Properties

Label 3648.1.bj.a
Level 36483648
Weight 11
Character orbit 3648.bj
Analytic conductor 1.8211.821
Analytic rank 00
Dimension 22
Projective image D6D_{6}
CM discriminant -3
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3648,1,Mod(2687,3648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3648, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 3, 1])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3648.2687"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 3648=26319 3648 = 2^{6} \cdot 3 \cdot 19
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3648.bj (of order 66, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.820589166091.82058916609
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ6)\Q(\zeta_{6})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 912)
Projective image: D6D_{6}
Projective field: Galois closure of 6.2.1426233024.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qζ6q3+(ζ62ζ6)q7+ζ62q9+(ζ61)q13q19+(ζ621)q21+ζ62q25+q27q31+(ζ62+ζ6)q37++ζ6q93+O(q100) q - \zeta_{6} q^{3} + ( - \zeta_{6}^{2} - \zeta_{6}) q^{7} + \zeta_{6}^{2} q^{9} + ( - \zeta_{6} - 1) q^{13} - q^{19} + (\zeta_{6}^{2} - 1) q^{21} + \zeta_{6}^{2} q^{25} + q^{27} - q^{31} + (\zeta_{6}^{2} + \zeta_{6}) q^{37} + \cdots + \zeta_{6} q^{93} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2qq3q93q132q193q21q25+2q272q31+3q434q49+q57+q61+3q63q67q73+2q75q79q813q91++q93+O(q100) 2 q - q^{3} - q^{9} - 3 q^{13} - 2 q^{19} - 3 q^{21} - q^{25} + 2 q^{27} - 2 q^{31} + 3 q^{43} - 4 q^{49} + q^{57} + q^{61} + 3 q^{63} - q^{67} - q^{73} + 2 q^{75} - q^{79} - q^{81} - 3 q^{91}+ \cdots + q^{93}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3648Z)×\left(\mathbb{Z}/3648\mathbb{Z}\right)^\times.

nn 12171217 19211921 20532053 26232623
χ(n)\chi(n) 1-1 ζ62-\zeta_{6}^{2} 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
2687.1
0.500000 0.866025i
0.500000 + 0.866025i
0 −0.500000 + 0.866025i 0 0 0 1.73205i 0 −0.500000 0.866025i 0
3071.1 0 −0.500000 0.866025i 0 0 0 1.73205i 0 −0.500000 + 0.866025i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})
76.f even 6 1 inner
228.n odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3648.1.bj.a 2
3.b odd 2 1 CM 3648.1.bj.a 2
4.b odd 2 1 3648.1.bj.b 2
8.b even 2 1 912.1.bj.b yes 2
8.d odd 2 1 912.1.bj.a 2
12.b even 2 1 3648.1.bj.b 2
19.d odd 6 1 3648.1.bj.b 2
24.f even 2 1 912.1.bj.a 2
24.h odd 2 1 912.1.bj.b yes 2
57.f even 6 1 3648.1.bj.b 2
76.f even 6 1 inner 3648.1.bj.a 2
152.l odd 6 1 912.1.bj.a 2
152.o even 6 1 912.1.bj.b yes 2
228.n odd 6 1 inner 3648.1.bj.a 2
456.s odd 6 1 912.1.bj.b yes 2
456.v even 6 1 912.1.bj.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
912.1.bj.a 2 8.d odd 2 1
912.1.bj.a 2 24.f even 2 1
912.1.bj.a 2 152.l odd 6 1
912.1.bj.a 2 456.v even 6 1
912.1.bj.b yes 2 8.b even 2 1
912.1.bj.b yes 2 24.h odd 2 1
912.1.bj.b yes 2 152.o even 6 1
912.1.bj.b yes 2 456.s odd 6 1
3648.1.bj.a 2 1.a even 1 1 trivial
3648.1.bj.a 2 3.b odd 2 1 CM
3648.1.bj.a 2 76.f even 6 1 inner
3648.1.bj.a 2 228.n odd 6 1 inner
3648.1.bj.b 2 4.b odd 2 1
3648.1.bj.b 2 12.b even 2 1
3648.1.bj.b 2 19.d odd 6 1
3648.1.bj.b 2 57.f even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T31+1 T_{31} + 1 acting on S1new(3648,[χ])S_{1}^{\mathrm{new}}(3648, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+3 T^{2} + 3 Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2+3T+3 T^{2} + 3T + 3 Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
3737 T2+3 T^{2} + 3 Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T23T+3 T^{2} - 3T + 3 Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
6767 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
7979 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 T2 T^{2} Copy content Toggle raw display
show more
show less