Properties

Label 3648.2.a.bp.1.2
Level $3648$
Weight $2$
Character 3648.1
Self dual yes
Analytic conductor $29.129$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3648,2,Mod(1,3648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3648.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3648, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3648 = 2^{6} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3648.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-2,0,3,0,1,0,2,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.1294266574\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1824)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.56155\) of defining polynomial
Character \(\chi\) \(=\) 3648.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +3.56155 q^{5} -1.56155 q^{7} +1.00000 q^{9} +1.56155 q^{11} +5.12311 q^{13} -3.56155 q^{15} +7.56155 q^{17} +1.00000 q^{19} +1.56155 q^{21} +7.68466 q^{25} -1.00000 q^{27} -5.12311 q^{29} +7.12311 q^{31} -1.56155 q^{33} -5.56155 q^{35} -1.12311 q^{37} -5.12311 q^{39} -1.12311 q^{41} -12.6847 q^{43} +3.56155 q^{45} +5.56155 q^{47} -4.56155 q^{49} -7.56155 q^{51} -8.24621 q^{53} +5.56155 q^{55} -1.00000 q^{57} -0.876894 q^{59} +7.56155 q^{61} -1.56155 q^{63} +18.2462 q^{65} +13.3693 q^{67} +4.87689 q^{71} -14.6847 q^{73} -7.68466 q^{75} -2.43845 q^{77} +7.12311 q^{79} +1.00000 q^{81} -10.2462 q^{83} +26.9309 q^{85} +5.12311 q^{87} +2.00000 q^{89} -8.00000 q^{91} -7.12311 q^{93} +3.56155 q^{95} +13.1231 q^{97} +1.56155 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 3 q^{5} + q^{7} + 2 q^{9} - q^{11} + 2 q^{13} - 3 q^{15} + 11 q^{17} + 2 q^{19} - q^{21} + 3 q^{25} - 2 q^{27} - 2 q^{29} + 6 q^{31} + q^{33} - 7 q^{35} + 6 q^{37} - 2 q^{39} + 6 q^{41}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 3.56155 1.59277 0.796387 0.604787i \(-0.206742\pi\)
0.796387 + 0.604787i \(0.206742\pi\)
\(6\) 0 0
\(7\) −1.56155 −0.590211 −0.295106 0.955465i \(-0.595355\pi\)
−0.295106 + 0.955465i \(0.595355\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 1.56155 0.470826 0.235413 0.971895i \(-0.424356\pi\)
0.235413 + 0.971895i \(0.424356\pi\)
\(12\) 0 0
\(13\) 5.12311 1.42089 0.710447 0.703751i \(-0.248493\pi\)
0.710447 + 0.703751i \(0.248493\pi\)
\(14\) 0 0
\(15\) −3.56155 −0.919589
\(16\) 0 0
\(17\) 7.56155 1.83395 0.916973 0.398949i \(-0.130625\pi\)
0.916973 + 0.398949i \(0.130625\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 1.56155 0.340759
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 7.68466 1.53693
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −5.12311 −0.951337 −0.475668 0.879625i \(-0.657794\pi\)
−0.475668 + 0.879625i \(0.657794\pi\)
\(30\) 0 0
\(31\) 7.12311 1.27935 0.639674 0.768647i \(-0.279069\pi\)
0.639674 + 0.768647i \(0.279069\pi\)
\(32\) 0 0
\(33\) −1.56155 −0.271831
\(34\) 0 0
\(35\) −5.56155 −0.940074
\(36\) 0 0
\(37\) −1.12311 −0.184637 −0.0923187 0.995730i \(-0.529428\pi\)
−0.0923187 + 0.995730i \(0.529428\pi\)
\(38\) 0 0
\(39\) −5.12311 −0.820353
\(40\) 0 0
\(41\) −1.12311 −0.175400 −0.0876998 0.996147i \(-0.527952\pi\)
−0.0876998 + 0.996147i \(0.527952\pi\)
\(42\) 0 0
\(43\) −12.6847 −1.93439 −0.967196 0.254031i \(-0.918244\pi\)
−0.967196 + 0.254031i \(0.918244\pi\)
\(44\) 0 0
\(45\) 3.56155 0.530925
\(46\) 0 0
\(47\) 5.56155 0.811236 0.405618 0.914043i \(-0.367056\pi\)
0.405618 + 0.914043i \(0.367056\pi\)
\(48\) 0 0
\(49\) −4.56155 −0.651650
\(50\) 0 0
\(51\) −7.56155 −1.05883
\(52\) 0 0
\(53\) −8.24621 −1.13270 −0.566352 0.824163i \(-0.691646\pi\)
−0.566352 + 0.824163i \(0.691646\pi\)
\(54\) 0 0
\(55\) 5.56155 0.749920
\(56\) 0 0
\(57\) −1.00000 −0.132453
\(58\) 0 0
\(59\) −0.876894 −0.114162 −0.0570810 0.998370i \(-0.518179\pi\)
−0.0570810 + 0.998370i \(0.518179\pi\)
\(60\) 0 0
\(61\) 7.56155 0.968158 0.484079 0.875024i \(-0.339155\pi\)
0.484079 + 0.875024i \(0.339155\pi\)
\(62\) 0 0
\(63\) −1.56155 −0.196737
\(64\) 0 0
\(65\) 18.2462 2.26316
\(66\) 0 0
\(67\) 13.3693 1.63332 0.816661 0.577118i \(-0.195823\pi\)
0.816661 + 0.577118i \(0.195823\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.87689 0.578781 0.289390 0.957211i \(-0.406547\pi\)
0.289390 + 0.957211i \(0.406547\pi\)
\(72\) 0 0
\(73\) −14.6847 −1.71871 −0.859355 0.511380i \(-0.829134\pi\)
−0.859355 + 0.511380i \(0.829134\pi\)
\(74\) 0 0
\(75\) −7.68466 −0.887348
\(76\) 0 0
\(77\) −2.43845 −0.277887
\(78\) 0 0
\(79\) 7.12311 0.801412 0.400706 0.916207i \(-0.368765\pi\)
0.400706 + 0.916207i \(0.368765\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −10.2462 −1.12467 −0.562334 0.826910i \(-0.690096\pi\)
−0.562334 + 0.826910i \(0.690096\pi\)
\(84\) 0 0
\(85\) 26.9309 2.92106
\(86\) 0 0
\(87\) 5.12311 0.549255
\(88\) 0 0
\(89\) 2.00000 0.212000 0.106000 0.994366i \(-0.466196\pi\)
0.106000 + 0.994366i \(0.466196\pi\)
\(90\) 0 0
\(91\) −8.00000 −0.838628
\(92\) 0 0
\(93\) −7.12311 −0.738632
\(94\) 0 0
\(95\) 3.56155 0.365408
\(96\) 0 0
\(97\) 13.1231 1.33245 0.666225 0.745751i \(-0.267909\pi\)
0.666225 + 0.745751i \(0.267909\pi\)
\(98\) 0 0
\(99\) 1.56155 0.156942
\(100\) 0 0
\(101\) −8.24621 −0.820529 −0.410264 0.911967i \(-0.634564\pi\)
−0.410264 + 0.911967i \(0.634564\pi\)
\(102\) 0 0
\(103\) 13.3693 1.31732 0.658659 0.752442i \(-0.271124\pi\)
0.658659 + 0.752442i \(0.271124\pi\)
\(104\) 0 0
\(105\) 5.56155 0.542752
\(106\) 0 0
\(107\) −0.876894 −0.0847726 −0.0423863 0.999101i \(-0.513496\pi\)
−0.0423863 + 0.999101i \(0.513496\pi\)
\(108\) 0 0
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 0 0
\(111\) 1.12311 0.106600
\(112\) 0 0
\(113\) −1.12311 −0.105653 −0.0528264 0.998604i \(-0.516823\pi\)
−0.0528264 + 0.998604i \(0.516823\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 5.12311 0.473631
\(118\) 0 0
\(119\) −11.8078 −1.08242
\(120\) 0 0
\(121\) −8.56155 −0.778323
\(122\) 0 0
\(123\) 1.12311 0.101267
\(124\) 0 0
\(125\) 9.56155 0.855211
\(126\) 0 0
\(127\) −2.24621 −0.199319 −0.0996595 0.995022i \(-0.531775\pi\)
−0.0996595 + 0.995022i \(0.531775\pi\)
\(128\) 0 0
\(129\) 12.6847 1.11682
\(130\) 0 0
\(131\) −22.0540 −1.92686 −0.963432 0.267952i \(-0.913653\pi\)
−0.963432 + 0.267952i \(0.913653\pi\)
\(132\) 0 0
\(133\) −1.56155 −0.135404
\(134\) 0 0
\(135\) −3.56155 −0.306530
\(136\) 0 0
\(137\) −12.9309 −1.10476 −0.552379 0.833593i \(-0.686280\pi\)
−0.552379 + 0.833593i \(0.686280\pi\)
\(138\) 0 0
\(139\) −20.6847 −1.75445 −0.877225 0.480080i \(-0.840608\pi\)
−0.877225 + 0.480080i \(0.840608\pi\)
\(140\) 0 0
\(141\) −5.56155 −0.468367
\(142\) 0 0
\(143\) 8.00000 0.668994
\(144\) 0 0
\(145\) −18.2462 −1.51527
\(146\) 0 0
\(147\) 4.56155 0.376231
\(148\) 0 0
\(149\) 14.6847 1.20301 0.601507 0.798867i \(-0.294567\pi\)
0.601507 + 0.798867i \(0.294567\pi\)
\(150\) 0 0
\(151\) −7.12311 −0.579670 −0.289835 0.957077i \(-0.593600\pi\)
−0.289835 + 0.957077i \(0.593600\pi\)
\(152\) 0 0
\(153\) 7.56155 0.611315
\(154\) 0 0
\(155\) 25.3693 2.03771
\(156\) 0 0
\(157\) 3.75379 0.299585 0.149792 0.988717i \(-0.452139\pi\)
0.149792 + 0.988717i \(0.452139\pi\)
\(158\) 0 0
\(159\) 8.24621 0.653967
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 16.4924 1.29179 0.645893 0.763428i \(-0.276485\pi\)
0.645893 + 0.763428i \(0.276485\pi\)
\(164\) 0 0
\(165\) −5.56155 −0.432966
\(166\) 0 0
\(167\) 14.2462 1.10240 0.551202 0.834372i \(-0.314169\pi\)
0.551202 + 0.834372i \(0.314169\pi\)
\(168\) 0 0
\(169\) 13.2462 1.01894
\(170\) 0 0
\(171\) 1.00000 0.0764719
\(172\) 0 0
\(173\) −2.00000 −0.152057 −0.0760286 0.997106i \(-0.524224\pi\)
−0.0760286 + 0.997106i \(0.524224\pi\)
\(174\) 0 0
\(175\) −12.0000 −0.907115
\(176\) 0 0
\(177\) 0.876894 0.0659114
\(178\) 0 0
\(179\) 18.2462 1.36379 0.681893 0.731452i \(-0.261157\pi\)
0.681893 + 0.731452i \(0.261157\pi\)
\(180\) 0 0
\(181\) −10.4924 −0.779896 −0.389948 0.920837i \(-0.627507\pi\)
−0.389948 + 0.920837i \(0.627507\pi\)
\(182\) 0 0
\(183\) −7.56155 −0.558966
\(184\) 0 0
\(185\) −4.00000 −0.294086
\(186\) 0 0
\(187\) 11.8078 0.863469
\(188\) 0 0
\(189\) 1.56155 0.113586
\(190\) 0 0
\(191\) 24.6847 1.78612 0.893060 0.449938i \(-0.148554\pi\)
0.893060 + 0.449938i \(0.148554\pi\)
\(192\) 0 0
\(193\) 2.00000 0.143963 0.0719816 0.997406i \(-0.477068\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) 0 0
\(195\) −18.2462 −1.30664
\(196\) 0 0
\(197\) −2.00000 −0.142494 −0.0712470 0.997459i \(-0.522698\pi\)
−0.0712470 + 0.997459i \(0.522698\pi\)
\(198\) 0 0
\(199\) −9.56155 −0.677801 −0.338900 0.940822i \(-0.610055\pi\)
−0.338900 + 0.940822i \(0.610055\pi\)
\(200\) 0 0
\(201\) −13.3693 −0.942999
\(202\) 0 0
\(203\) 8.00000 0.561490
\(204\) 0 0
\(205\) −4.00000 −0.279372
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.56155 0.108015
\(210\) 0 0
\(211\) 0.876894 0.0603679 0.0301839 0.999544i \(-0.490391\pi\)
0.0301839 + 0.999544i \(0.490391\pi\)
\(212\) 0 0
\(213\) −4.87689 −0.334159
\(214\) 0 0
\(215\) −45.1771 −3.08105
\(216\) 0 0
\(217\) −11.1231 −0.755086
\(218\) 0 0
\(219\) 14.6847 0.992297
\(220\) 0 0
\(221\) 38.7386 2.60584
\(222\) 0 0
\(223\) −2.24621 −0.150417 −0.0752087 0.997168i \(-0.523962\pi\)
−0.0752087 + 0.997168i \(0.523962\pi\)
\(224\) 0 0
\(225\) 7.68466 0.512311
\(226\) 0 0
\(227\) 20.0000 1.32745 0.663723 0.747978i \(-0.268975\pi\)
0.663723 + 0.747978i \(0.268975\pi\)
\(228\) 0 0
\(229\) −16.0540 −1.06088 −0.530438 0.847724i \(-0.677973\pi\)
−0.530438 + 0.847724i \(0.677973\pi\)
\(230\) 0 0
\(231\) 2.43845 0.160438
\(232\) 0 0
\(233\) 2.68466 0.175878 0.0879389 0.996126i \(-0.471972\pi\)
0.0879389 + 0.996126i \(0.471972\pi\)
\(234\) 0 0
\(235\) 19.8078 1.29212
\(236\) 0 0
\(237\) −7.12311 −0.462695
\(238\) 0 0
\(239\) 8.68466 0.561764 0.280882 0.959742i \(-0.409373\pi\)
0.280882 + 0.959742i \(0.409373\pi\)
\(240\) 0 0
\(241\) 13.1231 0.845334 0.422667 0.906285i \(-0.361094\pi\)
0.422667 + 0.906285i \(0.361094\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −16.2462 −1.03793
\(246\) 0 0
\(247\) 5.12311 0.325975
\(248\) 0 0
\(249\) 10.2462 0.649327
\(250\) 0 0
\(251\) −22.0540 −1.39203 −0.696017 0.718025i \(-0.745046\pi\)
−0.696017 + 0.718025i \(0.745046\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −26.9309 −1.68648
\(256\) 0 0
\(257\) 14.8769 0.927995 0.463998 0.885836i \(-0.346415\pi\)
0.463998 + 0.885836i \(0.346415\pi\)
\(258\) 0 0
\(259\) 1.75379 0.108975
\(260\) 0 0
\(261\) −5.12311 −0.317112
\(262\) 0 0
\(263\) 11.8078 0.728098 0.364049 0.931380i \(-0.381394\pi\)
0.364049 + 0.931380i \(0.381394\pi\)
\(264\) 0 0
\(265\) −29.3693 −1.80414
\(266\) 0 0
\(267\) −2.00000 −0.122398
\(268\) 0 0
\(269\) 18.4924 1.12750 0.563751 0.825944i \(-0.309358\pi\)
0.563751 + 0.825944i \(0.309358\pi\)
\(270\) 0 0
\(271\) −10.2462 −0.622413 −0.311207 0.950342i \(-0.600733\pi\)
−0.311207 + 0.950342i \(0.600733\pi\)
\(272\) 0 0
\(273\) 8.00000 0.484182
\(274\) 0 0
\(275\) 12.0000 0.723627
\(276\) 0 0
\(277\) 6.19224 0.372055 0.186028 0.982545i \(-0.440439\pi\)
0.186028 + 0.982545i \(0.440439\pi\)
\(278\) 0 0
\(279\) 7.12311 0.426449
\(280\) 0 0
\(281\) 11.7538 0.701172 0.350586 0.936530i \(-0.385982\pi\)
0.350586 + 0.936530i \(0.385982\pi\)
\(282\) 0 0
\(283\) 1.56155 0.0928247 0.0464123 0.998922i \(-0.485221\pi\)
0.0464123 + 0.998922i \(0.485221\pi\)
\(284\) 0 0
\(285\) −3.56155 −0.210968
\(286\) 0 0
\(287\) 1.75379 0.103523
\(288\) 0 0
\(289\) 40.1771 2.36336
\(290\) 0 0
\(291\) −13.1231 −0.769290
\(292\) 0 0
\(293\) 2.87689 0.168070 0.0840350 0.996463i \(-0.473219\pi\)
0.0840350 + 0.996463i \(0.473219\pi\)
\(294\) 0 0
\(295\) −3.12311 −0.181834
\(296\) 0 0
\(297\) −1.56155 −0.0906105
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 19.8078 1.14170
\(302\) 0 0
\(303\) 8.24621 0.473732
\(304\) 0 0
\(305\) 26.9309 1.54206
\(306\) 0 0
\(307\) −33.8617 −1.93259 −0.966296 0.257434i \(-0.917123\pi\)
−0.966296 + 0.257434i \(0.917123\pi\)
\(308\) 0 0
\(309\) −13.3693 −0.760554
\(310\) 0 0
\(311\) 5.56155 0.315367 0.157683 0.987490i \(-0.449597\pi\)
0.157683 + 0.987490i \(0.449597\pi\)
\(312\) 0 0
\(313\) 0.246211 0.0139167 0.00695834 0.999976i \(-0.497785\pi\)
0.00695834 + 0.999976i \(0.497785\pi\)
\(314\) 0 0
\(315\) −5.56155 −0.313358
\(316\) 0 0
\(317\) −26.0000 −1.46031 −0.730153 0.683284i \(-0.760551\pi\)
−0.730153 + 0.683284i \(0.760551\pi\)
\(318\) 0 0
\(319\) −8.00000 −0.447914
\(320\) 0 0
\(321\) 0.876894 0.0489435
\(322\) 0 0
\(323\) 7.56155 0.420736
\(324\) 0 0
\(325\) 39.3693 2.18382
\(326\) 0 0
\(327\) −10.0000 −0.553001
\(328\) 0 0
\(329\) −8.68466 −0.478801
\(330\) 0 0
\(331\) −19.6155 −1.07817 −0.539083 0.842252i \(-0.681229\pi\)
−0.539083 + 0.842252i \(0.681229\pi\)
\(332\) 0 0
\(333\) −1.12311 −0.0615458
\(334\) 0 0
\(335\) 47.6155 2.60151
\(336\) 0 0
\(337\) −21.6155 −1.17747 −0.588736 0.808325i \(-0.700374\pi\)
−0.588736 + 0.808325i \(0.700374\pi\)
\(338\) 0 0
\(339\) 1.12311 0.0609987
\(340\) 0 0
\(341\) 11.1231 0.602350
\(342\) 0 0
\(343\) 18.0540 0.974823
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0.192236 0.0103198 0.00515988 0.999987i \(-0.498358\pi\)
0.00515988 + 0.999987i \(0.498358\pi\)
\(348\) 0 0
\(349\) −13.3153 −0.712754 −0.356377 0.934342i \(-0.615988\pi\)
−0.356377 + 0.934342i \(0.615988\pi\)
\(350\) 0 0
\(351\) −5.12311 −0.273451
\(352\) 0 0
\(353\) 2.00000 0.106449 0.0532246 0.998583i \(-0.483050\pi\)
0.0532246 + 0.998583i \(0.483050\pi\)
\(354\) 0 0
\(355\) 17.3693 0.921868
\(356\) 0 0
\(357\) 11.8078 0.624933
\(358\) 0 0
\(359\) 8.68466 0.458359 0.229179 0.973384i \(-0.426396\pi\)
0.229179 + 0.973384i \(0.426396\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 8.56155 0.449365
\(364\) 0 0
\(365\) −52.3002 −2.73752
\(366\) 0 0
\(367\) −12.0000 −0.626395 −0.313197 0.949688i \(-0.601400\pi\)
−0.313197 + 0.949688i \(0.601400\pi\)
\(368\) 0 0
\(369\) −1.12311 −0.0584665
\(370\) 0 0
\(371\) 12.8769 0.668535
\(372\) 0 0
\(373\) 33.6155 1.74055 0.870273 0.492570i \(-0.163942\pi\)
0.870273 + 0.492570i \(0.163942\pi\)
\(374\) 0 0
\(375\) −9.56155 −0.493756
\(376\) 0 0
\(377\) −26.2462 −1.35175
\(378\) 0 0
\(379\) −27.6155 −1.41851 −0.709257 0.704950i \(-0.750970\pi\)
−0.709257 + 0.704950i \(0.750970\pi\)
\(380\) 0 0
\(381\) 2.24621 0.115077
\(382\) 0 0
\(383\) −33.3693 −1.70509 −0.852546 0.522652i \(-0.824943\pi\)
−0.852546 + 0.522652i \(0.824943\pi\)
\(384\) 0 0
\(385\) −8.68466 −0.442611
\(386\) 0 0
\(387\) −12.6847 −0.644797
\(388\) 0 0
\(389\) 25.8078 1.30851 0.654253 0.756276i \(-0.272983\pi\)
0.654253 + 0.756276i \(0.272983\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 22.0540 1.11248
\(394\) 0 0
\(395\) 25.3693 1.27647
\(396\) 0 0
\(397\) 2.68466 0.134739 0.0673696 0.997728i \(-0.478539\pi\)
0.0673696 + 0.997728i \(0.478539\pi\)
\(398\) 0 0
\(399\) 1.56155 0.0781754
\(400\) 0 0
\(401\) 14.4924 0.723717 0.361859 0.932233i \(-0.382142\pi\)
0.361859 + 0.932233i \(0.382142\pi\)
\(402\) 0 0
\(403\) 36.4924 1.81782
\(404\) 0 0
\(405\) 3.56155 0.176975
\(406\) 0 0
\(407\) −1.75379 −0.0869321
\(408\) 0 0
\(409\) 0.246211 0.0121744 0.00608718 0.999981i \(-0.498062\pi\)
0.00608718 + 0.999981i \(0.498062\pi\)
\(410\) 0 0
\(411\) 12.9309 0.637833
\(412\) 0 0
\(413\) 1.36932 0.0673797
\(414\) 0 0
\(415\) −36.4924 −1.79134
\(416\) 0 0
\(417\) 20.6847 1.01293
\(418\) 0 0
\(419\) 36.9848 1.80683 0.903414 0.428769i \(-0.141053\pi\)
0.903414 + 0.428769i \(0.141053\pi\)
\(420\) 0 0
\(421\) 24.2462 1.18169 0.590844 0.806786i \(-0.298795\pi\)
0.590844 + 0.806786i \(0.298795\pi\)
\(422\) 0 0
\(423\) 5.56155 0.270412
\(424\) 0 0
\(425\) 58.1080 2.81865
\(426\) 0 0
\(427\) −11.8078 −0.571418
\(428\) 0 0
\(429\) −8.00000 −0.386244
\(430\) 0 0
\(431\) −32.9848 −1.58882 −0.794412 0.607379i \(-0.792221\pi\)
−0.794412 + 0.607379i \(0.792221\pi\)
\(432\) 0 0
\(433\) −5.61553 −0.269865 −0.134933 0.990855i \(-0.543082\pi\)
−0.134933 + 0.990855i \(0.543082\pi\)
\(434\) 0 0
\(435\) 18.2462 0.874839
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 8.49242 0.405321 0.202661 0.979249i \(-0.435041\pi\)
0.202661 + 0.979249i \(0.435041\pi\)
\(440\) 0 0
\(441\) −4.56155 −0.217217
\(442\) 0 0
\(443\) 12.6847 0.602666 0.301333 0.953519i \(-0.402568\pi\)
0.301333 + 0.953519i \(0.402568\pi\)
\(444\) 0 0
\(445\) 7.12311 0.337668
\(446\) 0 0
\(447\) −14.6847 −0.694561
\(448\) 0 0
\(449\) 3.36932 0.159008 0.0795039 0.996835i \(-0.474666\pi\)
0.0795039 + 0.996835i \(0.474666\pi\)
\(450\) 0 0
\(451\) −1.75379 −0.0825827
\(452\) 0 0
\(453\) 7.12311 0.334673
\(454\) 0 0
\(455\) −28.4924 −1.33575
\(456\) 0 0
\(457\) 15.1771 0.709954 0.354977 0.934875i \(-0.384489\pi\)
0.354977 + 0.934875i \(0.384489\pi\)
\(458\) 0 0
\(459\) −7.56155 −0.352943
\(460\) 0 0
\(461\) 6.68466 0.311336 0.155668 0.987809i \(-0.450247\pi\)
0.155668 + 0.987809i \(0.450247\pi\)
\(462\) 0 0
\(463\) −38.4384 −1.78639 −0.893193 0.449673i \(-0.851540\pi\)
−0.893193 + 0.449673i \(0.851540\pi\)
\(464\) 0 0
\(465\) −25.3693 −1.17647
\(466\) 0 0
\(467\) −7.80776 −0.361300 −0.180650 0.983547i \(-0.557820\pi\)
−0.180650 + 0.983547i \(0.557820\pi\)
\(468\) 0 0
\(469\) −20.8769 −0.964005
\(470\) 0 0
\(471\) −3.75379 −0.172965
\(472\) 0 0
\(473\) −19.8078 −0.910762
\(474\) 0 0
\(475\) 7.68466 0.352596
\(476\) 0 0
\(477\) −8.24621 −0.377568
\(478\) 0 0
\(479\) 36.4924 1.66738 0.833691 0.552232i \(-0.186224\pi\)
0.833691 + 0.552232i \(0.186224\pi\)
\(480\) 0 0
\(481\) −5.75379 −0.262350
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 46.7386 2.12229
\(486\) 0 0
\(487\) −7.12311 −0.322779 −0.161389 0.986891i \(-0.551597\pi\)
−0.161389 + 0.986891i \(0.551597\pi\)
\(488\) 0 0
\(489\) −16.4924 −0.745813
\(490\) 0 0
\(491\) 12.0000 0.541552 0.270776 0.962642i \(-0.412720\pi\)
0.270776 + 0.962642i \(0.412720\pi\)
\(492\) 0 0
\(493\) −38.7386 −1.74470
\(494\) 0 0
\(495\) 5.56155 0.249973
\(496\) 0 0
\(497\) −7.61553 −0.341603
\(498\) 0 0
\(499\) −39.8078 −1.78204 −0.891020 0.453964i \(-0.850010\pi\)
−0.891020 + 0.453964i \(0.850010\pi\)
\(500\) 0 0
\(501\) −14.2462 −0.636474
\(502\) 0 0
\(503\) 12.4924 0.557010 0.278505 0.960435i \(-0.410161\pi\)
0.278505 + 0.960435i \(0.410161\pi\)
\(504\) 0 0
\(505\) −29.3693 −1.30692
\(506\) 0 0
\(507\) −13.2462 −0.588285
\(508\) 0 0
\(509\) −33.6155 −1.48998 −0.744991 0.667074i \(-0.767546\pi\)
−0.744991 + 0.667074i \(0.767546\pi\)
\(510\) 0 0
\(511\) 22.9309 1.01440
\(512\) 0 0
\(513\) −1.00000 −0.0441511
\(514\) 0 0
\(515\) 47.6155 2.09819
\(516\) 0 0
\(517\) 8.68466 0.381951
\(518\) 0 0
\(519\) 2.00000 0.0877903
\(520\) 0 0
\(521\) −38.0000 −1.66481 −0.832405 0.554168i \(-0.813037\pi\)
−0.832405 + 0.554168i \(0.813037\pi\)
\(522\) 0 0
\(523\) 16.8769 0.737975 0.368988 0.929434i \(-0.379705\pi\)
0.368988 + 0.929434i \(0.379705\pi\)
\(524\) 0 0
\(525\) 12.0000 0.523723
\(526\) 0 0
\(527\) 53.8617 2.34625
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) −0.876894 −0.0380540
\(532\) 0 0
\(533\) −5.75379 −0.249224
\(534\) 0 0
\(535\) −3.12311 −0.135024
\(536\) 0 0
\(537\) −18.2462 −0.787382
\(538\) 0 0
\(539\) −7.12311 −0.306814
\(540\) 0 0
\(541\) −35.1771 −1.51238 −0.756190 0.654352i \(-0.772942\pi\)
−0.756190 + 0.654352i \(0.772942\pi\)
\(542\) 0 0
\(543\) 10.4924 0.450273
\(544\) 0 0
\(545\) 35.6155 1.52560
\(546\) 0 0
\(547\) −5.75379 −0.246014 −0.123007 0.992406i \(-0.539254\pi\)
−0.123007 + 0.992406i \(0.539254\pi\)
\(548\) 0 0
\(549\) 7.56155 0.322719
\(550\) 0 0
\(551\) −5.12311 −0.218252
\(552\) 0 0
\(553\) −11.1231 −0.473003
\(554\) 0 0
\(555\) 4.00000 0.169791
\(556\) 0 0
\(557\) −34.3002 −1.45335 −0.726673 0.686984i \(-0.758934\pi\)
−0.726673 + 0.686984i \(0.758934\pi\)
\(558\) 0 0
\(559\) −64.9848 −2.74857
\(560\) 0 0
\(561\) −11.8078 −0.498524
\(562\) 0 0
\(563\) 26.2462 1.10615 0.553073 0.833133i \(-0.313455\pi\)
0.553073 + 0.833133i \(0.313455\pi\)
\(564\) 0 0
\(565\) −4.00000 −0.168281
\(566\) 0 0
\(567\) −1.56155 −0.0655791
\(568\) 0 0
\(569\) −1.12311 −0.0470830 −0.0235415 0.999723i \(-0.507494\pi\)
−0.0235415 + 0.999723i \(0.507494\pi\)
\(570\) 0 0
\(571\) 10.2462 0.428791 0.214395 0.976747i \(-0.431222\pi\)
0.214395 + 0.976747i \(0.431222\pi\)
\(572\) 0 0
\(573\) −24.6847 −1.03122
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 39.1771 1.63096 0.815482 0.578783i \(-0.196472\pi\)
0.815482 + 0.578783i \(0.196472\pi\)
\(578\) 0 0
\(579\) −2.00000 −0.0831172
\(580\) 0 0
\(581\) 16.0000 0.663792
\(582\) 0 0
\(583\) −12.8769 −0.533306
\(584\) 0 0
\(585\) 18.2462 0.754388
\(586\) 0 0
\(587\) 23.4233 0.966783 0.483391 0.875404i \(-0.339405\pi\)
0.483391 + 0.875404i \(0.339405\pi\)
\(588\) 0 0
\(589\) 7.12311 0.293502
\(590\) 0 0
\(591\) 2.00000 0.0822690
\(592\) 0 0
\(593\) −45.2311 −1.85742 −0.928708 0.370811i \(-0.879080\pi\)
−0.928708 + 0.370811i \(0.879080\pi\)
\(594\) 0 0
\(595\) −42.0540 −1.72404
\(596\) 0 0
\(597\) 9.56155 0.391328
\(598\) 0 0
\(599\) 39.6155 1.61865 0.809323 0.587363i \(-0.199834\pi\)
0.809323 + 0.587363i \(0.199834\pi\)
\(600\) 0 0
\(601\) −31.7538 −1.29526 −0.647632 0.761953i \(-0.724241\pi\)
−0.647632 + 0.761953i \(0.724241\pi\)
\(602\) 0 0
\(603\) 13.3693 0.544441
\(604\) 0 0
\(605\) −30.4924 −1.23969
\(606\) 0 0
\(607\) 4.00000 0.162355 0.0811775 0.996700i \(-0.474132\pi\)
0.0811775 + 0.996700i \(0.474132\pi\)
\(608\) 0 0
\(609\) −8.00000 −0.324176
\(610\) 0 0
\(611\) 28.4924 1.15268
\(612\) 0 0
\(613\) 42.6847 1.72402 0.862009 0.506894i \(-0.169206\pi\)
0.862009 + 0.506894i \(0.169206\pi\)
\(614\) 0 0
\(615\) 4.00000 0.161296
\(616\) 0 0
\(617\) 32.5464 1.31027 0.655134 0.755512i \(-0.272612\pi\)
0.655134 + 0.755512i \(0.272612\pi\)
\(618\) 0 0
\(619\) −40.4924 −1.62753 −0.813764 0.581196i \(-0.802585\pi\)
−0.813764 + 0.581196i \(0.802585\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −3.12311 −0.125125
\(624\) 0 0
\(625\) −4.36932 −0.174773
\(626\) 0 0
\(627\) −1.56155 −0.0623624
\(628\) 0 0
\(629\) −8.49242 −0.338615
\(630\) 0 0
\(631\) −14.0540 −0.559480 −0.279740 0.960076i \(-0.590248\pi\)
−0.279740 + 0.960076i \(0.590248\pi\)
\(632\) 0 0
\(633\) −0.876894 −0.0348534
\(634\) 0 0
\(635\) −8.00000 −0.317470
\(636\) 0 0
\(637\) −23.3693 −0.925926
\(638\) 0 0
\(639\) 4.87689 0.192927
\(640\) 0 0
\(641\) −15.3693 −0.607052 −0.303526 0.952823i \(-0.598164\pi\)
−0.303526 + 0.952823i \(0.598164\pi\)
\(642\) 0 0
\(643\) −4.68466 −0.184745 −0.0923724 0.995725i \(-0.529445\pi\)
−0.0923724 + 0.995725i \(0.529445\pi\)
\(644\) 0 0
\(645\) 45.1771 1.77885
\(646\) 0 0
\(647\) 24.6847 0.970454 0.485227 0.874388i \(-0.338737\pi\)
0.485227 + 0.874388i \(0.338737\pi\)
\(648\) 0 0
\(649\) −1.36932 −0.0537504
\(650\) 0 0
\(651\) 11.1231 0.435949
\(652\) 0 0
\(653\) −21.8078 −0.853404 −0.426702 0.904392i \(-0.640325\pi\)
−0.426702 + 0.904392i \(0.640325\pi\)
\(654\) 0 0
\(655\) −78.5464 −3.06906
\(656\) 0 0
\(657\) −14.6847 −0.572903
\(658\) 0 0
\(659\) −11.6155 −0.452477 −0.226238 0.974072i \(-0.572643\pi\)
−0.226238 + 0.974072i \(0.572643\pi\)
\(660\) 0 0
\(661\) −26.8769 −1.04539 −0.522695 0.852520i \(-0.675073\pi\)
−0.522695 + 0.852520i \(0.675073\pi\)
\(662\) 0 0
\(663\) −38.7386 −1.50448
\(664\) 0 0
\(665\) −5.56155 −0.215668
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 2.24621 0.0868435
\(670\) 0 0
\(671\) 11.8078 0.455834
\(672\) 0 0
\(673\) −26.4924 −1.02121 −0.510604 0.859816i \(-0.670578\pi\)
−0.510604 + 0.859816i \(0.670578\pi\)
\(674\) 0 0
\(675\) −7.68466 −0.295783
\(676\) 0 0
\(677\) −23.8617 −0.917081 −0.458541 0.888673i \(-0.651628\pi\)
−0.458541 + 0.888673i \(0.651628\pi\)
\(678\) 0 0
\(679\) −20.4924 −0.786427
\(680\) 0 0
\(681\) −20.0000 −0.766402
\(682\) 0 0
\(683\) −16.4924 −0.631065 −0.315533 0.948915i \(-0.602183\pi\)
−0.315533 + 0.948915i \(0.602183\pi\)
\(684\) 0 0
\(685\) −46.0540 −1.75963
\(686\) 0 0
\(687\) 16.0540 0.612497
\(688\) 0 0
\(689\) −42.2462 −1.60945
\(690\) 0 0
\(691\) 9.17708 0.349113 0.174556 0.984647i \(-0.444151\pi\)
0.174556 + 0.984647i \(0.444151\pi\)
\(692\) 0 0
\(693\) −2.43845 −0.0926289
\(694\) 0 0
\(695\) −73.6695 −2.79444
\(696\) 0 0
\(697\) −8.49242 −0.321673
\(698\) 0 0
\(699\) −2.68466 −0.101543
\(700\) 0 0
\(701\) −32.2462 −1.21792 −0.608961 0.793200i \(-0.708414\pi\)
−0.608961 + 0.793200i \(0.708414\pi\)
\(702\) 0 0
\(703\) −1.12311 −0.0423587
\(704\) 0 0
\(705\) −19.8078 −0.746004
\(706\) 0 0
\(707\) 12.8769 0.484285
\(708\) 0 0
\(709\) 22.4924 0.844721 0.422360 0.906428i \(-0.361202\pi\)
0.422360 + 0.906428i \(0.361202\pi\)
\(710\) 0 0
\(711\) 7.12311 0.267137
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 28.4924 1.06556
\(716\) 0 0
\(717\) −8.68466 −0.324335
\(718\) 0 0
\(719\) −2.05398 −0.0766004 −0.0383002 0.999266i \(-0.512194\pi\)
−0.0383002 + 0.999266i \(0.512194\pi\)
\(720\) 0 0
\(721\) −20.8769 −0.777496
\(722\) 0 0
\(723\) −13.1231 −0.488054
\(724\) 0 0
\(725\) −39.3693 −1.46214
\(726\) 0 0
\(727\) 41.5616 1.54143 0.770716 0.637178i \(-0.219899\pi\)
0.770716 + 0.637178i \(0.219899\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −95.9157 −3.54757
\(732\) 0 0
\(733\) 24.2462 0.895554 0.447777 0.894145i \(-0.352216\pi\)
0.447777 + 0.894145i \(0.352216\pi\)
\(734\) 0 0
\(735\) 16.2462 0.599251
\(736\) 0 0
\(737\) 20.8769 0.769010
\(738\) 0 0
\(739\) −50.9309 −1.87352 −0.936761 0.349969i \(-0.886192\pi\)
−0.936761 + 0.349969i \(0.886192\pi\)
\(740\) 0 0
\(741\) −5.12311 −0.188202
\(742\) 0 0
\(743\) 21.8617 0.802029 0.401015 0.916072i \(-0.368658\pi\)
0.401015 + 0.916072i \(0.368658\pi\)
\(744\) 0 0
\(745\) 52.3002 1.91613
\(746\) 0 0
\(747\) −10.2462 −0.374889
\(748\) 0 0
\(749\) 1.36932 0.0500337
\(750\) 0 0
\(751\) 24.4924 0.893741 0.446871 0.894599i \(-0.352538\pi\)
0.446871 + 0.894599i \(0.352538\pi\)
\(752\) 0 0
\(753\) 22.0540 0.803692
\(754\) 0 0
\(755\) −25.3693 −0.923284
\(756\) 0 0
\(757\) 4.05398 0.147344 0.0736721 0.997283i \(-0.476528\pi\)
0.0736721 + 0.997283i \(0.476528\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −28.9309 −1.04874 −0.524372 0.851490i \(-0.675700\pi\)
−0.524372 + 0.851490i \(0.675700\pi\)
\(762\) 0 0
\(763\) −15.6155 −0.565320
\(764\) 0 0
\(765\) 26.9309 0.973688
\(766\) 0 0
\(767\) −4.49242 −0.162212
\(768\) 0 0
\(769\) −8.05398 −0.290434 −0.145217 0.989400i \(-0.546388\pi\)
−0.145217 + 0.989400i \(0.546388\pi\)
\(770\) 0 0
\(771\) −14.8769 −0.535778
\(772\) 0 0
\(773\) −8.24621 −0.296596 −0.148298 0.988943i \(-0.547379\pi\)
−0.148298 + 0.988943i \(0.547379\pi\)
\(774\) 0 0
\(775\) 54.7386 1.96627
\(776\) 0 0
\(777\) −1.75379 −0.0629168
\(778\) 0 0
\(779\) −1.12311 −0.0402394
\(780\) 0 0
\(781\) 7.61553 0.272505
\(782\) 0 0
\(783\) 5.12311 0.183085
\(784\) 0 0
\(785\) 13.3693 0.477171
\(786\) 0 0
\(787\) −15.5076 −0.552785 −0.276393 0.961045i \(-0.589139\pi\)
−0.276393 + 0.961045i \(0.589139\pi\)
\(788\) 0 0
\(789\) −11.8078 −0.420368
\(790\) 0 0
\(791\) 1.75379 0.0623575
\(792\) 0 0
\(793\) 38.7386 1.37565
\(794\) 0 0
\(795\) 29.3693 1.04162
\(796\) 0 0
\(797\) 22.9848 0.814165 0.407082 0.913391i \(-0.366546\pi\)
0.407082 + 0.913391i \(0.366546\pi\)
\(798\) 0 0
\(799\) 42.0540 1.48776
\(800\) 0 0
\(801\) 2.00000 0.0706665
\(802\) 0 0
\(803\) −22.9309 −0.809213
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −18.4924 −0.650964
\(808\) 0 0
\(809\) −21.3153 −0.749408 −0.374704 0.927145i \(-0.622256\pi\)
−0.374704 + 0.927145i \(0.622256\pi\)
\(810\) 0 0
\(811\) −32.4924 −1.14096 −0.570482 0.821310i \(-0.693243\pi\)
−0.570482 + 0.821310i \(0.693243\pi\)
\(812\) 0 0
\(813\) 10.2462 0.359350
\(814\) 0 0
\(815\) 58.7386 2.05752
\(816\) 0 0
\(817\) −12.6847 −0.443780
\(818\) 0 0
\(819\) −8.00000 −0.279543
\(820\) 0 0
\(821\) −41.3153 −1.44192 −0.720958 0.692979i \(-0.756298\pi\)
−0.720958 + 0.692979i \(0.756298\pi\)
\(822\) 0 0
\(823\) −30.0540 −1.04762 −0.523808 0.851836i \(-0.675489\pi\)
−0.523808 + 0.851836i \(0.675489\pi\)
\(824\) 0 0
\(825\) −12.0000 −0.417786
\(826\) 0 0
\(827\) −25.8617 −0.899301 −0.449650 0.893205i \(-0.648451\pi\)
−0.449650 + 0.893205i \(0.648451\pi\)
\(828\) 0 0
\(829\) −45.6155 −1.58429 −0.792146 0.610331i \(-0.791036\pi\)
−0.792146 + 0.610331i \(0.791036\pi\)
\(830\) 0 0
\(831\) −6.19224 −0.214806
\(832\) 0 0
\(833\) −34.4924 −1.19509
\(834\) 0 0
\(835\) 50.7386 1.75588
\(836\) 0 0
\(837\) −7.12311 −0.246211
\(838\) 0 0
\(839\) −7.61553 −0.262917 −0.131459 0.991322i \(-0.541966\pi\)
−0.131459 + 0.991322i \(0.541966\pi\)
\(840\) 0 0
\(841\) −2.75379 −0.0949582
\(842\) 0 0
\(843\) −11.7538 −0.404822
\(844\) 0 0
\(845\) 47.1771 1.62294
\(846\) 0 0
\(847\) 13.3693 0.459375
\(848\) 0 0
\(849\) −1.56155 −0.0535924
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −23.7538 −0.813314 −0.406657 0.913581i \(-0.633306\pi\)
−0.406657 + 0.913581i \(0.633306\pi\)
\(854\) 0 0
\(855\) 3.56155 0.121803
\(856\) 0 0
\(857\) −46.9848 −1.60497 −0.802486 0.596671i \(-0.796490\pi\)
−0.802486 + 0.596671i \(0.796490\pi\)
\(858\) 0 0
\(859\) 15.8078 0.539354 0.269677 0.962951i \(-0.413083\pi\)
0.269677 + 0.962951i \(0.413083\pi\)
\(860\) 0 0
\(861\) −1.75379 −0.0597690
\(862\) 0 0
\(863\) −32.0000 −1.08929 −0.544646 0.838666i \(-0.683336\pi\)
−0.544646 + 0.838666i \(0.683336\pi\)
\(864\) 0 0
\(865\) −7.12311 −0.242193
\(866\) 0 0
\(867\) −40.1771 −1.36449
\(868\) 0 0
\(869\) 11.1231 0.377326
\(870\) 0 0
\(871\) 68.4924 2.32078
\(872\) 0 0
\(873\) 13.1231 0.444150
\(874\) 0 0
\(875\) −14.9309 −0.504756
\(876\) 0 0
\(877\) −39.7538 −1.34239 −0.671195 0.741281i \(-0.734219\pi\)
−0.671195 + 0.741281i \(0.734219\pi\)
\(878\) 0 0
\(879\) −2.87689 −0.0970352
\(880\) 0 0
\(881\) −38.6847 −1.30332 −0.651660 0.758512i \(-0.725927\pi\)
−0.651660 + 0.758512i \(0.725927\pi\)
\(882\) 0 0
\(883\) 17.5616 0.590993 0.295497 0.955344i \(-0.404515\pi\)
0.295497 + 0.955344i \(0.404515\pi\)
\(884\) 0 0
\(885\) 3.12311 0.104982
\(886\) 0 0
\(887\) 12.8769 0.432364 0.216182 0.976353i \(-0.430640\pi\)
0.216182 + 0.976353i \(0.430640\pi\)
\(888\) 0 0
\(889\) 3.50758 0.117640
\(890\) 0 0
\(891\) 1.56155 0.0523140
\(892\) 0 0
\(893\) 5.56155 0.186110
\(894\) 0 0
\(895\) 64.9848 2.17220
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −36.4924 −1.21709
\(900\) 0 0
\(901\) −62.3542 −2.07732
\(902\) 0 0
\(903\) −19.8078 −0.659161
\(904\) 0 0
\(905\) −37.3693 −1.24220
\(906\) 0 0
\(907\) −2.63068 −0.0873504 −0.0436752 0.999046i \(-0.513907\pi\)
−0.0436752 + 0.999046i \(0.513907\pi\)
\(908\) 0 0
\(909\) −8.24621 −0.273510
\(910\) 0 0
\(911\) −13.8617 −0.459260 −0.229630 0.973278i \(-0.573752\pi\)
−0.229630 + 0.973278i \(0.573752\pi\)
\(912\) 0 0
\(913\) −16.0000 −0.529523
\(914\) 0 0
\(915\) −26.9309 −0.890307
\(916\) 0 0
\(917\) 34.4384 1.13726
\(918\) 0 0
\(919\) −1.26137 −0.0416086 −0.0208043 0.999784i \(-0.506623\pi\)
−0.0208043 + 0.999784i \(0.506623\pi\)
\(920\) 0 0
\(921\) 33.8617 1.11578
\(922\) 0 0
\(923\) 24.9848 0.822386
\(924\) 0 0
\(925\) −8.63068 −0.283775
\(926\) 0 0
\(927\) 13.3693 0.439106
\(928\) 0 0
\(929\) 19.7538 0.648101 0.324050 0.946040i \(-0.394955\pi\)
0.324050 + 0.946040i \(0.394955\pi\)
\(930\) 0 0
\(931\) −4.56155 −0.149499
\(932\) 0 0
\(933\) −5.56155 −0.182077
\(934\) 0 0
\(935\) 42.0540 1.37531
\(936\) 0 0
\(937\) 1.31534 0.0429703 0.0214852 0.999769i \(-0.493161\pi\)
0.0214852 + 0.999769i \(0.493161\pi\)
\(938\) 0 0
\(939\) −0.246211 −0.00803480
\(940\) 0 0
\(941\) 17.5076 0.570731 0.285365 0.958419i \(-0.407885\pi\)
0.285365 + 0.958419i \(0.407885\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 5.56155 0.180917
\(946\) 0 0
\(947\) 20.0000 0.649913 0.324956 0.945729i \(-0.394650\pi\)
0.324956 + 0.945729i \(0.394650\pi\)
\(948\) 0 0
\(949\) −75.2311 −2.44210
\(950\) 0 0
\(951\) 26.0000 0.843108
\(952\) 0 0
\(953\) 50.9848 1.65156 0.825781 0.563992i \(-0.190735\pi\)
0.825781 + 0.563992i \(0.190735\pi\)
\(954\) 0 0
\(955\) 87.9157 2.84489
\(956\) 0 0
\(957\) 8.00000 0.258603
\(958\) 0 0
\(959\) 20.1922 0.652041
\(960\) 0 0
\(961\) 19.7386 0.636730
\(962\) 0 0
\(963\) −0.876894 −0.0282575
\(964\) 0 0
\(965\) 7.12311 0.229301
\(966\) 0 0
\(967\) −55.7235 −1.79195 −0.895973 0.444108i \(-0.853521\pi\)
−0.895973 + 0.444108i \(0.853521\pi\)
\(968\) 0 0
\(969\) −7.56155 −0.242912
\(970\) 0 0
\(971\) 36.9848 1.18690 0.593450 0.804871i \(-0.297765\pi\)
0.593450 + 0.804871i \(0.297765\pi\)
\(972\) 0 0
\(973\) 32.3002 1.03550
\(974\) 0 0
\(975\) −39.3693 −1.26083
\(976\) 0 0
\(977\) 14.4924 0.463654 0.231827 0.972757i \(-0.425530\pi\)
0.231827 + 0.972757i \(0.425530\pi\)
\(978\) 0 0
\(979\) 3.12311 0.0998149
\(980\) 0 0
\(981\) 10.0000 0.319275
\(982\) 0 0
\(983\) −5.26137 −0.167812 −0.0839058 0.996474i \(-0.526739\pi\)
−0.0839058 + 0.996474i \(0.526739\pi\)
\(984\) 0 0
\(985\) −7.12311 −0.226961
\(986\) 0 0
\(987\) 8.68466 0.276436
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −16.4924 −0.523899 −0.261950 0.965082i \(-0.584365\pi\)
−0.261950 + 0.965082i \(0.584365\pi\)
\(992\) 0 0
\(993\) 19.6155 0.622480
\(994\) 0 0
\(995\) −34.0540 −1.07958
\(996\) 0 0
\(997\) 32.9309 1.04293 0.521466 0.853272i \(-0.325386\pi\)
0.521466 + 0.853272i \(0.325386\pi\)
\(998\) 0 0
\(999\) 1.12311 0.0355335
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3648.2.a.bp.1.2 2
4.3 odd 2 3648.2.a.bu.1.2 2
8.3 odd 2 1824.2.a.m.1.1 2
8.5 even 2 1824.2.a.q.1.1 yes 2
24.5 odd 2 5472.2.a.bl.1.2 2
24.11 even 2 5472.2.a.bi.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1824.2.a.m.1.1 2 8.3 odd 2
1824.2.a.q.1.1 yes 2 8.5 even 2
3648.2.a.bp.1.2 2 1.1 even 1 trivial
3648.2.a.bu.1.2 2 4.3 odd 2
5472.2.a.bi.1.2 2 24.11 even 2
5472.2.a.bl.1.2 2 24.5 odd 2