Properties

Label 3648.2.g.h.1825.1
Level $3648$
Weight $2$
Character 3648.1825
Analytic conductor $29.129$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3648,2,Mod(1825,3648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3648.1825"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3648, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3648 = 2^{6} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3648.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,-8,0,0,0,0,0,0,0,-20,0,0,0,0,0,0,0,12,0,0,0, 0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(33)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.1294266574\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.303595776.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 5x^{6} + 16x^{4} + 45x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1825.1
Root \(1.26217 + 1.18614i\) of defining polynomial
Character \(\chi\) \(=\) 3648.1825
Dual form 3648.2.g.h.1825.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} -2.52434i q^{5} -2.52434 q^{7} -1.00000 q^{9} -2.37228i q^{11} -2.52434 q^{15} +0.372281 q^{17} -1.00000i q^{19} +2.52434i q^{21} -5.04868 q^{23} -1.37228 q^{25} +1.00000i q^{27} +1.58457i q^{29} -3.46410 q^{31} -2.37228 q^{33} +6.37228i q^{35} -3.16915i q^{37} -2.74456 q^{41} -11.1168i q^{43} +2.52434i q^{45} -2.81929 q^{47} -0.627719 q^{49} -0.372281i q^{51} +6.63325i q^{53} -5.98844 q^{55} -1.00000 q^{57} +8.74456i q^{59} +2.81929i q^{61} +2.52434 q^{63} -0.744563i q^{67} +5.04868i q^{69} -8.80773 q^{71} +7.62772 q^{73} +1.37228i q^{75} +5.98844i q^{77} +6.63325 q^{79} +1.00000 q^{81} +8.00000i q^{83} -0.939764i q^{85} +1.58457 q^{87} +7.48913 q^{89} +3.46410i q^{93} -2.52434 q^{95} +2.74456 q^{97} +2.37228i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{9} - 20 q^{17} + 12 q^{25} + 4 q^{33} + 24 q^{41} - 28 q^{49} - 8 q^{57} + 84 q^{73} + 8 q^{81} - 32 q^{89} - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3648\mathbb{Z}\right)^\times\).

\(n\) \(1217\) \(1921\) \(2053\) \(2623\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.00000i − 0.577350i
\(4\) 0 0
\(5\) − 2.52434i − 1.12892i −0.825461 0.564459i \(-0.809085\pi\)
0.825461 0.564459i \(-0.190915\pi\)
\(6\) 0 0
\(7\) −2.52434 −0.954110 −0.477055 0.878873i \(-0.658296\pi\)
−0.477055 + 0.878873i \(0.658296\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) − 2.37228i − 0.715270i −0.933862 0.357635i \(-0.883583\pi\)
0.933862 0.357635i \(-0.116417\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) −2.52434 −0.651781
\(16\) 0 0
\(17\) 0.372281 0.0902915 0.0451457 0.998980i \(-0.485625\pi\)
0.0451457 + 0.998980i \(0.485625\pi\)
\(18\) 0 0
\(19\) − 1.00000i − 0.229416i
\(20\) 0 0
\(21\) 2.52434i 0.550856i
\(22\) 0 0
\(23\) −5.04868 −1.05272 −0.526361 0.850261i \(-0.676444\pi\)
−0.526361 + 0.850261i \(0.676444\pi\)
\(24\) 0 0
\(25\) −1.37228 −0.274456
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 1.58457i 0.294248i 0.989118 + 0.147124i \(0.0470016\pi\)
−0.989118 + 0.147124i \(0.952998\pi\)
\(30\) 0 0
\(31\) −3.46410 −0.622171 −0.311086 0.950382i \(-0.600693\pi\)
−0.311086 + 0.950382i \(0.600693\pi\)
\(32\) 0 0
\(33\) −2.37228 −0.412961
\(34\) 0 0
\(35\) 6.37228i 1.07711i
\(36\) 0 0
\(37\) − 3.16915i − 0.521005i −0.965473 0.260502i \(-0.916112\pi\)
0.965473 0.260502i \(-0.0838882\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.74456 −0.428629 −0.214314 0.976765i \(-0.568752\pi\)
−0.214314 + 0.976765i \(0.568752\pi\)
\(42\) 0 0
\(43\) − 11.1168i − 1.69530i −0.530554 0.847651i \(-0.678016\pi\)
0.530554 0.847651i \(-0.321984\pi\)
\(44\) 0 0
\(45\) 2.52434i 0.376306i
\(46\) 0 0
\(47\) −2.81929 −0.411236 −0.205618 0.978632i \(-0.565920\pi\)
−0.205618 + 0.978632i \(0.565920\pi\)
\(48\) 0 0
\(49\) −0.627719 −0.0896741
\(50\) 0 0
\(51\) − 0.372281i − 0.0521298i
\(52\) 0 0
\(53\) 6.63325i 0.911147i 0.890198 + 0.455573i \(0.150566\pi\)
−0.890198 + 0.455573i \(0.849434\pi\)
\(54\) 0 0
\(55\) −5.98844 −0.807481
\(56\) 0 0
\(57\) −1.00000 −0.132453
\(58\) 0 0
\(59\) 8.74456i 1.13845i 0.822183 + 0.569223i \(0.192756\pi\)
−0.822183 + 0.569223i \(0.807244\pi\)
\(60\) 0 0
\(61\) 2.81929i 0.360973i 0.983577 + 0.180487i \(0.0577673\pi\)
−0.983577 + 0.180487i \(0.942233\pi\)
\(62\) 0 0
\(63\) 2.52434 0.318037
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 0.744563i − 0.0909628i −0.998965 0.0454814i \(-0.985518\pi\)
0.998965 0.0454814i \(-0.0144822\pi\)
\(68\) 0 0
\(69\) 5.04868i 0.607789i
\(70\) 0 0
\(71\) −8.80773 −1.04529 −0.522643 0.852552i \(-0.675054\pi\)
−0.522643 + 0.852552i \(0.675054\pi\)
\(72\) 0 0
\(73\) 7.62772 0.892757 0.446378 0.894844i \(-0.352714\pi\)
0.446378 + 0.894844i \(0.352714\pi\)
\(74\) 0 0
\(75\) 1.37228i 0.158457i
\(76\) 0 0
\(77\) 5.98844i 0.682446i
\(78\) 0 0
\(79\) 6.63325 0.746299 0.373149 0.927771i \(-0.378278\pi\)
0.373149 + 0.927771i \(0.378278\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 8.00000i 0.878114i 0.898459 + 0.439057i \(0.144687\pi\)
−0.898459 + 0.439057i \(0.855313\pi\)
\(84\) 0 0
\(85\) − 0.939764i − 0.101932i
\(86\) 0 0
\(87\) 1.58457 0.169884
\(88\) 0 0
\(89\) 7.48913 0.793846 0.396923 0.917852i \(-0.370078\pi\)
0.396923 + 0.917852i \(0.370078\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 3.46410i 0.359211i
\(94\) 0 0
\(95\) −2.52434 −0.258992
\(96\) 0 0
\(97\) 2.74456 0.278668 0.139334 0.990245i \(-0.455504\pi\)
0.139334 + 0.990245i \(0.455504\pi\)
\(98\) 0 0
\(99\) 2.37228i 0.238423i
\(100\) 0 0
\(101\) − 11.6819i − 1.16240i −0.813763 0.581198i \(-0.802584\pi\)
0.813763 0.581198i \(-0.197416\pi\)
\(102\) 0 0
\(103\) −13.5615 −1.33625 −0.668125 0.744049i \(-0.732903\pi\)
−0.668125 + 0.744049i \(0.732903\pi\)
\(104\) 0 0
\(105\) 6.37228 0.621871
\(106\) 0 0
\(107\) 8.74456i 0.845369i 0.906277 + 0.422684i \(0.138912\pi\)
−0.906277 + 0.422684i \(0.861088\pi\)
\(108\) 0 0
\(109\) 18.3152i 1.75428i 0.480239 + 0.877138i \(0.340550\pi\)
−0.480239 + 0.877138i \(0.659450\pi\)
\(110\) 0 0
\(111\) −3.16915 −0.300802
\(112\) 0 0
\(113\) −2.74456 −0.258187 −0.129093 0.991632i \(-0.541207\pi\)
−0.129093 + 0.991632i \(0.541207\pi\)
\(114\) 0 0
\(115\) 12.7446i 1.18844i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.939764 −0.0861480
\(120\) 0 0
\(121\) 5.37228 0.488389
\(122\) 0 0
\(123\) 2.74456i 0.247469i
\(124\) 0 0
\(125\) − 9.15759i − 0.819080i
\(126\) 0 0
\(127\) −8.51278 −0.755387 −0.377693 0.925931i \(-0.623283\pi\)
−0.377693 + 0.925931i \(0.623283\pi\)
\(128\) 0 0
\(129\) −11.1168 −0.978784
\(130\) 0 0
\(131\) 19.1168i 1.67025i 0.550063 + 0.835123i \(0.314604\pi\)
−0.550063 + 0.835123i \(0.685396\pi\)
\(132\) 0 0
\(133\) 2.52434i 0.218888i
\(134\) 0 0
\(135\) 2.52434 0.217260
\(136\) 0 0
\(137\) −5.11684 −0.437161 −0.218581 0.975819i \(-0.570143\pi\)
−0.218581 + 0.975819i \(0.570143\pi\)
\(138\) 0 0
\(139\) − 11.1168i − 0.942918i −0.881888 0.471459i \(-0.843727\pi\)
0.881888 0.471459i \(-0.156273\pi\)
\(140\) 0 0
\(141\) 2.81929i 0.237427i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 4.00000 0.332182
\(146\) 0 0
\(147\) 0.627719i 0.0517734i
\(148\) 0 0
\(149\) 11.3321i 0.928359i 0.885741 + 0.464180i \(0.153651\pi\)
−0.885741 + 0.464180i \(0.846349\pi\)
\(150\) 0 0
\(151\) −0.294954 −0.0240030 −0.0120015 0.999928i \(-0.503820\pi\)
−0.0120015 + 0.999928i \(0.503820\pi\)
\(152\) 0 0
\(153\) −0.372281 −0.0300972
\(154\) 0 0
\(155\) 8.74456i 0.702380i
\(156\) 0 0
\(157\) 6.92820i 0.552931i 0.961024 + 0.276465i \(0.0891631\pi\)
−0.961024 + 0.276465i \(0.910837\pi\)
\(158\) 0 0
\(159\) 6.63325 0.526051
\(160\) 0 0
\(161\) 12.7446 1.00441
\(162\) 0 0
\(163\) 4.00000i 0.313304i 0.987654 + 0.156652i \(0.0500701\pi\)
−0.987654 + 0.156652i \(0.949930\pi\)
\(164\) 0 0
\(165\) 5.98844i 0.466199i
\(166\) 0 0
\(167\) −10.0974 −0.781356 −0.390678 0.920527i \(-0.627759\pi\)
−0.390678 + 0.920527i \(0.627759\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) 1.00000i 0.0764719i
\(172\) 0 0
\(173\) − 3.46410i − 0.263371i −0.991292 0.131685i \(-0.957961\pi\)
0.991292 0.131685i \(-0.0420389\pi\)
\(174\) 0 0
\(175\) 3.46410 0.261861
\(176\) 0 0
\(177\) 8.74456 0.657282
\(178\) 0 0
\(179\) − 5.48913i − 0.410276i −0.978733 0.205138i \(-0.934236\pi\)
0.978733 0.205138i \(-0.0657644\pi\)
\(180\) 0 0
\(181\) 5.63858i 0.419113i 0.977797 + 0.209556i \(0.0672019\pi\)
−0.977797 + 0.209556i \(0.932798\pi\)
\(182\) 0 0
\(183\) 2.81929 0.208408
\(184\) 0 0
\(185\) −8.00000 −0.588172
\(186\) 0 0
\(187\) − 0.883156i − 0.0645828i
\(188\) 0 0
\(189\) − 2.52434i − 0.183619i
\(190\) 0 0
\(191\) 10.4472 0.755933 0.377967 0.925819i \(-0.376623\pi\)
0.377967 + 0.925819i \(0.376623\pi\)
\(192\) 0 0
\(193\) 11.4891 0.827005 0.413503 0.910503i \(-0.364305\pi\)
0.413503 + 0.910503i \(0.364305\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 5.34363i − 0.380718i −0.981715 0.190359i \(-0.939035\pi\)
0.981715 0.190359i \(-0.0609652\pi\)
\(198\) 0 0
\(199\) −3.81396 −0.270364 −0.135182 0.990821i \(-0.543162\pi\)
−0.135182 + 0.990821i \(0.543162\pi\)
\(200\) 0 0
\(201\) −0.744563 −0.0525174
\(202\) 0 0
\(203\) − 4.00000i − 0.280745i
\(204\) 0 0
\(205\) 6.92820i 0.483887i
\(206\) 0 0
\(207\) 5.04868 0.350907
\(208\) 0 0
\(209\) −2.37228 −0.164094
\(210\) 0 0
\(211\) 18.2337i 1.25526i 0.778512 + 0.627629i \(0.215975\pi\)
−0.778512 + 0.627629i \(0.784025\pi\)
\(212\) 0 0
\(213\) 8.80773i 0.603496i
\(214\) 0 0
\(215\) −28.0627 −1.91386
\(216\) 0 0
\(217\) 8.74456 0.593620
\(218\) 0 0
\(219\) − 7.62772i − 0.515433i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 11.6819 0.782280 0.391140 0.920331i \(-0.372081\pi\)
0.391140 + 0.920331i \(0.372081\pi\)
\(224\) 0 0
\(225\) 1.37228 0.0914854
\(226\) 0 0
\(227\) − 1.48913i − 0.0988367i −0.998778 0.0494184i \(-0.984263\pi\)
0.998778 0.0494184i \(-0.0157368\pi\)
\(228\) 0 0
\(229\) − 10.4472i − 0.690371i −0.938534 0.345185i \(-0.887816\pi\)
0.938534 0.345185i \(-0.112184\pi\)
\(230\) 0 0
\(231\) 5.98844 0.394010
\(232\) 0 0
\(233\) 13.1168 0.859313 0.429657 0.902992i \(-0.358635\pi\)
0.429657 + 0.902992i \(0.358635\pi\)
\(234\) 0 0
\(235\) 7.11684i 0.464252i
\(236\) 0 0
\(237\) − 6.63325i − 0.430876i
\(238\) 0 0
\(239\) −11.6270 −0.752090 −0.376045 0.926601i \(-0.622716\pi\)
−0.376045 + 0.926601i \(0.622716\pi\)
\(240\) 0 0
\(241\) 5.25544 0.338532 0.169266 0.985570i \(-0.445860\pi\)
0.169266 + 0.985570i \(0.445860\pi\)
\(242\) 0 0
\(243\) − 1.00000i − 0.0641500i
\(244\) 0 0
\(245\) 1.58457i 0.101235i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 8.00000 0.506979
\(250\) 0 0
\(251\) − 2.37228i − 0.149737i −0.997193 0.0748685i \(-0.976146\pi\)
0.997193 0.0748685i \(-0.0238537\pi\)
\(252\) 0 0
\(253\) 11.9769i 0.752980i
\(254\) 0 0
\(255\) −0.939764 −0.0588503
\(256\) 0 0
\(257\) −10.7446 −0.670227 −0.335114 0.942178i \(-0.608775\pi\)
−0.335114 + 0.942178i \(0.608775\pi\)
\(258\) 0 0
\(259\) 8.00000i 0.497096i
\(260\) 0 0
\(261\) − 1.58457i − 0.0980827i
\(262\) 0 0
\(263\) −16.0858 −0.991892 −0.495946 0.868353i \(-0.665179\pi\)
−0.495946 + 0.868353i \(0.665179\pi\)
\(264\) 0 0
\(265\) 16.7446 1.02861
\(266\) 0 0
\(267\) − 7.48913i − 0.458327i
\(268\) 0 0
\(269\) − 6.63325i − 0.404436i −0.979340 0.202218i \(-0.935185\pi\)
0.979340 0.202218i \(-0.0648150\pi\)
\(270\) 0 0
\(271\) −12.9715 −0.787965 −0.393983 0.919118i \(-0.628903\pi\)
−0.393983 + 0.919118i \(0.628903\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.25544i 0.196310i
\(276\) 0 0
\(277\) 0.349857i 0.0210208i 0.999945 + 0.0105104i \(0.00334563\pi\)
−0.999945 + 0.0105104i \(0.996654\pi\)
\(278\) 0 0
\(279\) 3.46410 0.207390
\(280\) 0 0
\(281\) −19.4891 −1.16262 −0.581312 0.813681i \(-0.697460\pi\)
−0.581312 + 0.813681i \(0.697460\pi\)
\(282\) 0 0
\(283\) − 28.6060i − 1.70045i −0.526421 0.850224i \(-0.676466\pi\)
0.526421 0.850224i \(-0.323534\pi\)
\(284\) 0 0
\(285\) 2.52434i 0.149529i
\(286\) 0 0
\(287\) 6.92820 0.408959
\(288\) 0 0
\(289\) −16.8614 −0.991847
\(290\) 0 0
\(291\) − 2.74456i − 0.160889i
\(292\) 0 0
\(293\) 14.8511i 0.867609i 0.901007 + 0.433804i \(0.142829\pi\)
−0.901007 + 0.433804i \(0.857171\pi\)
\(294\) 0 0
\(295\) 22.0742 1.28521
\(296\) 0 0
\(297\) 2.37228 0.137654
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 28.0627i 1.61751i
\(302\) 0 0
\(303\) −11.6819 −0.671109
\(304\) 0 0
\(305\) 7.11684 0.407509
\(306\) 0 0
\(307\) − 26.2337i − 1.49724i −0.663002 0.748618i \(-0.730718\pi\)
0.663002 0.748618i \(-0.269282\pi\)
\(308\) 0 0
\(309\) 13.5615i 0.771484i
\(310\) 0 0
\(311\) −5.98844 −0.339573 −0.169787 0.985481i \(-0.554308\pi\)
−0.169787 + 0.985481i \(0.554308\pi\)
\(312\) 0 0
\(313\) 24.9783 1.41185 0.705927 0.708284i \(-0.250531\pi\)
0.705927 + 0.708284i \(0.250531\pi\)
\(314\) 0 0
\(315\) − 6.37228i − 0.359037i
\(316\) 0 0
\(317\) 9.80240i 0.550557i 0.961364 + 0.275279i \(0.0887701\pi\)
−0.961364 + 0.275279i \(0.911230\pi\)
\(318\) 0 0
\(319\) 3.75906 0.210467
\(320\) 0 0
\(321\) 8.74456 0.488074
\(322\) 0 0
\(323\) − 0.372281i − 0.0207143i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 18.3152 1.01283
\(328\) 0 0
\(329\) 7.11684 0.392364
\(330\) 0 0
\(331\) 18.2337i 1.00221i 0.865385 + 0.501107i \(0.167074\pi\)
−0.865385 + 0.501107i \(0.832926\pi\)
\(332\) 0 0
\(333\) 3.16915i 0.173668i
\(334\) 0 0
\(335\) −1.87953 −0.102690
\(336\) 0 0
\(337\) −24.2337 −1.32009 −0.660047 0.751225i \(-0.729463\pi\)
−0.660047 + 0.751225i \(0.729463\pi\)
\(338\) 0 0
\(339\) 2.74456i 0.149064i
\(340\) 0 0
\(341\) 8.21782i 0.445020i
\(342\) 0 0
\(343\) 19.2549 1.03967
\(344\) 0 0
\(345\) 12.7446 0.686144
\(346\) 0 0
\(347\) − 31.1168i − 1.67044i −0.549916 0.835220i \(-0.685340\pi\)
0.549916 0.835220i \(-0.314660\pi\)
\(348\) 0 0
\(349\) 2.81929i 0.150913i 0.997149 + 0.0754566i \(0.0240414\pi\)
−0.997149 + 0.0754566i \(0.975959\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −15.4891 −0.824403 −0.412201 0.911093i \(-0.635240\pi\)
−0.412201 + 0.911093i \(0.635240\pi\)
\(354\) 0 0
\(355\) 22.2337i 1.18004i
\(356\) 0 0
\(357\) 0.939764i 0.0497376i
\(358\) 0 0
\(359\) −12.9166 −0.681714 −0.340857 0.940115i \(-0.610717\pi\)
−0.340857 + 0.940115i \(0.610717\pi\)
\(360\) 0 0
\(361\) −1.00000 −0.0526316
\(362\) 0 0
\(363\) − 5.37228i − 0.281972i
\(364\) 0 0
\(365\) − 19.2549i − 1.00785i
\(366\) 0 0
\(367\) −23.6588 −1.23498 −0.617490 0.786579i \(-0.711850\pi\)
−0.617490 + 0.786579i \(0.711850\pi\)
\(368\) 0 0
\(369\) 2.74456 0.142876
\(370\) 0 0
\(371\) − 16.7446i − 0.869334i
\(372\) 0 0
\(373\) 6.92820i 0.358729i 0.983783 + 0.179364i \(0.0574041\pi\)
−0.983783 + 0.179364i \(0.942596\pi\)
\(374\) 0 0
\(375\) −9.15759 −0.472896
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) − 8.74456i − 0.449178i −0.974454 0.224589i \(-0.927896\pi\)
0.974454 0.224589i \(-0.0721040\pi\)
\(380\) 0 0
\(381\) 8.51278i 0.436123i
\(382\) 0 0
\(383\) −18.3152 −0.935862 −0.467931 0.883765i \(-0.655000\pi\)
−0.467931 + 0.883765i \(0.655000\pi\)
\(384\) 0 0
\(385\) 15.1168 0.770426
\(386\) 0 0
\(387\) 11.1168i 0.565101i
\(388\) 0 0
\(389\) − 26.4781i − 1.34249i −0.741234 0.671246i \(-0.765759\pi\)
0.741234 0.671246i \(-0.234241\pi\)
\(390\) 0 0
\(391\) −1.87953 −0.0950518
\(392\) 0 0
\(393\) 19.1168 0.964317
\(394\) 0 0
\(395\) − 16.7446i − 0.842510i
\(396\) 0 0
\(397\) 11.0371i 0.553937i 0.960879 + 0.276968i \(0.0893298\pi\)
−0.960879 + 0.276968i \(0.910670\pi\)
\(398\) 0 0
\(399\) 2.52434 0.126375
\(400\) 0 0
\(401\) −36.9783 −1.84661 −0.923303 0.384073i \(-0.874521\pi\)
−0.923303 + 0.384073i \(0.874521\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) − 2.52434i − 0.125435i
\(406\) 0 0
\(407\) −7.51811 −0.372659
\(408\) 0 0
\(409\) −34.4674 −1.70430 −0.852151 0.523296i \(-0.824702\pi\)
−0.852151 + 0.523296i \(0.824702\pi\)
\(410\) 0 0
\(411\) 5.11684i 0.252395i
\(412\) 0 0
\(413\) − 22.0742i − 1.08620i
\(414\) 0 0
\(415\) 20.1947 0.991319
\(416\) 0 0
\(417\) −11.1168 −0.544394
\(418\) 0 0
\(419\) 25.4891i 1.24523i 0.782530 + 0.622613i \(0.213929\pi\)
−0.782530 + 0.622613i \(0.786071\pi\)
\(420\) 0 0
\(421\) 25.8333i 1.25904i 0.776985 + 0.629519i \(0.216748\pi\)
−0.776985 + 0.629519i \(0.783252\pi\)
\(422\) 0 0
\(423\) 2.81929 0.137079
\(424\) 0 0
\(425\) −0.510875 −0.0247811
\(426\) 0 0
\(427\) − 7.11684i − 0.344408i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −33.4612 −1.61177 −0.805885 0.592073i \(-0.798310\pi\)
−0.805885 + 0.592073i \(0.798310\pi\)
\(432\) 0 0
\(433\) −22.7446 −1.09303 −0.546517 0.837448i \(-0.684047\pi\)
−0.546517 + 0.837448i \(0.684047\pi\)
\(434\) 0 0
\(435\) − 4.00000i − 0.191785i
\(436\) 0 0
\(437\) 5.04868i 0.241511i
\(438\) 0 0
\(439\) 16.0309 0.765113 0.382556 0.923932i \(-0.375044\pi\)
0.382556 + 0.923932i \(0.375044\pi\)
\(440\) 0 0
\(441\) 0.627719 0.0298914
\(442\) 0 0
\(443\) 0.883156i 0.0419600i 0.999780 + 0.0209800i \(0.00667863\pi\)
−0.999780 + 0.0209800i \(0.993321\pi\)
\(444\) 0 0
\(445\) − 18.9051i − 0.896187i
\(446\) 0 0
\(447\) 11.3321 0.535988
\(448\) 0 0
\(449\) −6.74456 −0.318296 −0.159148 0.987255i \(-0.550875\pi\)
−0.159148 + 0.987255i \(0.550875\pi\)
\(450\) 0 0
\(451\) 6.51087i 0.306585i
\(452\) 0 0
\(453\) 0.294954i 0.0138581i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 6.13859 0.287151 0.143576 0.989639i \(-0.454140\pi\)
0.143576 + 0.989639i \(0.454140\pi\)
\(458\) 0 0
\(459\) 0.372281i 0.0173766i
\(460\) 0 0
\(461\) − 5.69349i − 0.265172i −0.991172 0.132586i \(-0.957672\pi\)
0.991172 0.132586i \(-0.0423281\pi\)
\(462\) 0 0
\(463\) 3.81396 0.177250 0.0886248 0.996065i \(-0.471753\pi\)
0.0886248 + 0.996065i \(0.471753\pi\)
\(464\) 0 0
\(465\) 8.74456 0.405519
\(466\) 0 0
\(467\) 16.8832i 0.781259i 0.920548 + 0.390630i \(0.127743\pi\)
−0.920548 + 0.390630i \(0.872257\pi\)
\(468\) 0 0
\(469\) 1.87953i 0.0867885i
\(470\) 0 0
\(471\) 6.92820 0.319235
\(472\) 0 0
\(473\) −26.3723 −1.21260
\(474\) 0 0
\(475\) 1.37228i 0.0629646i
\(476\) 0 0
\(477\) − 6.63325i − 0.303716i
\(478\) 0 0
\(479\) 11.3870 0.520284 0.260142 0.965570i \(-0.416231\pi\)
0.260142 + 0.965570i \(0.416231\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) − 12.7446i − 0.579898i
\(484\) 0 0
\(485\) − 6.92820i − 0.314594i
\(486\) 0 0
\(487\) 29.9971 1.35930 0.679649 0.733537i \(-0.262132\pi\)
0.679649 + 0.733537i \(0.262132\pi\)
\(488\) 0 0
\(489\) 4.00000 0.180886
\(490\) 0 0
\(491\) − 14.9783i − 0.675959i −0.941153 0.337979i \(-0.890257\pi\)
0.941153 0.337979i \(-0.109743\pi\)
\(492\) 0 0
\(493\) 0.589907i 0.0265681i
\(494\) 0 0
\(495\) 5.98844 0.269160
\(496\) 0 0
\(497\) 22.2337 0.997317
\(498\) 0 0
\(499\) − 4.88316i − 0.218600i −0.994009 0.109300i \(-0.965139\pi\)
0.994009 0.109300i \(-0.0348609\pi\)
\(500\) 0 0
\(501\) 10.0974i 0.451116i
\(502\) 0 0
\(503\) −15.1460 −0.675328 −0.337664 0.941267i \(-0.609637\pi\)
−0.337664 + 0.941267i \(0.609637\pi\)
\(504\) 0 0
\(505\) −29.4891 −1.31225
\(506\) 0 0
\(507\) − 13.0000i − 0.577350i
\(508\) 0 0
\(509\) − 5.93354i − 0.262999i −0.991316 0.131500i \(-0.958021\pi\)
0.991316 0.131500i \(-0.0419792\pi\)
\(510\) 0 0
\(511\) −19.2549 −0.851788
\(512\) 0 0
\(513\) 1.00000 0.0441511
\(514\) 0 0
\(515\) 34.2337i 1.50852i
\(516\) 0 0
\(517\) 6.68815i 0.294145i
\(518\) 0 0
\(519\) −3.46410 −0.152057
\(520\) 0 0
\(521\) −24.9783 −1.09432 −0.547159 0.837029i \(-0.684291\pi\)
−0.547159 + 0.837029i \(0.684291\pi\)
\(522\) 0 0
\(523\) − 15.2554i − 0.667074i −0.942737 0.333537i \(-0.891758\pi\)
0.942737 0.333537i \(-0.108242\pi\)
\(524\) 0 0
\(525\) − 3.46410i − 0.151186i
\(526\) 0 0
\(527\) −1.28962 −0.0561767
\(528\) 0 0
\(529\) 2.48913 0.108223
\(530\) 0 0
\(531\) − 8.74456i − 0.379482i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 22.0742 0.954352
\(536\) 0 0
\(537\) −5.48913 −0.236873
\(538\) 0 0
\(539\) 1.48913i 0.0641412i
\(540\) 0 0
\(541\) − 31.8217i − 1.36812i −0.729424 0.684061i \(-0.760212\pi\)
0.729424 0.684061i \(-0.239788\pi\)
\(542\) 0 0
\(543\) 5.63858 0.241975
\(544\) 0 0
\(545\) 46.2337 1.98043
\(546\) 0 0
\(547\) 13.4891i 0.576753i 0.957517 + 0.288377i \(0.0931155\pi\)
−0.957517 + 0.288377i \(0.906884\pi\)
\(548\) 0 0
\(549\) − 2.81929i − 0.120324i
\(550\) 0 0
\(551\) 1.58457 0.0675051
\(552\) 0 0
\(553\) −16.7446 −0.712051
\(554\) 0 0
\(555\) 8.00000i 0.339581i
\(556\) 0 0
\(557\) − 39.0449i − 1.65438i −0.561919 0.827192i \(-0.689937\pi\)
0.561919 0.827192i \(-0.310063\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −0.883156 −0.0372869
\(562\) 0 0
\(563\) 36.4674i 1.53692i 0.639900 + 0.768458i \(0.278976\pi\)
−0.639900 + 0.768458i \(0.721024\pi\)
\(564\) 0 0
\(565\) 6.92820i 0.291472i
\(566\) 0 0
\(567\) −2.52434 −0.106012
\(568\) 0 0
\(569\) −25.2554 −1.05876 −0.529382 0.848384i \(-0.677576\pi\)
−0.529382 + 0.848384i \(0.677576\pi\)
\(570\) 0 0
\(571\) 24.4674i 1.02393i 0.859007 + 0.511964i \(0.171082\pi\)
−0.859007 + 0.511964i \(0.828918\pi\)
\(572\) 0 0
\(573\) − 10.4472i − 0.436438i
\(574\) 0 0
\(575\) 6.92820 0.288926
\(576\) 0 0
\(577\) −17.1168 −0.712584 −0.356292 0.934375i \(-0.615959\pi\)
−0.356292 + 0.934375i \(0.615959\pi\)
\(578\) 0 0
\(579\) − 11.4891i − 0.477472i
\(580\) 0 0
\(581\) − 20.1947i − 0.837817i
\(582\) 0 0
\(583\) 15.7359 0.651716
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 3.11684i 0.128646i 0.997929 + 0.0643230i \(0.0204888\pi\)
−0.997929 + 0.0643230i \(0.979511\pi\)
\(588\) 0 0
\(589\) 3.46410i 0.142736i
\(590\) 0 0
\(591\) −5.34363 −0.219808
\(592\) 0 0
\(593\) 28.9783 1.18999 0.594997 0.803728i \(-0.297153\pi\)
0.594997 + 0.803728i \(0.297153\pi\)
\(594\) 0 0
\(595\) 2.37228i 0.0972541i
\(596\) 0 0
\(597\) 3.81396i 0.156095i
\(598\) 0 0
\(599\) 22.6641 0.926032 0.463016 0.886350i \(-0.346767\pi\)
0.463016 + 0.886350i \(0.346767\pi\)
\(600\) 0 0
\(601\) −6.00000 −0.244745 −0.122373 0.992484i \(-0.539050\pi\)
−0.122373 + 0.992484i \(0.539050\pi\)
\(602\) 0 0
\(603\) 0.744563i 0.0303209i
\(604\) 0 0
\(605\) − 13.5615i − 0.551351i
\(606\) 0 0
\(607\) 7.92287 0.321579 0.160790 0.986989i \(-0.448596\pi\)
0.160790 + 0.986989i \(0.448596\pi\)
\(608\) 0 0
\(609\) −4.00000 −0.162088
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) − 23.0140i − 0.929526i −0.885435 0.464763i \(-0.846139\pi\)
0.885435 0.464763i \(-0.153861\pi\)
\(614\) 0 0
\(615\) 6.92820 0.279372
\(616\) 0 0
\(617\) −18.8832 −0.760207 −0.380104 0.924944i \(-0.624112\pi\)
−0.380104 + 0.924944i \(0.624112\pi\)
\(618\) 0 0
\(619\) − 20.0000i − 0.803868i −0.915669 0.401934i \(-0.868338\pi\)
0.915669 0.401934i \(-0.131662\pi\)
\(620\) 0 0
\(621\) − 5.04868i − 0.202596i
\(622\) 0 0
\(623\) −18.9051 −0.757416
\(624\) 0 0
\(625\) −29.9783 −1.19913
\(626\) 0 0
\(627\) 2.37228i 0.0947398i
\(628\) 0 0
\(629\) − 1.17981i − 0.0470423i
\(630\) 0 0
\(631\) −0.644810 −0.0256695 −0.0128347 0.999918i \(-0.504086\pi\)
−0.0128347 + 0.999918i \(0.504086\pi\)
\(632\) 0 0
\(633\) 18.2337 0.724724
\(634\) 0 0
\(635\) 21.4891i 0.852770i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 8.80773 0.348428
\(640\) 0 0
\(641\) −14.7446 −0.582375 −0.291188 0.956666i \(-0.594050\pi\)
−0.291188 + 0.956666i \(0.594050\pi\)
\(642\) 0 0
\(643\) 20.8832i 0.823551i 0.911285 + 0.411776i \(0.135091\pi\)
−0.911285 + 0.411776i \(0.864909\pi\)
\(644\) 0 0
\(645\) 28.0627i 1.10497i
\(646\) 0 0
\(647\) 0.939764 0.0369459 0.0184730 0.999829i \(-0.494120\pi\)
0.0184730 + 0.999829i \(0.494120\pi\)
\(648\) 0 0
\(649\) 20.7446 0.814295
\(650\) 0 0
\(651\) − 8.74456i − 0.342726i
\(652\) 0 0
\(653\) − 39.0449i − 1.52794i −0.645249 0.763972i \(-0.723246\pi\)
0.645249 0.763972i \(-0.276754\pi\)
\(654\) 0 0
\(655\) 48.2574 1.88557
\(656\) 0 0
\(657\) −7.62772 −0.297586
\(658\) 0 0
\(659\) − 27.7228i − 1.07993i −0.841688 0.539964i \(-0.818438\pi\)
0.841688 0.539964i \(-0.181562\pi\)
\(660\) 0 0
\(661\) − 34.6410i − 1.34738i −0.739014 0.673690i \(-0.764708\pi\)
0.739014 0.673690i \(-0.235292\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 6.37228 0.247106
\(666\) 0 0
\(667\) − 8.00000i − 0.309761i
\(668\) 0 0
\(669\) − 11.6819i − 0.451649i
\(670\) 0 0
\(671\) 6.68815 0.258193
\(672\) 0 0
\(673\) 7.48913 0.288685 0.144342 0.989528i \(-0.453893\pi\)
0.144342 + 0.989528i \(0.453893\pi\)
\(674\) 0 0
\(675\) − 1.37228i − 0.0528191i
\(676\) 0 0
\(677\) − 18.6101i − 0.715245i −0.933866 0.357623i \(-0.883587\pi\)
0.933866 0.357623i \(-0.116413\pi\)
\(678\) 0 0
\(679\) −6.92820 −0.265880
\(680\) 0 0
\(681\) −1.48913 −0.0570634
\(682\) 0 0
\(683\) − 41.4891i − 1.58754i −0.608220 0.793769i \(-0.708116\pi\)
0.608220 0.793769i \(-0.291884\pi\)
\(684\) 0 0
\(685\) 12.9166i 0.493520i
\(686\) 0 0
\(687\) −10.4472 −0.398586
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 20.8832i 0.794433i 0.917725 + 0.397216i \(0.130024\pi\)
−0.917725 + 0.397216i \(0.869976\pi\)
\(692\) 0 0
\(693\) − 5.98844i − 0.227482i
\(694\) 0 0
\(695\) −28.0627 −1.06448
\(696\) 0 0
\(697\) −1.02175 −0.0387015
\(698\) 0 0
\(699\) − 13.1168i − 0.496125i
\(700\) 0 0
\(701\) 25.5383i 0.964569i 0.876015 + 0.482285i \(0.160193\pi\)
−0.876015 + 0.482285i \(0.839807\pi\)
\(702\) 0 0
\(703\) −3.16915 −0.119527
\(704\) 0 0
\(705\) 7.11684 0.268036
\(706\) 0 0
\(707\) 29.4891i 1.10905i
\(708\) 0 0
\(709\) − 40.3894i − 1.51686i −0.651757 0.758428i \(-0.725968\pi\)
0.651757 0.758428i \(-0.274032\pi\)
\(710\) 0 0
\(711\) −6.63325 −0.248766
\(712\) 0 0
\(713\) 17.4891 0.654973
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 11.6270i 0.434219i
\(718\) 0 0
\(719\) −9.15759 −0.341520 −0.170760 0.985313i \(-0.554622\pi\)
−0.170760 + 0.985313i \(0.554622\pi\)
\(720\) 0 0
\(721\) 34.2337 1.27493
\(722\) 0 0
\(723\) − 5.25544i − 0.195452i
\(724\) 0 0
\(725\) − 2.17448i − 0.0807582i
\(726\) 0 0
\(727\) 47.2627 1.75288 0.876438 0.481514i \(-0.159913\pi\)
0.876438 + 0.481514i \(0.159913\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) − 4.13859i − 0.153071i
\(732\) 0 0
\(733\) − 27.7128i − 1.02360i −0.859106 0.511798i \(-0.828980\pi\)
0.859106 0.511798i \(-0.171020\pi\)
\(734\) 0 0
\(735\) 1.58457 0.0584479
\(736\) 0 0
\(737\) −1.76631 −0.0650629
\(738\) 0 0
\(739\) − 33.3505i − 1.22682i −0.789765 0.613410i \(-0.789798\pi\)
0.789765 0.613410i \(-0.210202\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 44.8482 1.64532 0.822660 0.568534i \(-0.192489\pi\)
0.822660 + 0.568534i \(0.192489\pi\)
\(744\) 0 0
\(745\) 28.6060 1.04804
\(746\) 0 0
\(747\) − 8.00000i − 0.292705i
\(748\) 0 0
\(749\) − 22.0742i − 0.806575i
\(750\) 0 0
\(751\) 16.0309 0.584975 0.292488 0.956269i \(-0.405517\pi\)
0.292488 + 0.956269i \(0.405517\pi\)
\(752\) 0 0
\(753\) −2.37228 −0.0864507
\(754\) 0 0
\(755\) 0.744563i 0.0270974i
\(756\) 0 0
\(757\) 34.4010i 1.25032i 0.780495 + 0.625162i \(0.214967\pi\)
−0.780495 + 0.625162i \(0.785033\pi\)
\(758\) 0 0
\(759\) 11.9769 0.434733
\(760\) 0 0
\(761\) −32.0951 −1.16345 −0.581723 0.813387i \(-0.697621\pi\)
−0.581723 + 0.813387i \(0.697621\pi\)
\(762\) 0 0
\(763\) − 46.2337i − 1.67377i
\(764\) 0 0
\(765\) 0.939764i 0.0339772i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 21.8614 0.788342 0.394171 0.919037i \(-0.371032\pi\)
0.394171 + 0.919037i \(0.371032\pi\)
\(770\) 0 0
\(771\) 10.7446i 0.386956i
\(772\) 0 0
\(773\) − 40.0945i − 1.44210i −0.692885 0.721049i \(-0.743660\pi\)
0.692885 0.721049i \(-0.256340\pi\)
\(774\) 0 0
\(775\) 4.75372 0.170759
\(776\) 0 0
\(777\) 8.00000 0.286998
\(778\) 0 0
\(779\) 2.74456i 0.0983342i
\(780\) 0 0
\(781\) 20.8944i 0.747661i
\(782\) 0 0
\(783\) −1.58457 −0.0566281
\(784\) 0 0
\(785\) 17.4891 0.624214
\(786\) 0 0
\(787\) − 6.97825i − 0.248748i −0.992235 0.124374i \(-0.960308\pi\)
0.992235 0.124374i \(-0.0396922\pi\)
\(788\) 0 0
\(789\) 16.0858i 0.572669i
\(790\) 0 0
\(791\) 6.92820 0.246339
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) − 16.7446i − 0.593868i
\(796\) 0 0
\(797\) − 37.5152i − 1.32886i −0.747352 0.664428i \(-0.768675\pi\)
0.747352 0.664428i \(-0.231325\pi\)
\(798\) 0 0
\(799\) −1.04957 −0.0371311
\(800\) 0 0
\(801\) −7.48913 −0.264615
\(802\) 0 0
\(803\) − 18.0951i − 0.638562i
\(804\) 0 0
\(805\) − 32.1716i − 1.13390i
\(806\) 0 0
\(807\) −6.63325 −0.233501
\(808\) 0 0
\(809\) −2.13859 −0.0751889 −0.0375945 0.999293i \(-0.511970\pi\)
−0.0375945 + 0.999293i \(0.511970\pi\)
\(810\) 0 0
\(811\) − 20.0000i − 0.702295i −0.936320 0.351147i \(-0.885792\pi\)
0.936320 0.351147i \(-0.114208\pi\)
\(812\) 0 0
\(813\) 12.9715i 0.454932i
\(814\) 0 0
\(815\) 10.0974 0.353695
\(816\) 0 0
\(817\) −11.1168 −0.388929
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 14.5012i 0.506096i 0.967454 + 0.253048i \(0.0814331\pi\)
−0.967454 + 0.253048i \(0.918567\pi\)
\(822\) 0 0
\(823\) −42.2140 −1.47149 −0.735744 0.677259i \(-0.763167\pi\)
−0.735744 + 0.677259i \(0.763167\pi\)
\(824\) 0 0
\(825\) 3.25544 0.113340
\(826\) 0 0
\(827\) − 16.7446i − 0.582265i −0.956683 0.291133i \(-0.905968\pi\)
0.956683 0.291133i \(-0.0940321\pi\)
\(828\) 0 0
\(829\) 30.2921i 1.05209i 0.850458 + 0.526043i \(0.176325\pi\)
−0.850458 + 0.526043i \(0.823675\pi\)
\(830\) 0 0
\(831\) 0.349857 0.0121364
\(832\) 0 0
\(833\) −0.233688 −0.00809681
\(834\) 0 0
\(835\) 25.4891i 0.882088i
\(836\) 0 0
\(837\) − 3.46410i − 0.119737i
\(838\) 0 0
\(839\) 52.9562 1.82825 0.914125 0.405432i \(-0.132879\pi\)
0.914125 + 0.405432i \(0.132879\pi\)
\(840\) 0 0
\(841\) 26.4891 0.913418
\(842\) 0 0
\(843\) 19.4891i 0.671241i
\(844\) 0 0
\(845\) − 32.8164i − 1.12892i
\(846\) 0 0
\(847\) −13.5615 −0.465977
\(848\) 0 0
\(849\) −28.6060 −0.981754
\(850\) 0 0
\(851\) 16.0000i 0.548473i
\(852\) 0 0
\(853\) − 15.8457i − 0.542548i −0.962502 0.271274i \(-0.912555\pi\)
0.962502 0.271274i \(-0.0874449\pi\)
\(854\) 0 0
\(855\) 2.52434 0.0863305
\(856\) 0 0
\(857\) −46.0000 −1.57133 −0.785665 0.618652i \(-0.787679\pi\)
−0.785665 + 0.618652i \(0.787679\pi\)
\(858\) 0 0
\(859\) − 27.1168i − 0.925215i −0.886563 0.462607i \(-0.846914\pi\)
0.886563 0.462607i \(-0.153086\pi\)
\(860\) 0 0
\(861\) − 6.92820i − 0.236113i
\(862\) 0 0
\(863\) −34.0511 −1.15911 −0.579557 0.814932i \(-0.696774\pi\)
−0.579557 + 0.814932i \(0.696774\pi\)
\(864\) 0 0
\(865\) −8.74456 −0.297324
\(866\) 0 0
\(867\) 16.8614i 0.572643i
\(868\) 0 0
\(869\) − 15.7359i − 0.533805i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −2.74456 −0.0928894
\(874\) 0 0
\(875\) 23.1168i 0.781492i
\(876\) 0 0
\(877\) − 22.6641i − 0.765314i −0.923891 0.382657i \(-0.875009\pi\)
0.923891 0.382657i \(-0.124991\pi\)
\(878\) 0 0
\(879\) 14.8511 0.500914
\(880\) 0 0
\(881\) 36.0951 1.21607 0.608037 0.793908i \(-0.291957\pi\)
0.608037 + 0.793908i \(0.291957\pi\)
\(882\) 0 0
\(883\) − 3.39403i − 0.114218i −0.998368 0.0571091i \(-0.981812\pi\)
0.998368 0.0571091i \(-0.0181883\pi\)
\(884\) 0 0
\(885\) − 22.0742i − 0.742017i
\(886\) 0 0
\(887\) 24.6535 0.827783 0.413891 0.910326i \(-0.364169\pi\)
0.413891 + 0.910326i \(0.364169\pi\)
\(888\) 0 0
\(889\) 21.4891 0.720722
\(890\) 0 0
\(891\) − 2.37228i − 0.0794744i
\(892\) 0 0
\(893\) 2.81929i 0.0943440i
\(894\) 0 0
\(895\) −13.8564 −0.463169
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 5.48913i − 0.183073i
\(900\) 0 0
\(901\) 2.46943i 0.0822688i
\(902\) 0 0
\(903\) 28.0627 0.933867
\(904\) 0 0
\(905\) 14.2337 0.473144
\(906\) 0 0
\(907\) 21.2119i 0.704331i 0.935938 + 0.352165i \(0.114555\pi\)
−0.935938 + 0.352165i \(0.885445\pi\)
\(908\) 0 0
\(909\) 11.6819i 0.387465i
\(910\) 0 0
\(911\) −24.6535 −0.816806 −0.408403 0.912802i \(-0.633914\pi\)
−0.408403 + 0.912802i \(0.633914\pi\)
\(912\) 0 0
\(913\) 18.9783 0.628088
\(914\) 0 0
\(915\) − 7.11684i − 0.235276i
\(916\) 0 0
\(917\) − 48.2574i − 1.59360i
\(918\) 0 0
\(919\) −16.7306 −0.551892 −0.275946 0.961173i \(-0.588991\pi\)
−0.275946 + 0.961173i \(0.588991\pi\)
\(920\) 0 0
\(921\) −26.2337 −0.864429
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 4.34896i 0.142993i
\(926\) 0 0
\(927\) 13.5615 0.445417
\(928\) 0 0
\(929\) 28.5109 0.935411 0.467706 0.883884i \(-0.345081\pi\)
0.467706 + 0.883884i \(0.345081\pi\)
\(930\) 0 0
\(931\) 0.627719i 0.0205726i
\(932\) 0 0
\(933\) 5.98844i 0.196053i
\(934\) 0 0
\(935\) −2.22938 −0.0729087
\(936\) 0 0
\(937\) −50.6060 −1.65322 −0.826612 0.562772i \(-0.809735\pi\)
−0.826612 + 0.562772i \(0.809735\pi\)
\(938\) 0 0
\(939\) − 24.9783i − 0.815134i
\(940\) 0 0
\(941\) 34.3461i 1.11965i 0.828611 + 0.559825i \(0.189132\pi\)
−0.828611 + 0.559825i \(0.810868\pi\)
\(942\) 0 0
\(943\) 13.8564 0.451227
\(944\) 0 0
\(945\) −6.37228 −0.207290
\(946\) 0 0
\(947\) 33.9565i 1.10344i 0.834030 + 0.551719i \(0.186028\pi\)
−0.834030 + 0.551719i \(0.813972\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 9.80240 0.317865
\(952\) 0 0
\(953\) −40.9783 −1.32742 −0.663708 0.747992i \(-0.731018\pi\)
−0.663708 + 0.747992i \(0.731018\pi\)
\(954\) 0 0
\(955\) − 26.3723i − 0.853387i
\(956\) 0 0
\(957\) − 3.75906i − 0.121513i
\(958\) 0 0
\(959\) 12.9166 0.417100
\(960\) 0 0
\(961\) −19.0000 −0.612903
\(962\) 0 0
\(963\) − 8.74456i − 0.281790i
\(964\) 0 0
\(965\) − 29.0024i − 0.933621i
\(966\) 0 0
\(967\) −46.4327 −1.49318 −0.746588 0.665286i \(-0.768309\pi\)
−0.746588 + 0.665286i \(0.768309\pi\)
\(968\) 0 0
\(969\) −0.372281 −0.0119594
\(970\) 0 0
\(971\) 9.48913i 0.304521i 0.988340 + 0.152260i \(0.0486552\pi\)
−0.988340 + 0.152260i \(0.951345\pi\)
\(972\) 0 0
\(973\) 28.0627i 0.899648i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −43.4891 −1.39134 −0.695670 0.718361i \(-0.744892\pi\)
−0.695670 + 0.718361i \(0.744892\pi\)
\(978\) 0 0
\(979\) − 17.7663i − 0.567814i
\(980\) 0 0
\(981\) − 18.3152i − 0.584759i
\(982\) 0 0
\(983\) −8.91754 −0.284425 −0.142213 0.989836i \(-0.545422\pi\)
−0.142213 + 0.989836i \(0.545422\pi\)
\(984\) 0 0
\(985\) −13.4891 −0.429799
\(986\) 0 0
\(987\) − 7.11684i − 0.226532i
\(988\) 0 0
\(989\) 56.1253i 1.78468i
\(990\) 0 0
\(991\) −4.16381 −0.132268 −0.0661340 0.997811i \(-0.521066\pi\)
−0.0661340 + 0.997811i \(0.521066\pi\)
\(992\) 0 0
\(993\) 18.2337 0.578629
\(994\) 0 0
\(995\) 9.62772i 0.305219i
\(996\) 0 0
\(997\) − 6.57835i − 0.208338i −0.994560 0.104169i \(-0.966782\pi\)
0.994560 0.104169i \(-0.0332183\pi\)
\(998\) 0 0
\(999\) 3.16915 0.100267
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3648.2.g.h.1825.1 8
4.3 odd 2 inner 3648.2.g.h.1825.5 yes 8
8.3 odd 2 inner 3648.2.g.h.1825.4 yes 8
8.5 even 2 inner 3648.2.g.h.1825.8 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3648.2.g.h.1825.1 8 1.1 even 1 trivial
3648.2.g.h.1825.4 yes 8 8.3 odd 2 inner
3648.2.g.h.1825.5 yes 8 4.3 odd 2 inner
3648.2.g.h.1825.8 yes 8 8.5 even 2 inner