + 0.996442i \(0.526860\pi\)
\(558\) 0 0
\(559\) 20.9058 0.884220
\(560\) 2.89219 0.122217
\(561\) 0 0
\(562\) 24.0000 1.01238
\(563\) 7.71785 0.325269 0.162634 0.986686i \(-0.448001\pi\)
0.162634 + 0.986686i \(0.448001\pi\)
\(564\) 0 0
\(565\) 10.2589 0.431595
\(566\) 5.94708 0.249974
\(567\) 0 0
\(568\) −14.1491 −0.593684
\(569\) 30.5355 1.28011 0.640057 0.768327i \(-0.278911\pi\)
0.640057 + 0.768327i \(0.278911\pi\)
\(570\) 0 0
\(571\) −23.8060 −0.996250 −0.498125 0.867105i \(-0.665978\pi\)
−0.498125 + 0.867105i \(0.665978\pi\)
\(572\) 4.38637 0.183404
\(573\) 0 0
\(574\) −11.0413 −0.460855
\(575\) −3.97837 −0.165909
\(576\) 0 0
\(577\) −17.9415 −0.746915 −0.373458 0.927647i \(-0.621828\pi\)
−0.373458 + 0.927647i \(0.621828\pi\)
\(578\) −8.63526 −0.359179
\(579\) 0 0
\(580\) −2.89219 −0.120091
\(581\) 6.43929 0.267147
\(582\) 0 0
\(583\) −15.0765 −0.624406
\(584\) 16.5884 0.686433
\(585\) 0 0
\(586\) 15.1159 0.624430
\(587\) −4.16271 −0.171813 −0.0859067 0.996303i \(-0.527379\pi\)
−0.0859067 + 0.996303i \(0.527379\pi\)
\(588\) 0 0
\(589\) −2.83927 −0.116990
\(590\) 18.6236 0.766723
\(591\) 0 0
\(592\) −4.96674 −0.204132
\(593\) −37.3748 −1.53480 −0.767399 0.641170i \(-0.778449\pi\)
−0.767399 + 0.641170i \(0.778449\pi\)
\(594\) 0 0
\(595\) 8.36474 0.342921
\(596\) −0.751113 −0.0307668
\(597\) 0 0
\(598\) −4.38637 −0.179372
\(599\) −34.0826 −1.39258 −0.696289 0.717762i \(-0.745167\pi\)
−0.696289 + 0.717762i \(0.745167\pi\)
\(600\) 0 0
\(601\) 3.27856 0.133735 0.0668676 0.997762i \(-0.478699\pi\)
0.0668676 + 0.997762i \(0.478699\pi\)
\(602\) 5.63526 0.229676
\(603\) 0 0
\(604\) −3.78437 −0.153984
\(605\) −27.7708 −1.12904
\(606\) 0 0
\(607\) 33.3667 1.35431 0.677157 0.735839i \(-0.263212\pi\)
0.677157 + 0.735839i \(0.263212\pi\)
\(608\) 3.18237 0.129062
\(609\) 0 0
\(610\) −1.05489 −0.0427114
\(611\) −23.8886 −0.966429
\(612\) 0 0
\(613\) 2.87859 0.116265 0.0581326 0.998309i \(-0.481485\pi\)
0.0581326 + 0.998309i \(0.481485\pi\)
\(614\) −12.6685 −0.511260
\(615\) 0 0
\(616\) 1.18237 0.0476390
\(617\) −12.8393 −0.516889 −0.258445 0.966026i \(-0.583210\pi\)
−0.258445 + 0.966026i \(0.583210\pi\)
\(618\) 0 0
\(619\) −13.5471 −0.544504 −0.272252 0.962226i \(-0.587768\pi\)
−0.272252 + 0.962226i \(0.587768\pi\)
\(620\) −2.58037 −0.103630
\(621\) 0 0
\(622\) −20.4609 −0.820409
\(623\) 5.25693 0.210614
\(624\) 0 0
\(625\) −30.5022 −1.22009
\(626\) −9.56874 −0.382444
\(627\) 0 0
\(628\) 7.78437 0.310630
\(629\) −14.3647 −0.572760
\(630\) 0 0
\(631\) 24.2982 0.967297 0.483648 0.875262i \(-0.339311\pi\)
0.483648 + 0.875262i \(0.339311\pi\)
\(632\) 0.729478 0.0290171
\(633\) 0 0
\(634\) 29.5687 1.17432
\(635\) 30.2317 1.19971
\(636\) 0 0
\(637\) 3.70982 0.146988
\(638\) −1.18237 −0.0468105
\(639\) 0 0
\(640\) 2.89219 0.114324
\(641\) −21.4357 −0.846660 −0.423330 0.905976i \(-0.639139\pi\)
−0.423330 + 0.905976i \(0.639139\pi\)
\(642\) 0 0
\(643\) −4.75915 −0.187683 −0.0938413 0.995587i \(-0.529915\pi\)
−0.0938413 + 0.995587i \(0.529915\pi\)
\(644\) −1.18237 −0.0465919
\(645\) 0 0
\(646\) 9.20400 0.362127
\(647\) −24.4473 −0.961124 −0.480562 0.876961i \(-0.659567\pi\)
−0.480562 + 0.876961i \(0.659567\pi\)
\(648\) 0 0
\(649\) 7.61363 0.298861
\(650\) 12.4826 0.489606
\(651\) 0 0
\(652\) −8.51385 −0.333428
\(653\) −48.6630 −1.90433 −0.952164 0.305586i \(-0.901148\pi\)
−0.952164 + 0.305586i \(0.901148\pi\)
\(654\) 0 0
\(655\) −9.89021 −0.386443
\(656\) −11.0413 −0.431090
\(657\) 0 0
\(658\) −6.43929 −0.251030
\(659\) 49.7179 1.93673 0.968366 0.249533i \(-0.0802771\pi\)
0.968366 + 0.249533i \(0.0802771\pi\)
\(660\) 0 0
\(661\) −23.2786 −0.905431 −0.452716 0.891655i \(-0.649545\pi\)
−0.452716 + 0.891655i \(0.649545\pi\)
\(662\) −2.06652 −0.0803175
\(663\) 0 0
\(664\) 6.43929 0.249893
\(665\) 9.20400 0.356916
\(666\) 0 0
\(667\) 1.18237 0.0457815
\(668\) −16.2982 −0.630597
\(669\) 0 0
\(670\) 9.20400 0.355582
\(671\) −0.431256 −0.0166485
\(672\) 0 0
\(673\) −5.14305 −0.198250 −0.0991249 0.995075i \(-0.531604\pi\)
−0.0991249 + 0.995075i \(0.531604\pi\)
\(674\) 9.71785 0.374318
\(675\) 0 0
\(676\) 0.762737 0.0293360
\(677\) −3.72341 −0.143102 −0.0715512 0.997437i \(-0.522795\pi\)
−0.0715512 + 0.997437i \(0.522795\pi\)
\(678\) 0 0
\(679\) −2.07456 −0.0796141
\(680\) 8.36474 0.320773
\(681\) 0 0
\(682\) −1.05489 −0.0403940
\(683\) 9.20400 0.352181 0.176091 0.984374i \(-0.443655\pi\)
0.176091 + 0.984374i \(0.443655\pi\)
\(684\) 0 0
\(685\) −13.3098 −0.508543
\(686\) 1.00000 0.0381802
\(687\) 0 0
\(688\) 5.63526 0.214842
\(689\) −47.3043 −1.80215
\(690\) 0 0
\(691\) −41.8140 −1.59068 −0.795341 0.606163i \(-0.792708\pi\)
−0.795341 + 0.606163i \(0.792708\pi\)
\(692\) −14.4609 −0.549722
\(693\) 0 0
\(694\) −7.09422 −0.269293
\(695\) 30.8786 1.17129
\(696\) 0 0
\(697\) −31.9335 −1.20957
\(698\) −30.4609 −1.15296
\(699\) 0 0
\(700\) 3.36474 0.127175
\(701\) 31.7572 1.19945 0.599726 0.800205i \(-0.295276\pi\)
0.599726 + 0.800205i \(0.295276\pi\)
\(702\) 0 0
\(703\) −15.8060 −0.596135
\(704\) 1.18237 0.0445622
\(705\) 0 0
\(706\) 5.56874 0.209582
\(707\) −17.5687 −0.660741
\(708\) 0 0
\(709\) −27.3531 −1.02727 −0.513634 0.858009i \(-0.671701\pi\)
−0.513634 + 0.858009i \(0.671701\pi\)
\(710\) −40.9219 −1.53577
\(711\) 0 0
\(712\) 5.25693 0.197012
\(713\) 1.05489 0.0395061
\(714\) 0 0
\(715\) 12.6862 0.474437
\(716\) 9.20400 0.343970
\(717\) 0 0
\(718\) 11.5687 0.431742
\(719\) −18.2156 −0.679328 −0.339664 0.940547i \(-0.610313\pi\)
−0.339664 + 0.940547i \(0.610313\pi\)
\(720\) 0 0
\(721\) −1.54711 −0.0576173
\(722\) −8.87252 −0.330201
\(723\) 0 0
\(724\) 9.40604 0.349573
\(725\) −3.36474 −0.124963
\(726\) 0 0
\(727\) −53.2065 −1.97332 −0.986660 0.162797i \(-0.947949\pi\)
−0.986660 + 0.162797i \(0.947949\pi\)
\(728\) 3.70982 0.137495
\(729\) 0 0
\(730\) 47.9768 1.77570
\(731\) 16.2982 0.602812
\(732\) 0 0
\(733\) 40.3647 1.49091 0.745453 0.666558i \(-0.232233\pi\)
0.745453 + 0.666558i \(0.232233\pi\)
\(734\) −12.4609 −0.459941
\(735\) 0 0
\(736\) −1.18237 −0.0435827
\(737\) 3.76274 0.138602
\(738\) 0 0
\(739\) −15.5687 −0.572705 −0.286353 0.958124i \(-0.592443\pi\)
−0.286353 + 0.958124i \(0.592443\pi\)
\(740\) −14.3647 −0.528058
\(741\) 0 0
\(742\) −12.7511 −0.468108
\(743\) 1.48615 0.0545216 0.0272608 0.999628i \(-0.491322\pi\)
0.0272608 + 0.999628i \(0.491322\pi\)
\(744\) 0 0
\(745\) −2.17236 −0.0795891
\(746\) 8.83927 0.323628
\(747\) 0 0
\(748\) 3.41963 0.125034
\(749\) 15.4196 0.563421
\(750\) 0 0
\(751\) 15.8060 0.576769 0.288385 0.957515i \(-0.406882\pi\)
0.288385 + 0.957515i \(0.406882\pi\)
\(752\) −6.43929 −0.234817
\(753\) 0 0
\(754\) −3.70982 −0.135104
\(755\) −10.9451 −0.398333
\(756\) 0 0
\(757\) −17.5022 −0.636129 −0.318065 0.948069i \(-0.603033\pi\)
−0.318065 + 0.948069i \(0.603033\pi\)
\(758\) 7.56874 0.274909
\(759\) 0 0
\(760\) 9.20400 0.333864
\(761\) 45.0765 1.63402 0.817011 0.576621i \(-0.195629\pi\)
0.817011 + 0.576621i \(0.195629\pi\)
\(762\) 0 0
\(763\) −10.8786 −0.393831
\(764\) 20.1491 0.728969
\(765\) 0 0
\(766\) −23.1375 −0.835991
\(767\) 23.8886 0.862567
\(768\) 0 0
\(769\) 43.9199 1.58379 0.791896 0.610656i \(-0.209094\pi\)
0.791896 + 0.610656i \(0.209094\pi\)
\(770\) 3.41963 0.123235
\(771\) 0 0
\(772\) −9.56874 −0.344387
\(773\) −26.3254 −0.946859 −0.473430 0.880832i \(-0.656984\pi\)
−0.473430 + 0.880832i \(0.656984\pi\)
\(774\) 0 0
\(775\) −3.00197 −0.107834
\(776\) −2.07456 −0.0744722
\(777\) 0 0
\(778\) 2.54104 0.0911008
\(779\) −35.1375 −1.25893
\(780\) 0 0
\(781\) −16.7295 −0.598628
\(782\) −3.41963 −0.122286
\(783\) 0 0
\(784\) 1.00000 0.0357143
\(785\) 22.5139 0.803554
\(786\) 0 0
\(787\) −31.5551 −1.12482 −0.562410 0.826859i \(-0.690126\pi\)
−0.562410 + 0.826859i \(0.690126\pi\)
\(788\) 16.0826 0.572919
\(789\) 0 0
\(790\) 2.10979 0.0750628
\(791\) 3.54711 0.126121
\(792\) 0 0
\(793\) −1.35312 −0.0480505
\(794\) −18.5491 −0.658282
\(795\) 0 0
\(796\) −1.54711 −0.0548358
\(797\) −11.7844 −0.417424 −0.208712 0.977977i \(-0.566927\pi\)
−0.208712 + 0.977977i \(0.566927\pi\)
\(798\) 0 0
\(799\) −18.6236 −0.658857
\(800\) 3.36474 0.118961
\(801\) 0 0
\(802\) 22.7295 0.802606
\(803\) 19.6136 0.692150
\(804\) 0 0
\(805\) −3.41963 −0.120526
\(806\) −3.30985 −0.116584
\(807\) 0 0
\(808\) −17.5687 −0.618066
\(809\) −53.7611 −1.89014 −0.945070 0.326867i \(-0.894007\pi\)
−0.945070 + 0.326867i \(0.894007\pi\)
\(810\) 0 0
\(811\) 15.2297 0.534788 0.267394 0.963587i \(-0.413837\pi\)
0.267394 + 0.963587i \(0.413837\pi\)
\(812\) −1.00000 −0.0350931
\(813\) 0 0
\(814\) −5.87252 −0.205832
\(815\) −24.6236 −0.862528
\(816\) 0 0
\(817\) 17.9335 0.627413
\(818\) −17.4060 −0.608588
\(819\) 0 0
\(820\) −31.9335 −1.11517
\(821\) 4.15467 0.144999 0.0724995 0.997368i \(-0.476902\pi\)
0.0724995 + 0.997368i \(0.476902\pi\)
\(822\) 0 0
\(823\) 3.35867 0.117076 0.0585380 0.998285i \(-0.481356\pi\)
0.0585380 + 0.998285i \(0.481356\pi\)
\(824\) −1.54711 −0.0538961
\(825\) 0 0
\(826\) 6.43929 0.224052
\(827\) 17.0493 0.592863 0.296432 0.955054i \(-0.404203\pi\)
0.296432 + 0.955054i \(0.404203\pi\)
\(828\) 0 0
\(829\) 10.5964 0.368030 0.184015 0.982923i \(-0.441091\pi\)
0.184015 + 0.982923i \(0.441091\pi\)
\(830\) 18.6236 0.646436
\(831\) 0 0
\(832\) 3.70982 0.128615
\(833\) 2.89219 0.100208
\(834\) 0 0
\(835\) −47.1375 −1.63126
\(836\) 3.76274 0.130137
\(837\) 0 0
\(838\) −10.3783 −0.358514
\(839\) −49.8140 −1.71977 −0.859886 0.510486i \(-0.829465\pi\)
−0.859886 + 0.510486i \(0.829465\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) −22.6630 −0.781017
\(843\) 0 0
\(844\) 26.6630 0.917777
\(845\) 2.20598 0.0758879
\(846\) 0 0
\(847\) −9.60200 −0.329929
\(848\) −12.7511 −0.437875
\(849\) 0 0
\(850\) 9.73145 0.333786
\(851\) 5.87252 0.201308
\(852\) 0 0
\(853\) −31.2040 −1.06840 −0.534202 0.845357i \(-0.679388\pi\)
−0.534202 + 0.845357i \(0.679388\pi\)
\(854\) −0.364739 −0.0124811
\(855\) 0 0
\(856\) 15.4196 0.527032
\(857\) 44.6453 1.52505 0.762527 0.646957i \(-0.223959\pi\)
0.762527 + 0.646957i \(0.223959\pi\)
\(858\) 0 0
\(859\) 20.7118 0.706677 0.353339 0.935496i \(-0.385046\pi\)
0.353339 + 0.935496i \(0.385046\pi\)
\(860\) 16.2982 0.555765
\(861\) 0 0
\(862\) −5.87252 −0.200019
\(863\) 12.5748 0.428051 0.214026 0.976828i \(-0.431342\pi\)
0.214026 + 0.976828i \(0.431342\pi\)
\(864\) 0 0
\(865\) −41.8237 −1.42205
\(866\) 38.7592 1.31709
\(867\) 0 0
\(868\) −0.892186 −0.0302828
\(869\) 0.862513 0.0292587
\(870\) 0 0
\(871\) 11.8060 0.400031
\(872\) −10.8786 −0.368396
\(873\) 0 0
\(874\) −3.76274 −0.127276
\(875\) −4.72948 −0.159886
\(876\) 0 0
\(877\) 47.0438 1.58856 0.794278 0.607555i \(-0.207850\pi\)
0.794278 + 0.607555i \(0.207850\pi\)
\(878\) 27.6297 0.932457
\(879\) 0 0
\(880\) 3.41963 0.115276
\(881\) −44.4216 −1.49660 −0.748301 0.663359i \(-0.769130\pi\)
−0.748301 + 0.663359i \(0.769130\pi\)
\(882\) 0 0
\(883\) −6.27659 −0.211224 −0.105612 0.994407i \(-0.533680\pi\)
−0.105612 + 0.994407i \(0.533680\pi\)
\(884\) 10.7295 0.360871
\(885\) 0 0
\(886\) −25.1824 −0.846018
\(887\) 10.0352 0.336950 0.168475 0.985706i \(-0.446116\pi\)
0.168475 + 0.985706i \(0.446116\pi\)
\(888\) 0 0
\(889\) 10.4529 0.350579
\(890\) 15.2040 0.509639
\(891\) 0 0
\(892\) −20.3864 −0.682586
\(893\) −20.4922 −0.685746
\(894\) 0 0
\(895\) 26.6197 0.889798
\(896\) 1.00000 0.0334077
\(897\) 0 0
\(898\) −8.27659 −0.276193
\(899\) 0.892186 0.0297561
\(900\) 0 0
\(901\) −36.8786 −1.22860
\(902\) −13.0549 −0.434680
\(903\) 0 0
\(904\) 3.54711 0.117975
\(905\) 27.2040 0.904292
\(906\) 0 0
\(907\) 38.1924 1.26816 0.634079 0.773269i \(-0.281380\pi\)
0.634079 + 0.773269i \(0.281380\pi\)
\(908\) 13.6217 0.452051
\(909\) 0 0
\(910\) 10.7295 0.355679
\(911\) −25.3259 −0.839085 −0.419543 0.907736i \(-0.637810\pi\)
−0.419543 + 0.907736i \(0.637810\pi\)
\(912\) 0 0
\(913\) 7.61363 0.251974
\(914\) −7.93904 −0.262600
\(915\) 0 0
\(916\) 0.513850 0.0169781
\(917\) −3.41963 −0.112926
\(918\) 0 0
\(919\) 15.0549 0.496615 0.248308 0.968681i \(-0.420126\pi\)
0.248308 + 0.968681i \(0.420126\pi\)
\(920\) −3.41963 −0.112742
\(921\) 0 0
\(922\) 9.50778 0.313122
\(923\) −52.4906 −1.72775
\(924\) 0 0
\(925\) −16.7118 −0.549480
\(926\) 24.6902 0.811369
\(927\) 0 0
\(928\) −1.00000 −0.0328266
\(929\) −1.27052 −0.0416845 −0.0208422 0.999783i \(-0.506635\pi\)
−0.0208422 + 0.999783i \(0.506635\pi\)
\(930\) 0 0
\(931\) 3.18237 0.104298
\(932\) −12.6630 −0.414789
\(933\) 0 0
\(934\) −22.5139 −0.736676
\(935\) 9.89021 0.323445
\(936\) 0 0
\(937\) −43.0277 −1.40565 −0.702827 0.711361i \(-0.748079\pi\)
−0.702827 + 0.711361i \(0.748079\pi\)
\(938\) 3.18237 0.103908
\(939\) 0 0
\(940\) −18.6236 −0.607436
\(941\) −15.3234 −0.499530 −0.249765 0.968306i \(-0.580353\pi\)
−0.249765 + 0.968306i \(0.580353\pi\)
\(942\) 0 0
\(943\) 13.0549 0.425126
\(944\) 6.43929 0.209581
\(945\) 0 0
\(946\) 6.66296 0.216632
\(947\) 7.27052 0.236260 0.118130 0.992998i \(-0.462310\pi\)
0.118130 + 0.992998i \(0.462310\pi\)
\(948\) 0 0
\(949\) 61.5399 1.99767
\(950\) 10.7078 0.347408
\(951\) 0 0
\(952\) 2.89219 0.0937363
\(953\) 42.2317 1.36802 0.684010 0.729473i \(-0.260235\pi\)
0.684010 + 0.729473i \(0.260235\pi\)
\(954\) 0 0
\(955\) 58.2750 1.88573
\(956\) −12.5355 −0.405427
\(957\) 0 0
\(958\) −40.6982 −1.31490
\(959\) −4.60200 −0.148606
\(960\) 0 0
\(961\) −30.2040 −0.974323
\(962\) −18.4257 −0.594068
\(963\) 0 0
\(964\) −10.0000 −0.322078
\(965\) −27.6746 −0.890876
\(966\) 0 0
\(967\) −13.7395 −0.441832 −0.220916 0.975293i \(-0.570905\pi\)
−0.220916 + 0.975293i \(0.570905\pi\)
\(968\) −9.60200 −0.308620
\(969\) 0 0
\(970\) −6.00000 −0.192648
\(971\) 13.9174 0.446631 0.223315 0.974746i \(-0.428312\pi\)
0.223315 + 0.974746i \(0.428312\pi\)
\(972\) 0 0
\(973\) 10.6766 0.342275
\(974\) 31.1375 0.997709
\(975\) 0 0
\(976\) −0.364739 −0.0116750
\(977\) 7.52547 0.240761 0.120381 0.992728i \(-0.461589\pi\)
0.120381 + 0.992728i \(0.461589\pi\)
\(978\) 0 0
\(979\) 6.21563 0.198652
\(980\) 2.89219 0.0923875
\(981\) 0 0
\(982\) 38.9002 1.24136
\(983\) −42.9748 −1.37068 −0.685341 0.728222i \(-0.740347\pi\)
−0.685341 + 0.728222i \(0.740347\pi\)
\(984\) 0 0
\(985\) 46.5139 1.48205
\(986\) −2.89219 −0.0921060
\(987\) 0 0
\(988\) 11.8060 0.375599
\(989\) −6.66296 −0.211870
\(990\) 0 0
\(991\) 14.6630 0.465784 0.232892 0.972503i \(-0.425181\pi\)
0.232892 + 0.972503i \(0.425181\pi\)
\(992\) −0.892186 −0.0283269
\(993\) 0 0
\(994\) −14.1491 −0.448783
\(995\) −4.47453 −0.141852
\(996\) 0 0
\(997\) 23.0277 0.729295 0.364647 0.931146i \(-0.381190\pi\)
0.364647 + 0.931146i \(0.381190\pi\)
\(998\) −23.8060 −0.753566
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3654.2.a.bd.1.3 3
3.2 odd 2 1218.2.a.q.1.1 3
12.11 even 2 9744.2.a.bk.1.1 3
21.20 even 2 8526.2.a.bm.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1218.2.a.q.1.1 3 3.2 odd 2
3654.2.a.bd.1.3 3 1.1 even 1 trivial
8526.2.a.bm.1.3 3 21.20 even 2
9744.2.a.bk.1.1 3 12.11 even 2