Properties

Label 3648.1.bf.a
Level $3648$
Weight $1$
Character orbit 3648.bf
Analytic conductor $1.821$
Analytic rank $0$
Dimension $4$
Projective image $D_{6}$
CM discriminant -8
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3648,1,Mod(353,3648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3648.353"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3648, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 3, 4])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 3648 = 2^{6} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3648.bf (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-4,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.82058916609\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{6}\)
Projective field: Galois closure of 6.2.1801557504.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{12}^{3} q^{3} - q^{9} + ( - \zeta_{12}^{5} + \zeta_{12}) q^{11} - \zeta_{12}^{5} q^{19} + \zeta_{12}^{2} q^{25} + \zeta_{12}^{3} q^{27} + ( - \zeta_{12}^{4} - \zeta_{12}^{2}) q^{33} + ( - \zeta_{12}^{2} - 1) q^{41} + \cdots + (\zeta_{12}^{5} - \zeta_{12}) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{9} + 2 q^{25} - 6 q^{41} - 4 q^{49} - 2 q^{57} + 2 q^{73} + 4 q^{81} - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3648\mathbb{Z}\right)^\times\).

\(n\) \(1217\) \(1921\) \(2053\) \(2623\)
\(\chi(n)\) \(-1\) \(-\zeta_{12}^{2}\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
353.1
0.866025 + 0.500000i
−0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 0.500000i
0 1.00000i 0 0 0 0 0 −1.00000 0
353.2 0 1.00000i 0 0 0 0 0 −1.00000 0
3617.1 0 1.00000i 0 0 0 0 0 −1.00000 0
3617.2 0 1.00000i 0 0 0 0 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by \(\Q(\sqrt{-2}) \)
4.b odd 2 1 inner
8.b even 2 1 inner
57.h odd 6 1 inner
228.m even 6 1 inner
456.u even 6 1 inner
456.x odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3648.1.bf.a 4
3.b odd 2 1 3648.1.bf.c yes 4
4.b odd 2 1 inner 3648.1.bf.a 4
8.b even 2 1 inner 3648.1.bf.a 4
8.d odd 2 1 CM 3648.1.bf.a 4
12.b even 2 1 3648.1.bf.c yes 4
19.c even 3 1 3648.1.bf.c yes 4
24.f even 2 1 3648.1.bf.c yes 4
24.h odd 2 1 3648.1.bf.c yes 4
57.h odd 6 1 inner 3648.1.bf.a 4
76.g odd 6 1 3648.1.bf.c yes 4
152.k odd 6 1 3648.1.bf.c yes 4
152.p even 6 1 3648.1.bf.c yes 4
228.m even 6 1 inner 3648.1.bf.a 4
456.u even 6 1 inner 3648.1.bf.a 4
456.x odd 6 1 inner 3648.1.bf.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3648.1.bf.a 4 1.a even 1 1 trivial
3648.1.bf.a 4 4.b odd 2 1 inner
3648.1.bf.a 4 8.b even 2 1 inner
3648.1.bf.a 4 8.d odd 2 1 CM
3648.1.bf.a 4 57.h odd 6 1 inner
3648.1.bf.a 4 228.m even 6 1 inner
3648.1.bf.a 4 456.u even 6 1 inner
3648.1.bf.a 4 456.x odd 6 1 inner
3648.1.bf.c yes 4 3.b odd 2 1
3648.1.bf.c yes 4 12.b even 2 1
3648.1.bf.c yes 4 19.c even 3 1
3648.1.bf.c yes 4 24.f even 2 1
3648.1.bf.c yes 4 24.h odd 2 1
3648.1.bf.c yes 4 76.g odd 6 1
3648.1.bf.c yes 4 152.k odd 6 1
3648.1.bf.c yes 4 152.p even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(3648, [\chi])\):

\( T_{7} \) Copy content Toggle raw display
\( T_{13} \) Copy content Toggle raw display
\( T_{41}^{2} + 3T_{41} + 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} - 3)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} + 3 T + 3)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} - 4T^{2} + 16 \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( T^{4} + 3T^{2} + 9 \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} - 3)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
show more
show less