Properties

Label 363.8.a.r.1.4
Level $363$
Weight $8$
Character 363.1
Self dual yes
Analytic conductor $113.396$
Analytic rank $0$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [363,8,Mod(1,363)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(363, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("363.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 363.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,23] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(113.395764251\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 2 x^{13} - 1289 x^{12} + 2366 x^{11} + 623758 x^{10} - 908404 x^{9} - 141535137 x^{8} + \cdots - 20874968128476 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{4}\cdot 11^{8} \)
Twist minimal: no (minimal twist has level 33)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-11.5294\) of defining polynomial
Character \(\chi\) \(=\) 363.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.91136 q^{2} +27.0000 q^{3} -48.5876 q^{4} -136.704 q^{5} -240.607 q^{6} +36.0476 q^{7} +1573.64 q^{8} +729.000 q^{9} +1218.22 q^{10} -1311.87 q^{12} -13419.3 q^{13} -321.233 q^{14} -3691.02 q^{15} -7804.03 q^{16} +31127.1 q^{17} -6496.38 q^{18} -48101.7 q^{19} +6642.14 q^{20} +973.285 q^{21} +76581.4 q^{23} +42488.2 q^{24} -59436.9 q^{25} +119584. q^{26} +19683.0 q^{27} -1751.47 q^{28} +142915. q^{29} +32892.0 q^{30} -22704.4 q^{31} -131881. q^{32} -277385. q^{34} -4927.87 q^{35} -35420.4 q^{36} -262940. q^{37} +428652. q^{38} -362320. q^{39} -215123. q^{40} -591395. q^{41} -8673.30 q^{42} +750154. q^{43} -99657.5 q^{45} -682445. q^{46} -105979. q^{47} -210709. q^{48} -822244. q^{49} +529664. q^{50} +840433. q^{51} +652011. q^{52} -910703. q^{53} -175402. q^{54} +56725.8 q^{56} -1.29875e6 q^{57} -1.27357e6 q^{58} -1.29394e6 q^{59} +179338. q^{60} +1.21870e6 q^{61} +202327. q^{62} +26278.7 q^{63} +2.17415e6 q^{64} +1.83447e6 q^{65} -1.79922e6 q^{67} -1.51239e6 q^{68} +2.06770e6 q^{69} +43914.0 q^{70} +1.10830e6 q^{71} +1.14718e6 q^{72} +231610. q^{73} +2.34316e6 q^{74} -1.60480e6 q^{75} +2.33715e6 q^{76} +3.22877e6 q^{78} +3.82577e6 q^{79} +1.06684e6 q^{80} +531441. q^{81} +5.27013e6 q^{82} +2.44422e6 q^{83} -47289.6 q^{84} -4.25522e6 q^{85} -6.68490e6 q^{86} +3.85871e6 q^{87} +1.91429e6 q^{89} +888084. q^{90} -483733. q^{91} -3.72091e6 q^{92} -613018. q^{93} +944414. q^{94} +6.57572e6 q^{95} -3.56078e6 q^{96} -1.44172e7 q^{97} +7.32731e6 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 23 q^{2} + 378 q^{3} + 845 q^{4} + 69 q^{5} + 621 q^{6} + 3278 q^{7} + 4602 q^{8} + 10206 q^{9} + 5320 q^{10} + 22815 q^{12} + 32188 q^{13} - 7794 q^{14} + 1863 q^{15} + 86137 q^{16} + 42917 q^{17}+ \cdots - 70266089 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.91136 −0.787661 −0.393830 0.919183i \(-0.628850\pi\)
−0.393830 + 0.919183i \(0.628850\pi\)
\(3\) 27.0000 0.577350
\(4\) −48.5876 −0.379591
\(5\) −136.704 −0.489088 −0.244544 0.969638i \(-0.578638\pi\)
−0.244544 + 0.969638i \(0.578638\pi\)
\(6\) −240.607 −0.454756
\(7\) 36.0476 0.0397222 0.0198611 0.999803i \(-0.493678\pi\)
0.0198611 + 0.999803i \(0.493678\pi\)
\(8\) 1573.64 1.08665
\(9\) 729.000 0.333333
\(10\) 1218.22 0.385236
\(11\) 0 0
\(12\) −1311.87 −0.219157
\(13\) −13419.3 −1.69405 −0.847027 0.531550i \(-0.821610\pi\)
−0.847027 + 0.531550i \(0.821610\pi\)
\(14\) −321.233 −0.0312876
\(15\) −3691.02 −0.282375
\(16\) −7804.03 −0.476320
\(17\) 31127.1 1.53663 0.768313 0.640075i \(-0.221097\pi\)
0.768313 + 0.640075i \(0.221097\pi\)
\(18\) −6496.38 −0.262554
\(19\) −48101.7 −1.60888 −0.804439 0.594035i \(-0.797534\pi\)
−0.804439 + 0.594035i \(0.797534\pi\)
\(20\) 6642.14 0.185653
\(21\) 973.285 0.0229336
\(22\) 0 0
\(23\) 76581.4 1.31243 0.656215 0.754574i \(-0.272156\pi\)
0.656215 + 0.754574i \(0.272156\pi\)
\(24\) 42488.2 0.627377
\(25\) −59436.9 −0.760793
\(26\) 119584. 1.33434
\(27\) 19683.0 0.192450
\(28\) −1751.47 −0.0150782
\(29\) 142915. 1.08814 0.544071 0.839039i \(-0.316882\pi\)
0.544071 + 0.839039i \(0.316882\pi\)
\(30\) 32892.0 0.222416
\(31\) −22704.4 −0.136881 −0.0684405 0.997655i \(-0.521802\pi\)
−0.0684405 + 0.997655i \(0.521802\pi\)
\(32\) −131881. −0.711471
\(33\) 0 0
\(34\) −277385. −1.21034
\(35\) −4927.87 −0.0194277
\(36\) −35420.4 −0.126530
\(37\) −262940. −0.853397 −0.426698 0.904394i \(-0.640323\pi\)
−0.426698 + 0.904394i \(0.640323\pi\)
\(38\) 428652. 1.26725
\(39\) −362320. −0.978063
\(40\) −215123. −0.531468
\(41\) −591395. −1.34009 −0.670045 0.742321i \(-0.733725\pi\)
−0.670045 + 0.742321i \(0.733725\pi\)
\(42\) −8673.30 −0.0180639
\(43\) 750154. 1.43883 0.719417 0.694578i \(-0.244409\pi\)
0.719417 + 0.694578i \(0.244409\pi\)
\(44\) 0 0
\(45\) −99657.5 −0.163029
\(46\) −682445. −1.03375
\(47\) −105979. −0.148893 −0.0744467 0.997225i \(-0.523719\pi\)
−0.0744467 + 0.997225i \(0.523719\pi\)
\(48\) −210709. −0.275004
\(49\) −822244. −0.998422
\(50\) 529664. 0.599246
\(51\) 840433. 0.887171
\(52\) 652011. 0.643047
\(53\) −910703. −0.840255 −0.420128 0.907465i \(-0.638015\pi\)
−0.420128 + 0.907465i \(0.638015\pi\)
\(54\) −175402. −0.151585
\(55\) 0 0
\(56\) 56725.8 0.0431641
\(57\) −1.29875e6 −0.928886
\(58\) −1.27357e6 −0.857087
\(59\) −1.29394e6 −0.820220 −0.410110 0.912036i \(-0.634510\pi\)
−0.410110 + 0.912036i \(0.634510\pi\)
\(60\) 179338. 0.107187
\(61\) 1.21870e6 0.687452 0.343726 0.939070i \(-0.388311\pi\)
0.343726 + 0.939070i \(0.388311\pi\)
\(62\) 202327. 0.107816
\(63\) 26278.7 0.0132407
\(64\) 2.17415e6 1.03672
\(65\) 1.83447e6 0.828542
\(66\) 0 0
\(67\) −1.79922e6 −0.730842 −0.365421 0.930842i \(-0.619075\pi\)
−0.365421 + 0.930842i \(0.619075\pi\)
\(68\) −1.51239e6 −0.583289
\(69\) 2.06770e6 0.757732
\(70\) 43914.0 0.0153024
\(71\) 1.10830e6 0.367497 0.183749 0.982973i \(-0.441177\pi\)
0.183749 + 0.982973i \(0.441177\pi\)
\(72\) 1.14718e6 0.362216
\(73\) 231610. 0.0696831 0.0348416 0.999393i \(-0.488907\pi\)
0.0348416 + 0.999393i \(0.488907\pi\)
\(74\) 2.34316e6 0.672187
\(75\) −1.60480e6 −0.439244
\(76\) 2.33715e6 0.610715
\(77\) 0 0
\(78\) 3.22877e6 0.770381
\(79\) 3.82577e6 0.873020 0.436510 0.899699i \(-0.356214\pi\)
0.436510 + 0.899699i \(0.356214\pi\)
\(80\) 1.06684e6 0.232963
\(81\) 531441. 0.111111
\(82\) 5.27013e6 1.05554
\(83\) 2.44422e6 0.469210 0.234605 0.972091i \(-0.424620\pi\)
0.234605 + 0.972091i \(0.424620\pi\)
\(84\) −47289.6 −0.00870539
\(85\) −4.25522e6 −0.751546
\(86\) −6.68490e6 −1.13331
\(87\) 3.85871e6 0.628239
\(88\) 0 0
\(89\) 1.91429e6 0.287834 0.143917 0.989590i \(-0.454030\pi\)
0.143917 + 0.989590i \(0.454030\pi\)
\(90\) 888084. 0.128412
\(91\) −483733. −0.0672916
\(92\) −3.72091e6 −0.498186
\(93\) −613018. −0.0790283
\(94\) 944414. 0.117278
\(95\) 6.57572e6 0.786884
\(96\) −3.56078e6 −0.410768
\(97\) −1.44172e7 −1.60391 −0.801957 0.597382i \(-0.796208\pi\)
−0.801957 + 0.597382i \(0.796208\pi\)
\(98\) 7.32731e6 0.786418
\(99\) 0 0
\(100\) 2.88790e6 0.288790
\(101\) −1.27715e7 −1.23344 −0.616718 0.787184i \(-0.711538\pi\)
−0.616718 + 0.787184i \(0.711538\pi\)
\(102\) −7.48940e6 −0.698790
\(103\) −1.39946e7 −1.26192 −0.630958 0.775817i \(-0.717338\pi\)
−0.630958 + 0.775817i \(0.717338\pi\)
\(104\) −2.11171e7 −1.84084
\(105\) −133052. −0.0112166
\(106\) 8.11560e6 0.661836
\(107\) 1.23764e7 0.976680 0.488340 0.872653i \(-0.337603\pi\)
0.488340 + 0.872653i \(0.337603\pi\)
\(108\) −956350. −0.0730523
\(109\) 1.12352e7 0.830978 0.415489 0.909598i \(-0.363610\pi\)
0.415489 + 0.909598i \(0.363610\pi\)
\(110\) 0 0
\(111\) −7.09939e6 −0.492709
\(112\) −281317. −0.0189205
\(113\) 6.82108e6 0.444712 0.222356 0.974966i \(-0.428625\pi\)
0.222356 + 0.974966i \(0.428625\pi\)
\(114\) 1.15736e7 0.731647
\(115\) −1.04690e7 −0.641894
\(116\) −6.94391e6 −0.413049
\(117\) −9.78265e6 −0.564685
\(118\) 1.15307e7 0.646055
\(119\) 1.12206e6 0.0610381
\(120\) −5.80832e6 −0.306843
\(121\) 0 0
\(122\) −1.08603e7 −0.541479
\(123\) −1.59677e7 −0.773701
\(124\) 1.10315e6 0.0519588
\(125\) 1.88053e7 0.861183
\(126\) −234179. −0.0104292
\(127\) −1.15772e7 −0.501521 −0.250760 0.968049i \(-0.580681\pi\)
−0.250760 + 0.968049i \(0.580681\pi\)
\(128\) −2.49392e6 −0.105111
\(129\) 2.02542e7 0.830712
\(130\) −1.63477e7 −0.652610
\(131\) 2.50834e6 0.0974849 0.0487424 0.998811i \(-0.484479\pi\)
0.0487424 + 0.998811i \(0.484479\pi\)
\(132\) 0 0
\(133\) −1.73395e6 −0.0639082
\(134\) 1.60335e7 0.575655
\(135\) −2.69075e6 −0.0941251
\(136\) 4.89828e7 1.66977
\(137\) 4.20739e7 1.39795 0.698973 0.715148i \(-0.253641\pi\)
0.698973 + 0.715148i \(0.253641\pi\)
\(138\) −1.84260e7 −0.596835
\(139\) 5.45687e7 1.72342 0.861712 0.507398i \(-0.169393\pi\)
0.861712 + 0.507398i \(0.169393\pi\)
\(140\) 239433. 0.00737456
\(141\) −2.86142e6 −0.0859637
\(142\) −9.87649e6 −0.289463
\(143\) 0 0
\(144\) −5.68914e6 −0.158773
\(145\) −1.95371e7 −0.532198
\(146\) −2.06396e6 −0.0548866
\(147\) −2.22006e7 −0.576439
\(148\) 1.27756e7 0.323942
\(149\) −2.75160e6 −0.0681449 −0.0340725 0.999419i \(-0.510848\pi\)
−0.0340725 + 0.999419i \(0.510848\pi\)
\(150\) 1.43009e7 0.345975
\(151\) −7.36855e6 −0.174166 −0.0870828 0.996201i \(-0.527754\pi\)
−0.0870828 + 0.996201i \(0.527754\pi\)
\(152\) −7.56946e7 −1.74829
\(153\) 2.26917e7 0.512208
\(154\) 0 0
\(155\) 3.10378e6 0.0669469
\(156\) 1.76043e7 0.371264
\(157\) 4.42410e7 0.912381 0.456191 0.889882i \(-0.349214\pi\)
0.456191 + 0.889882i \(0.349214\pi\)
\(158\) −3.40928e7 −0.687644
\(159\) −2.45890e7 −0.485122
\(160\) 1.80287e7 0.347972
\(161\) 2.76058e6 0.0521326
\(162\) −4.73586e6 −0.0875178
\(163\) −1.01430e6 −0.0183447 −0.00917235 0.999958i \(-0.502920\pi\)
−0.00917235 + 0.999958i \(0.502920\pi\)
\(164\) 2.87345e7 0.508686
\(165\) 0 0
\(166\) −2.17813e7 −0.369578
\(167\) 2.57109e7 0.427178 0.213589 0.976924i \(-0.431485\pi\)
0.213589 + 0.976924i \(0.431485\pi\)
\(168\) 1.53160e6 0.0249208
\(169\) 1.17328e8 1.86982
\(170\) 3.79198e7 0.591963
\(171\) −3.50662e7 −0.536293
\(172\) −3.64482e7 −0.546168
\(173\) 1.11743e8 1.64081 0.820404 0.571784i \(-0.193748\pi\)
0.820404 + 0.571784i \(0.193748\pi\)
\(174\) −3.43864e7 −0.494839
\(175\) −2.14256e6 −0.0302204
\(176\) 0 0
\(177\) −3.49363e7 −0.473554
\(178\) −1.70589e7 −0.226715
\(179\) −2.45048e7 −0.319349 −0.159675 0.987170i \(-0.551045\pi\)
−0.159675 + 0.987170i \(0.551045\pi\)
\(180\) 4.84212e6 0.0618845
\(181\) 1.21746e8 1.52609 0.763047 0.646344i \(-0.223703\pi\)
0.763047 + 0.646344i \(0.223703\pi\)
\(182\) 4.31072e6 0.0530029
\(183\) 3.29049e7 0.396901
\(184\) 1.20511e8 1.42615
\(185\) 3.59451e7 0.417387
\(186\) 5.46282e6 0.0622475
\(187\) 0 0
\(188\) 5.14925e6 0.0565186
\(189\) 709525. 0.00764454
\(190\) −5.85986e7 −0.619797
\(191\) 1.33978e8 1.39129 0.695646 0.718385i \(-0.255118\pi\)
0.695646 + 0.718385i \(0.255118\pi\)
\(192\) 5.87022e7 0.598549
\(193\) 8.31747e7 0.832799 0.416400 0.909182i \(-0.363292\pi\)
0.416400 + 0.909182i \(0.363292\pi\)
\(194\) 1.28477e8 1.26334
\(195\) 4.95308e7 0.478359
\(196\) 3.99509e7 0.378992
\(197\) −8.27669e7 −0.771303 −0.385652 0.922644i \(-0.626023\pi\)
−0.385652 + 0.922644i \(0.626023\pi\)
\(198\) 0 0
\(199\) 5.05775e7 0.454958 0.227479 0.973783i \(-0.426952\pi\)
0.227479 + 0.973783i \(0.426952\pi\)
\(200\) −9.35321e7 −0.826715
\(201\) −4.85790e7 −0.421952
\(202\) 1.13811e8 0.971530
\(203\) 5.15175e6 0.0432234
\(204\) −4.08346e7 −0.336762
\(205\) 8.08462e7 0.655422
\(206\) 1.24711e8 0.993961
\(207\) 5.58279e7 0.437477
\(208\) 1.04724e8 0.806912
\(209\) 0 0
\(210\) 1.18568e6 0.00883485
\(211\) 2.03447e8 1.49095 0.745476 0.666532i \(-0.232222\pi\)
0.745476 + 0.666532i \(0.232222\pi\)
\(212\) 4.42489e7 0.318953
\(213\) 2.99242e7 0.212175
\(214\) −1.10291e8 −0.769292
\(215\) −1.02549e8 −0.703717
\(216\) 3.09739e7 0.209126
\(217\) −818438. −0.00543722
\(218\) −1.00121e8 −0.654529
\(219\) 6.25347e6 0.0402316
\(220\) 0 0
\(221\) −4.17704e8 −2.60313
\(222\) 6.32652e7 0.388087
\(223\) −1.61600e8 −0.975831 −0.487915 0.872891i \(-0.662243\pi\)
−0.487915 + 0.872891i \(0.662243\pi\)
\(224\) −4.75399e6 −0.0282612
\(225\) −4.33295e7 −0.253598
\(226\) −6.07851e7 −0.350282
\(227\) 2.52390e8 1.43213 0.716064 0.698034i \(-0.245942\pi\)
0.716064 + 0.698034i \(0.245942\pi\)
\(228\) 6.31030e7 0.352597
\(229\) −3.40759e8 −1.87509 −0.937547 0.347860i \(-0.886909\pi\)
−0.937547 + 0.347860i \(0.886909\pi\)
\(230\) 9.32932e7 0.505595
\(231\) 0 0
\(232\) 2.24897e8 1.18243
\(233\) 3.30373e7 0.171103 0.0855517 0.996334i \(-0.472735\pi\)
0.0855517 + 0.996334i \(0.472735\pi\)
\(234\) 8.71767e7 0.444780
\(235\) 1.44877e7 0.0728221
\(236\) 6.28692e7 0.311348
\(237\) 1.03296e8 0.504039
\(238\) −9.99907e6 −0.0480773
\(239\) 1.79272e8 0.849413 0.424706 0.905331i \(-0.360377\pi\)
0.424706 + 0.905331i \(0.360377\pi\)
\(240\) 2.88048e7 0.134501
\(241\) 2.24679e8 1.03396 0.516978 0.855998i \(-0.327057\pi\)
0.516978 + 0.855998i \(0.327057\pi\)
\(242\) 0 0
\(243\) 1.43489e7 0.0641500
\(244\) −5.92137e7 −0.260951
\(245\) 1.12404e8 0.488317
\(246\) 1.42294e8 0.609414
\(247\) 6.45490e8 2.72553
\(248\) −3.57284e7 −0.148742
\(249\) 6.59940e7 0.270898
\(250\) −1.67581e8 −0.678320
\(251\) 2.02643e8 0.808861 0.404431 0.914569i \(-0.367470\pi\)
0.404431 + 0.914569i \(0.367470\pi\)
\(252\) −1.27682e6 −0.00502606
\(253\) 0 0
\(254\) 1.03168e8 0.395028
\(255\) −1.14891e8 −0.433905
\(256\) −2.56068e8 −0.953926
\(257\) 1.44536e8 0.531140 0.265570 0.964092i \(-0.414440\pi\)
0.265570 + 0.964092i \(0.414440\pi\)
\(258\) −1.80492e8 −0.654319
\(259\) −9.47837e6 −0.0338988
\(260\) −8.91327e7 −0.314507
\(261\) 1.04185e8 0.362714
\(262\) −2.23527e7 −0.0767850
\(263\) 1.67215e8 0.566801 0.283401 0.959002i \(-0.408537\pi\)
0.283401 + 0.959002i \(0.408537\pi\)
\(264\) 0 0
\(265\) 1.24497e8 0.410959
\(266\) 1.54519e7 0.0503379
\(267\) 5.16857e7 0.166181
\(268\) 8.74200e7 0.277421
\(269\) −1.08827e8 −0.340882 −0.170441 0.985368i \(-0.554519\pi\)
−0.170441 + 0.985368i \(0.554519\pi\)
\(270\) 2.39783e7 0.0741386
\(271\) −3.07657e8 −0.939019 −0.469510 0.882927i \(-0.655569\pi\)
−0.469510 + 0.882927i \(0.655569\pi\)
\(272\) −2.42917e8 −0.731925
\(273\) −1.30608e7 −0.0388508
\(274\) −3.74936e8 −1.10111
\(275\) 0 0
\(276\) −1.00465e8 −0.287628
\(277\) 3.37254e8 0.953405 0.476703 0.879065i \(-0.341832\pi\)
0.476703 + 0.879065i \(0.341832\pi\)
\(278\) −4.86282e8 −1.35747
\(279\) −1.65515e7 −0.0456270
\(280\) −7.75467e6 −0.0211111
\(281\) 1.22459e8 0.329245 0.164622 0.986357i \(-0.447359\pi\)
0.164622 + 0.986357i \(0.447359\pi\)
\(282\) 2.54992e7 0.0677102
\(283\) 2.25751e8 0.592076 0.296038 0.955176i \(-0.404335\pi\)
0.296038 + 0.955176i \(0.404335\pi\)
\(284\) −5.38498e7 −0.139499
\(285\) 1.77544e8 0.454307
\(286\) 0 0
\(287\) −2.13184e7 −0.0532313
\(288\) −9.61412e7 −0.237157
\(289\) 5.58560e8 1.36122
\(290\) 1.74103e8 0.419191
\(291\) −3.89265e8 −0.926020
\(292\) −1.12534e7 −0.0264511
\(293\) −9.33223e7 −0.216745 −0.108372 0.994110i \(-0.534564\pi\)
−0.108372 + 0.994110i \(0.534564\pi\)
\(294\) 1.97837e8 0.454039
\(295\) 1.76887e8 0.401160
\(296\) −4.13772e8 −0.927343
\(297\) 0 0
\(298\) 2.45205e7 0.0536751
\(299\) −1.02767e9 −2.22333
\(300\) 7.79733e7 0.166733
\(301\) 2.70413e7 0.0571537
\(302\) 6.56638e7 0.137183
\(303\) −3.44830e8 −0.712125
\(304\) 3.75387e8 0.766341
\(305\) −1.66602e8 −0.336225
\(306\) −2.02214e8 −0.403446
\(307\) 1.74160e8 0.343529 0.171765 0.985138i \(-0.445053\pi\)
0.171765 + 0.985138i \(0.445053\pi\)
\(308\) 0 0
\(309\) −3.77854e8 −0.728567
\(310\) −2.76590e7 −0.0527315
\(311\) 5.96455e8 1.12439 0.562194 0.827005i \(-0.309957\pi\)
0.562194 + 0.827005i \(0.309957\pi\)
\(312\) −5.70160e8 −1.06281
\(313\) −4.68345e8 −0.863297 −0.431649 0.902042i \(-0.642068\pi\)
−0.431649 + 0.902042i \(0.642068\pi\)
\(314\) −3.94248e8 −0.718647
\(315\) −3.59241e6 −0.00647589
\(316\) −1.85885e8 −0.331390
\(317\) −2.38689e8 −0.420848 −0.210424 0.977610i \(-0.567484\pi\)
−0.210424 + 0.977610i \(0.567484\pi\)
\(318\) 2.19121e8 0.382111
\(319\) 0 0
\(320\) −2.97216e8 −0.507047
\(321\) 3.34164e8 0.563886
\(322\) −2.46005e7 −0.0410628
\(323\) −1.49727e9 −2.47224
\(324\) −2.58215e7 −0.0421768
\(325\) 7.97600e8 1.28882
\(326\) 9.03882e6 0.0144494
\(327\) 3.03352e8 0.479766
\(328\) −9.30640e8 −1.45621
\(329\) −3.82027e6 −0.00591438
\(330\) 0 0
\(331\) 8.95317e8 1.35700 0.678498 0.734602i \(-0.262631\pi\)
0.678498 + 0.734602i \(0.262631\pi\)
\(332\) −1.18759e8 −0.178108
\(333\) −1.91683e8 −0.284466
\(334\) −2.29119e8 −0.336471
\(335\) 2.45962e8 0.357446
\(336\) −7.59555e6 −0.0109237
\(337\) −8.59820e8 −1.22378 −0.611890 0.790943i \(-0.709590\pi\)
−0.611890 + 0.790943i \(0.709590\pi\)
\(338\) −1.04556e9 −1.47278
\(339\) 1.84169e8 0.256754
\(340\) 2.06751e8 0.285280
\(341\) 0 0
\(342\) 3.12487e8 0.422417
\(343\) −5.93267e7 −0.0793817
\(344\) 1.18047e9 1.56351
\(345\) −2.82663e8 −0.370598
\(346\) −9.95780e8 −1.29240
\(347\) −6.33708e7 −0.0814209 −0.0407105 0.999171i \(-0.512962\pi\)
−0.0407105 + 0.999171i \(0.512962\pi\)
\(348\) −1.87486e8 −0.238474
\(349\) −9.21131e8 −1.15993 −0.579966 0.814641i \(-0.696934\pi\)
−0.579966 + 0.814641i \(0.696934\pi\)
\(350\) 1.90931e7 0.0238034
\(351\) −2.64132e8 −0.326021
\(352\) 0 0
\(353\) −6.19912e8 −0.750099 −0.375050 0.927005i \(-0.622374\pi\)
−0.375050 + 0.927005i \(0.622374\pi\)
\(354\) 3.11330e8 0.373000
\(355\) −1.51510e8 −0.179739
\(356\) −9.30106e7 −0.109259
\(357\) 3.02956e7 0.0352404
\(358\) 2.18371e8 0.251539
\(359\) 3.35550e8 0.382761 0.191380 0.981516i \(-0.438704\pi\)
0.191380 + 0.981516i \(0.438704\pi\)
\(360\) −1.56825e8 −0.177156
\(361\) 1.41990e9 1.58849
\(362\) −1.08493e9 −1.20204
\(363\) 0 0
\(364\) 2.35034e7 0.0255433
\(365\) −3.16621e7 −0.0340812
\(366\) −2.93228e8 −0.312623
\(367\) 1.76126e8 0.185991 0.0929956 0.995667i \(-0.470356\pi\)
0.0929956 + 0.995667i \(0.470356\pi\)
\(368\) −5.97644e8 −0.625137
\(369\) −4.31127e8 −0.446697
\(370\) −3.20320e8 −0.328759
\(371\) −3.28287e7 −0.0333768
\(372\) 2.97851e7 0.0299984
\(373\) 3.71682e7 0.0370843 0.0185422 0.999828i \(-0.494098\pi\)
0.0185422 + 0.999828i \(0.494098\pi\)
\(374\) 0 0
\(375\) 5.07743e8 0.497204
\(376\) −1.66772e8 −0.161795
\(377\) −1.91782e9 −1.84337
\(378\) −6.32283e6 −0.00602130
\(379\) 4.96879e7 0.0468828 0.0234414 0.999725i \(-0.492538\pi\)
0.0234414 + 0.999725i \(0.492538\pi\)
\(380\) −3.19498e8 −0.298694
\(381\) −3.12583e8 −0.289553
\(382\) −1.19393e9 −1.09587
\(383\) 4.27413e8 0.388733 0.194367 0.980929i \(-0.437735\pi\)
0.194367 + 0.980929i \(0.437735\pi\)
\(384\) −6.73358e7 −0.0606858
\(385\) 0 0
\(386\) −7.41200e8 −0.655963
\(387\) 5.46862e8 0.479612
\(388\) 7.00499e8 0.608831
\(389\) −9.12549e8 −0.786018 −0.393009 0.919535i \(-0.628566\pi\)
−0.393009 + 0.919535i \(0.628566\pi\)
\(390\) −4.41387e8 −0.376785
\(391\) 2.38376e9 2.01671
\(392\) −1.29391e9 −1.08493
\(393\) 6.77252e7 0.0562829
\(394\) 7.37566e8 0.607525
\(395\) −5.23000e8 −0.426984
\(396\) 0 0
\(397\) 1.80271e9 1.44597 0.722983 0.690865i \(-0.242770\pi\)
0.722983 + 0.690865i \(0.242770\pi\)
\(398\) −4.50714e8 −0.358352
\(399\) −4.68167e7 −0.0368974
\(400\) 4.63847e8 0.362381
\(401\) 8.33627e8 0.645604 0.322802 0.946466i \(-0.395375\pi\)
0.322802 + 0.946466i \(0.395375\pi\)
\(402\) 4.32905e8 0.332355
\(403\) 3.04676e8 0.231884
\(404\) 6.20537e8 0.468201
\(405\) −7.26503e7 −0.0543432
\(406\) −4.59091e7 −0.0340454
\(407\) 0 0
\(408\) 1.32254e9 0.964044
\(409\) 2.52002e8 0.182126 0.0910631 0.995845i \(-0.470973\pi\)
0.0910631 + 0.995845i \(0.470973\pi\)
\(410\) −7.20450e8 −0.516250
\(411\) 1.13599e9 0.807105
\(412\) 6.79964e8 0.479011
\(413\) −4.66433e7 −0.0325810
\(414\) −4.97502e8 −0.344583
\(415\) −3.34136e8 −0.229485
\(416\) 1.76975e9 1.20527
\(417\) 1.47336e9 0.995019
\(418\) 0 0
\(419\) −8.72485e8 −0.579441 −0.289720 0.957111i \(-0.593562\pi\)
−0.289720 + 0.957111i \(0.593562\pi\)
\(420\) 6.46470e6 0.00425771
\(421\) 2.96770e8 0.193835 0.0969175 0.995292i \(-0.469102\pi\)
0.0969175 + 0.995292i \(0.469102\pi\)
\(422\) −1.81299e9 −1.17436
\(423\) −7.72584e7 −0.0496311
\(424\) −1.43312e9 −0.913063
\(425\) −1.85010e9 −1.16905
\(426\) −2.66665e8 −0.167122
\(427\) 4.39312e7 0.0273071
\(428\) −6.01341e8 −0.370739
\(429\) 0 0
\(430\) 9.13854e8 0.554290
\(431\) −2.04430e9 −1.22991 −0.614955 0.788562i \(-0.710826\pi\)
−0.614955 + 0.788562i \(0.710826\pi\)
\(432\) −1.53607e8 −0.0916678
\(433\) −1.24093e9 −0.734582 −0.367291 0.930106i \(-0.619715\pi\)
−0.367291 + 0.930106i \(0.619715\pi\)
\(434\) 7.29340e6 0.00428268
\(435\) −5.27503e8 −0.307264
\(436\) −5.45894e8 −0.315432
\(437\) −3.68370e9 −2.11154
\(438\) −5.57270e7 −0.0316888
\(439\) 3.43514e8 0.193785 0.0968923 0.995295i \(-0.469110\pi\)
0.0968923 + 0.995295i \(0.469110\pi\)
\(440\) 0 0
\(441\) −5.99416e8 −0.332807
\(442\) 3.72231e9 2.05038
\(443\) 3.17949e9 1.73758 0.868791 0.495180i \(-0.164898\pi\)
0.868791 + 0.495180i \(0.164898\pi\)
\(444\) 3.44942e8 0.187028
\(445\) −2.61691e8 −0.140776
\(446\) 1.44008e9 0.768623
\(447\) −7.42932e7 −0.0393435
\(448\) 7.83731e7 0.0411807
\(449\) 1.99556e9 1.04041 0.520203 0.854043i \(-0.325856\pi\)
0.520203 + 0.854043i \(0.325856\pi\)
\(450\) 3.86125e8 0.199749
\(451\) 0 0
\(452\) −3.31420e8 −0.168808
\(453\) −1.98951e8 −0.100555
\(454\) −2.24914e9 −1.12803
\(455\) 6.61284e7 0.0329115
\(456\) −2.04375e9 −1.00937
\(457\) −3.66922e9 −1.79832 −0.899159 0.437622i \(-0.855821\pi\)
−0.899159 + 0.437622i \(0.855821\pi\)
\(458\) 3.03662e9 1.47694
\(459\) 6.12675e8 0.295724
\(460\) 5.08665e8 0.243657
\(461\) −1.09387e9 −0.520010 −0.260005 0.965607i \(-0.583724\pi\)
−0.260005 + 0.965607i \(0.583724\pi\)
\(462\) 0 0
\(463\) −3.35862e9 −1.57263 −0.786317 0.617824i \(-0.788015\pi\)
−0.786317 + 0.617824i \(0.788015\pi\)
\(464\) −1.11531e9 −0.518304
\(465\) 8.38022e7 0.0386518
\(466\) −2.94407e8 −0.134771
\(467\) 3.62609e9 1.64752 0.823758 0.566942i \(-0.191874\pi\)
0.823758 + 0.566942i \(0.191874\pi\)
\(468\) 4.75316e8 0.214349
\(469\) −6.48577e7 −0.0290306
\(470\) −1.29105e8 −0.0573591
\(471\) 1.19451e9 0.526764
\(472\) −2.03618e9 −0.891292
\(473\) 0 0
\(474\) −9.20507e8 −0.397011
\(475\) 2.85902e9 1.22402
\(476\) −5.45182e7 −0.0231695
\(477\) −6.63902e8 −0.280085
\(478\) −1.59755e9 −0.669049
\(479\) 1.75250e9 0.728589 0.364294 0.931284i \(-0.381310\pi\)
0.364294 + 0.931284i \(0.381310\pi\)
\(480\) 4.86775e8 0.200902
\(481\) 3.52847e9 1.44570
\(482\) −2.00219e9 −0.814407
\(483\) 7.45356e7 0.0300988
\(484\) 0 0
\(485\) 1.97090e9 0.784456
\(486\) −1.27868e8 −0.0505285
\(487\) −3.46090e9 −1.35780 −0.678902 0.734229i \(-0.737544\pi\)
−0.678902 + 0.734229i \(0.737544\pi\)
\(488\) 1.91779e9 0.747019
\(489\) −2.73862e7 −0.0105913
\(490\) −1.00168e9 −0.384628
\(491\) −2.35598e9 −0.898228 −0.449114 0.893475i \(-0.648260\pi\)
−0.449114 + 0.893475i \(0.648260\pi\)
\(492\) 7.75830e8 0.293690
\(493\) 4.44854e9 1.67207
\(494\) −5.75220e9 −2.14679
\(495\) 0 0
\(496\) 1.77185e8 0.0651992
\(497\) 3.99517e7 0.0145978
\(498\) −5.88096e8 −0.213376
\(499\) −2.56638e7 −0.00924632 −0.00462316 0.999989i \(-0.501472\pi\)
−0.00462316 + 0.999989i \(0.501472\pi\)
\(500\) −9.13705e8 −0.326897
\(501\) 6.94193e8 0.246631
\(502\) −1.80583e9 −0.637108
\(503\) −1.52399e9 −0.533941 −0.266970 0.963705i \(-0.586023\pi\)
−0.266970 + 0.963705i \(0.586023\pi\)
\(504\) 4.13531e7 0.0143880
\(505\) 1.74592e9 0.603260
\(506\) 0 0
\(507\) 3.16787e9 1.07954
\(508\) 5.62506e8 0.190373
\(509\) 2.20253e9 0.740304 0.370152 0.928971i \(-0.379306\pi\)
0.370152 + 0.928971i \(0.379306\pi\)
\(510\) 1.02383e9 0.341770
\(511\) 8.34899e6 0.00276797
\(512\) 2.60113e9 0.856481
\(513\) −9.46786e8 −0.309629
\(514\) −1.28801e9 −0.418358
\(515\) 1.91312e9 0.617188
\(516\) −9.84101e8 −0.315330
\(517\) 0 0
\(518\) 8.44652e7 0.0267008
\(519\) 3.01705e9 0.947321
\(520\) 2.88679e9 0.900335
\(521\) 1.05738e9 0.327567 0.163784 0.986496i \(-0.447630\pi\)
0.163784 + 0.986496i \(0.447630\pi\)
\(522\) −9.28432e8 −0.285696
\(523\) 2.17638e9 0.665239 0.332620 0.943061i \(-0.392067\pi\)
0.332620 + 0.943061i \(0.392067\pi\)
\(524\) −1.21874e8 −0.0370044
\(525\) −5.78491e7 −0.0174477
\(526\) −1.49012e9 −0.446447
\(527\) −7.06722e8 −0.210335
\(528\) 0 0
\(529\) 2.45989e9 0.722472
\(530\) −1.10944e9 −0.323696
\(531\) −9.43279e8 −0.273407
\(532\) 8.42486e7 0.0242589
\(533\) 7.93609e9 2.27018
\(534\) −4.60590e8 −0.130894
\(535\) −1.69191e9 −0.477683
\(536\) −2.83132e9 −0.794169
\(537\) −6.61630e8 −0.184376
\(538\) 9.69799e8 0.268500
\(539\) 0 0
\(540\) 1.30737e8 0.0357290
\(541\) −6.40721e9 −1.73972 −0.869859 0.493301i \(-0.835790\pi\)
−0.869859 + 0.493301i \(0.835790\pi\)
\(542\) 2.74164e9 0.739629
\(543\) 3.28715e9 0.881090
\(544\) −4.10508e9 −1.09326
\(545\) −1.53591e9 −0.406422
\(546\) 1.16389e8 0.0306012
\(547\) 3.36465e9 0.878991 0.439496 0.898245i \(-0.355157\pi\)
0.439496 + 0.898245i \(0.355157\pi\)
\(548\) −2.04427e9 −0.530648
\(549\) 8.88433e8 0.229151
\(550\) 0 0
\(551\) −6.87447e9 −1.75069
\(552\) 3.25381e9 0.823389
\(553\) 1.37910e8 0.0346783
\(554\) −3.00539e9 −0.750960
\(555\) 9.70517e8 0.240978
\(556\) −2.65136e9 −0.654196
\(557\) 6.38004e9 1.56434 0.782169 0.623067i \(-0.214114\pi\)
0.782169 + 0.623067i \(0.214114\pi\)
\(558\) 1.47496e8 0.0359386
\(559\) −1.00665e10 −2.43746
\(560\) 3.84572e7 0.00925379
\(561\) 0 0
\(562\) −1.09128e9 −0.259333
\(563\) −2.77212e9 −0.654686 −0.327343 0.944906i \(-0.606153\pi\)
−0.327343 + 0.944906i \(0.606153\pi\)
\(564\) 1.39030e8 0.0326310
\(565\) −9.32471e8 −0.217503
\(566\) −2.01175e9 −0.466355
\(567\) 1.91572e7 0.00441358
\(568\) 1.74407e9 0.399341
\(569\) 2.62697e9 0.597808 0.298904 0.954283i \(-0.403379\pi\)
0.298904 + 0.954283i \(0.403379\pi\)
\(570\) −1.58216e9 −0.357840
\(571\) 4.02057e9 0.903776 0.451888 0.892075i \(-0.350751\pi\)
0.451888 + 0.892075i \(0.350751\pi\)
\(572\) 0 0
\(573\) 3.61742e9 0.803263
\(574\) 1.89976e8 0.0419282
\(575\) −4.55176e9 −0.998487
\(576\) 1.58496e9 0.345573
\(577\) −5.02115e9 −1.08815 −0.544074 0.839037i \(-0.683119\pi\)
−0.544074 + 0.839037i \(0.683119\pi\)
\(578\) −4.97753e9 −1.07218
\(579\) 2.24572e9 0.480817
\(580\) 9.49263e8 0.202017
\(581\) 8.81083e7 0.0186380
\(582\) 3.46889e9 0.729390
\(583\) 0 0
\(584\) 3.64470e8 0.0757211
\(585\) 1.33733e9 0.276181
\(586\) 8.31629e8 0.170721
\(587\) −5.84178e9 −1.19210 −0.596049 0.802948i \(-0.703264\pi\)
−0.596049 + 0.802948i \(0.703264\pi\)
\(588\) 1.07867e9 0.218811
\(589\) 1.09212e9 0.220225
\(590\) −1.57630e9 −0.315978
\(591\) −2.23471e9 −0.445312
\(592\) 2.05199e9 0.406490
\(593\) −7.36520e9 −1.45042 −0.725208 0.688529i \(-0.758257\pi\)
−0.725208 + 0.688529i \(0.758257\pi\)
\(594\) 0 0
\(595\) −1.53390e8 −0.0298530
\(596\) 1.33694e8 0.0258672
\(597\) 1.36559e9 0.262670
\(598\) 9.15792e9 1.75123
\(599\) 2.36658e9 0.449912 0.224956 0.974369i \(-0.427776\pi\)
0.224956 + 0.974369i \(0.427776\pi\)
\(600\) −2.52537e9 −0.477304
\(601\) 1.92050e9 0.360871 0.180436 0.983587i \(-0.442249\pi\)
0.180436 + 0.983587i \(0.442249\pi\)
\(602\) −2.40974e8 −0.0450177
\(603\) −1.31163e9 −0.243614
\(604\) 3.58020e8 0.0661117
\(605\) 0 0
\(606\) 3.07291e9 0.560913
\(607\) −2.53705e8 −0.0460435 −0.0230217 0.999735i \(-0.507329\pi\)
−0.0230217 + 0.999735i \(0.507329\pi\)
\(608\) 6.34370e9 1.14467
\(609\) 1.39097e8 0.0249550
\(610\) 1.48465e9 0.264831
\(611\) 1.42216e9 0.252234
\(612\) −1.10253e9 −0.194430
\(613\) 5.54411e9 0.972120 0.486060 0.873925i \(-0.338434\pi\)
0.486060 + 0.873925i \(0.338434\pi\)
\(614\) −1.55200e9 −0.270585
\(615\) 2.18285e9 0.378408
\(616\) 0 0
\(617\) −1.00616e10 −1.72453 −0.862265 0.506457i \(-0.830955\pi\)
−0.862265 + 0.506457i \(0.830955\pi\)
\(618\) 3.36720e9 0.573864
\(619\) 1.41349e9 0.239539 0.119770 0.992802i \(-0.461784\pi\)
0.119770 + 0.992802i \(0.461784\pi\)
\(620\) −1.50806e8 −0.0254124
\(621\) 1.50735e9 0.252577
\(622\) −5.31523e9 −0.885637
\(623\) 6.90054e7 0.0114334
\(624\) 2.82756e9 0.465871
\(625\) 2.07274e9 0.339598
\(626\) 4.17359e9 0.679985
\(627\) 0 0
\(628\) −2.14957e9 −0.346332
\(629\) −8.18458e9 −1.31135
\(630\) 3.20133e7 0.00510080
\(631\) 2.16250e9 0.342653 0.171326 0.985214i \(-0.445195\pi\)
0.171326 + 0.985214i \(0.445195\pi\)
\(632\) 6.02037e9 0.948667
\(633\) 5.49308e9 0.860802
\(634\) 2.12704e9 0.331485
\(635\) 1.58265e9 0.245288
\(636\) 1.19472e9 0.184148
\(637\) 1.10339e10 1.69138
\(638\) 0 0
\(639\) 8.07953e8 0.122499
\(640\) 3.40930e8 0.0514085
\(641\) −9.66792e9 −1.44987 −0.724937 0.688816i \(-0.758131\pi\)
−0.724937 + 0.688816i \(0.758131\pi\)
\(642\) −2.97785e9 −0.444151
\(643\) −4.33710e9 −0.643370 −0.321685 0.946847i \(-0.604249\pi\)
−0.321685 + 0.946847i \(0.604249\pi\)
\(644\) −1.34130e8 −0.0197891
\(645\) −2.76883e9 −0.406291
\(646\) 1.33427e10 1.94729
\(647\) −7.24369e9 −1.05147 −0.525733 0.850650i \(-0.676209\pi\)
−0.525733 + 0.850650i \(0.676209\pi\)
\(648\) 8.36295e8 0.120739
\(649\) 0 0
\(650\) −7.10770e9 −1.01516
\(651\) −2.20978e7 −0.00313918
\(652\) 4.92825e7 0.00696348
\(653\) 6.02648e9 0.846968 0.423484 0.905903i \(-0.360807\pi\)
0.423484 + 0.905903i \(0.360807\pi\)
\(654\) −2.70328e9 −0.377892
\(655\) −3.42901e8 −0.0476787
\(656\) 4.61526e9 0.638312
\(657\) 1.68844e8 0.0232277
\(658\) 3.40438e7 0.00465852
\(659\) 1.16210e10 1.58178 0.790888 0.611961i \(-0.209619\pi\)
0.790888 + 0.611961i \(0.209619\pi\)
\(660\) 0 0
\(661\) 5.58371e9 0.752000 0.376000 0.926620i \(-0.377299\pi\)
0.376000 + 0.926620i \(0.377299\pi\)
\(662\) −7.97849e9 −1.06885
\(663\) −1.12780e10 −1.50292
\(664\) 3.84631e9 0.509867
\(665\) 2.37039e8 0.0312567
\(666\) 1.70816e9 0.224062
\(667\) 1.09447e10 1.42811
\(668\) −1.24923e9 −0.162153
\(669\) −4.36320e9 −0.563396
\(670\) −2.19185e9 −0.281546
\(671\) 0 0
\(672\) −1.28358e8 −0.0163166
\(673\) −1.87107e9 −0.236612 −0.118306 0.992977i \(-0.537746\pi\)
−0.118306 + 0.992977i \(0.537746\pi\)
\(674\) 7.66217e9 0.963923
\(675\) −1.16990e9 −0.146415
\(676\) −5.70071e9 −0.709766
\(677\) 1.13083e10 1.40068 0.700339 0.713810i \(-0.253032\pi\)
0.700339 + 0.713810i \(0.253032\pi\)
\(678\) −1.64120e9 −0.202235
\(679\) −5.19707e8 −0.0637110
\(680\) −6.69616e9 −0.816666
\(681\) 6.81454e9 0.826840
\(682\) 0 0
\(683\) 1.18365e10 1.42151 0.710757 0.703437i \(-0.248352\pi\)
0.710757 + 0.703437i \(0.248352\pi\)
\(684\) 1.70378e9 0.203572
\(685\) −5.75168e9 −0.683720
\(686\) 5.28681e8 0.0625259
\(687\) −9.20049e9 −1.08259
\(688\) −5.85422e9 −0.685346
\(689\) 1.22210e10 1.42344
\(690\) 2.51892e9 0.291905
\(691\) −1.39695e10 −1.61068 −0.805338 0.592817i \(-0.798016\pi\)
−0.805338 + 0.592817i \(0.798016\pi\)
\(692\) −5.42931e9 −0.622836
\(693\) 0 0
\(694\) 5.64720e8 0.0641320
\(695\) −7.45978e9 −0.842907
\(696\) 6.07221e9 0.682676
\(697\) −1.84084e10 −2.05922
\(698\) 8.20853e9 0.913633
\(699\) 8.92007e8 0.0987866
\(700\) 1.04102e8 0.0114714
\(701\) −1.70615e10 −1.87070 −0.935349 0.353726i \(-0.884914\pi\)
−0.935349 + 0.353726i \(0.884914\pi\)
\(702\) 2.35377e9 0.256794
\(703\) 1.26479e10 1.37301
\(704\) 0 0
\(705\) 3.91169e8 0.0420438
\(706\) 5.52426e9 0.590824
\(707\) −4.60382e8 −0.0489948
\(708\) 1.69747e9 0.179757
\(709\) 8.65719e9 0.912252 0.456126 0.889915i \(-0.349237\pi\)
0.456126 + 0.889915i \(0.349237\pi\)
\(710\) 1.35016e9 0.141573
\(711\) 2.78899e9 0.291007
\(712\) 3.01239e9 0.312774
\(713\) −1.73873e9 −0.179647
\(714\) −2.69975e8 −0.0277575
\(715\) 0 0
\(716\) 1.19063e9 0.121222
\(717\) 4.84033e9 0.490409
\(718\) −2.99021e9 −0.301485
\(719\) 1.03963e10 1.04310 0.521550 0.853221i \(-0.325354\pi\)
0.521550 + 0.853221i \(0.325354\pi\)
\(720\) 7.77730e8 0.0776542
\(721\) −5.04472e8 −0.0501260
\(722\) −1.26533e10 −1.25119
\(723\) 6.06633e9 0.596955
\(724\) −5.91537e9 −0.579291
\(725\) −8.49444e9 −0.827850
\(726\) 0 0
\(727\) −1.58088e10 −1.52591 −0.762954 0.646452i \(-0.776252\pi\)
−0.762954 + 0.646452i \(0.776252\pi\)
\(728\) −7.61219e8 −0.0731223
\(729\) 3.87420e8 0.0370370
\(730\) 2.82153e8 0.0268444
\(731\) 2.33501e10 2.21095
\(732\) −1.59877e9 −0.150660
\(733\) 1.23275e10 1.15614 0.578071 0.815986i \(-0.303806\pi\)
0.578071 + 0.815986i \(0.303806\pi\)
\(734\) −1.56952e9 −0.146498
\(735\) 3.03492e9 0.281930
\(736\) −1.00996e10 −0.933755
\(737\) 0 0
\(738\) 3.84193e9 0.351845
\(739\) 1.16220e10 1.05932 0.529658 0.848211i \(-0.322320\pi\)
0.529658 + 0.848211i \(0.322320\pi\)
\(740\) −1.74649e9 −0.158436
\(741\) 1.74282e10 1.57358
\(742\) 2.92548e8 0.0262896
\(743\) 7.00441e9 0.626485 0.313243 0.949673i \(-0.398585\pi\)
0.313243 + 0.949673i \(0.398585\pi\)
\(744\) −9.64667e8 −0.0858761
\(745\) 3.76156e8 0.0333289
\(746\) −3.31219e8 −0.0292099
\(747\) 1.78184e9 0.156403
\(748\) 0 0
\(749\) 4.46141e8 0.0387959
\(750\) −4.52469e9 −0.391628
\(751\) 1.13785e10 0.980269 0.490135 0.871647i \(-0.336948\pi\)
0.490135 + 0.871647i \(0.336948\pi\)
\(752\) 8.27060e8 0.0709209
\(753\) 5.47137e9 0.466996
\(754\) 1.70904e10 1.45195
\(755\) 1.00731e9 0.0851824
\(756\) −3.44741e7 −0.00290180
\(757\) 4.98421e9 0.417600 0.208800 0.977958i \(-0.433044\pi\)
0.208800 + 0.977958i \(0.433044\pi\)
\(758\) −4.42787e8 −0.0369277
\(759\) 0 0
\(760\) 1.03478e10 0.855066
\(761\) 1.08756e10 0.894555 0.447278 0.894395i \(-0.352394\pi\)
0.447278 + 0.894395i \(0.352394\pi\)
\(762\) 2.78554e9 0.228070
\(763\) 4.05004e8 0.0330083
\(764\) −6.50969e9 −0.528121
\(765\) −3.10205e9 −0.250515
\(766\) −3.80883e9 −0.306190
\(767\) 1.73637e10 1.38950
\(768\) −6.91382e9 −0.550749
\(769\) 9.12903e9 0.723906 0.361953 0.932196i \(-0.382110\pi\)
0.361953 + 0.932196i \(0.382110\pi\)
\(770\) 0 0
\(771\) 3.90246e9 0.306654
\(772\) −4.04126e9 −0.316123
\(773\) −6.46587e9 −0.503499 −0.251749 0.967792i \(-0.581006\pi\)
−0.251749 + 0.967792i \(0.581006\pi\)
\(774\) −4.87329e9 −0.377771
\(775\) 1.34948e9 0.104138
\(776\) −2.26875e10 −1.74289
\(777\) −2.55916e8 −0.0195715
\(778\) 8.13206e9 0.619116
\(779\) 2.84471e10 2.15604
\(780\) −2.40658e9 −0.181581
\(781\) 0 0
\(782\) −2.12426e10 −1.58849
\(783\) 2.81300e9 0.209413
\(784\) 6.41681e9 0.475569
\(785\) −6.04794e9 −0.446235
\(786\) −6.03524e8 −0.0443318
\(787\) −1.41699e10 −1.03623 −0.518113 0.855312i \(-0.673365\pi\)
−0.518113 + 0.855312i \(0.673365\pi\)
\(788\) 4.02145e9 0.292780
\(789\) 4.51481e9 0.327243
\(790\) 4.66064e9 0.336319
\(791\) 2.45883e8 0.0176649
\(792\) 0 0
\(793\) −1.63541e10 −1.16458
\(794\) −1.60646e10 −1.13893
\(795\) 3.36142e9 0.237267
\(796\) −2.45744e9 −0.172698
\(797\) −1.43127e10 −1.00142 −0.500712 0.865614i \(-0.666929\pi\)
−0.500712 + 0.865614i \(0.666929\pi\)
\(798\) 4.17201e8 0.0290626
\(799\) −3.29881e9 −0.228793
\(800\) 7.83860e9 0.541282
\(801\) 1.39551e9 0.0959446
\(802\) −7.42875e9 −0.508517
\(803\) 0 0
\(804\) 2.36034e9 0.160169
\(805\) −3.77383e8 −0.0254975
\(806\) −2.71508e9 −0.182646
\(807\) −2.93834e9 −0.196809
\(808\) −2.00977e10 −1.34031
\(809\) −4.79015e9 −0.318075 −0.159038 0.987273i \(-0.550839\pi\)
−0.159038 + 0.987273i \(0.550839\pi\)
\(810\) 6.47413e8 0.0428040
\(811\) −7.82863e8 −0.0515362 −0.0257681 0.999668i \(-0.508203\pi\)
−0.0257681 + 0.999668i \(0.508203\pi\)
\(812\) −2.50311e8 −0.0164072
\(813\) −8.30674e9 −0.542143
\(814\) 0 0
\(815\) 1.38660e8 0.00897218
\(816\) −6.55876e9 −0.422577
\(817\) −3.60837e10 −2.31491
\(818\) −2.24568e9 −0.143454
\(819\) −3.52641e8 −0.0224305
\(820\) −3.92813e9 −0.248792
\(821\) 3.46070e9 0.218254 0.109127 0.994028i \(-0.465194\pi\)
0.109127 + 0.994028i \(0.465194\pi\)
\(822\) −1.01233e10 −0.635725
\(823\) 1.74239e10 1.08955 0.544774 0.838583i \(-0.316615\pi\)
0.544774 + 0.838583i \(0.316615\pi\)
\(824\) −2.20224e10 −1.37126
\(825\) 0 0
\(826\) 4.15655e8 0.0256627
\(827\) −5.32736e9 −0.327524 −0.163762 0.986500i \(-0.552363\pi\)
−0.163762 + 0.986500i \(0.552363\pi\)
\(828\) −2.71254e9 −0.166062
\(829\) 2.38657e10 1.45490 0.727451 0.686160i \(-0.240705\pi\)
0.727451 + 0.686160i \(0.240705\pi\)
\(830\) 2.97760e9 0.180756
\(831\) 9.10585e9 0.550449
\(832\) −2.91756e10 −1.75626
\(833\) −2.55941e10 −1.53420
\(834\) −1.31296e10 −0.783737
\(835\) −3.51479e9 −0.208928
\(836\) 0 0
\(837\) −4.46890e8 −0.0263428
\(838\) 7.77503e9 0.456403
\(839\) 2.29941e10 1.34415 0.672077 0.740481i \(-0.265402\pi\)
0.672077 + 0.740481i \(0.265402\pi\)
\(840\) −2.09376e8 −0.0121885
\(841\) 3.17489e9 0.184053
\(842\) −2.64462e9 −0.152676
\(843\) 3.30640e9 0.190090
\(844\) −9.88503e9 −0.565952
\(845\) −1.60393e10 −0.914507
\(846\) 6.88477e8 0.0390925
\(847\) 0 0
\(848\) 7.10715e9 0.400230
\(849\) 6.09528e9 0.341835
\(850\) 1.64869e10 0.920817
\(851\) −2.01363e10 −1.12002
\(852\) −1.45394e9 −0.0805395
\(853\) 2.38161e10 1.31386 0.656931 0.753951i \(-0.271854\pi\)
0.656931 + 0.753951i \(0.271854\pi\)
\(854\) −3.91487e8 −0.0215087
\(855\) 4.79370e9 0.262295
\(856\) 1.94760e10 1.06131
\(857\) −7.02104e8 −0.0381038 −0.0190519 0.999818i \(-0.506065\pi\)
−0.0190519 + 0.999818i \(0.506065\pi\)
\(858\) 0 0
\(859\) 2.82931e10 1.52302 0.761508 0.648155i \(-0.224459\pi\)
0.761508 + 0.648155i \(0.224459\pi\)
\(860\) 4.98263e9 0.267125
\(861\) −5.75596e8 −0.0307331
\(862\) 1.82175e10 0.968752
\(863\) 3.62273e9 0.191866 0.0959331 0.995388i \(-0.469417\pi\)
0.0959331 + 0.995388i \(0.469417\pi\)
\(864\) −2.59581e9 −0.136923
\(865\) −1.52757e10 −0.802501
\(866\) 1.10584e10 0.578601
\(867\) 1.50811e10 0.785899
\(868\) 3.97659e7 0.00206392
\(869\) 0 0
\(870\) 4.70077e9 0.242020
\(871\) 2.41443e10 1.23809
\(872\) 1.76802e10 0.902982
\(873\) −1.05102e10 −0.534638
\(874\) 3.28268e10 1.66318
\(875\) 6.77887e8 0.0342081
\(876\) −3.03841e8 −0.0152715
\(877\) −2.06676e10 −1.03464 −0.517322 0.855791i \(-0.673071\pi\)
−0.517322 + 0.855791i \(0.673071\pi\)
\(878\) −3.06118e9 −0.152636
\(879\) −2.51970e9 −0.125138
\(880\) 0 0
\(881\) −2.28892e10 −1.12776 −0.563879 0.825857i \(-0.690692\pi\)
−0.563879 + 0.825857i \(0.690692\pi\)
\(882\) 5.34161e9 0.262139
\(883\) −5.89842e9 −0.288319 −0.144159 0.989554i \(-0.546048\pi\)
−0.144159 + 0.989554i \(0.546048\pi\)
\(884\) 2.02952e10 0.988123
\(885\) 4.77594e9 0.231610
\(886\) −2.83336e10 −1.36862
\(887\) −2.84463e9 −0.136865 −0.0684326 0.997656i \(-0.521800\pi\)
−0.0684326 + 0.997656i \(0.521800\pi\)
\(888\) −1.11719e10 −0.535402
\(889\) −4.17329e8 −0.0199215
\(890\) 2.33202e9 0.110884
\(891\) 0 0
\(892\) 7.85176e9 0.370416
\(893\) 5.09775e9 0.239551
\(894\) 6.62054e8 0.0309893
\(895\) 3.34992e9 0.156190
\(896\) −8.98998e7 −0.00417523
\(897\) −2.77470e10 −1.28364
\(898\) −1.77832e10 −0.819486
\(899\) −3.24480e9 −0.148946
\(900\) 2.10528e9 0.0962633
\(901\) −2.83476e10 −1.29116
\(902\) 0 0
\(903\) 7.30114e8 0.0329977
\(904\) 1.07339e10 0.483245
\(905\) −1.66433e10 −0.746394
\(906\) 1.77292e9 0.0792029
\(907\) −1.73926e10 −0.773997 −0.386999 0.922080i \(-0.626488\pi\)
−0.386999 + 0.922080i \(0.626488\pi\)
\(908\) −1.22630e10 −0.543623
\(909\) −9.31042e9 −0.411146
\(910\) −5.89294e8 −0.0259231
\(911\) 1.38544e10 0.607119 0.303559 0.952813i \(-0.401825\pi\)
0.303559 + 0.952813i \(0.401825\pi\)
\(912\) 1.01355e10 0.442447
\(913\) 0 0
\(914\) 3.26977e10 1.41646
\(915\) −4.49824e9 −0.194120
\(916\) 1.65567e10 0.711768
\(917\) 9.04197e7 0.00387231
\(918\) −5.45977e9 −0.232930
\(919\) 3.93168e10 1.67099 0.835495 0.549497i \(-0.185181\pi\)
0.835495 + 0.549497i \(0.185181\pi\)
\(920\) −1.64744e10 −0.697514
\(921\) 4.70232e9 0.198337
\(922\) 9.74785e9 0.409591
\(923\) −1.48726e10 −0.622560
\(924\) 0 0
\(925\) 1.56284e10 0.649258
\(926\) 2.99299e10 1.23870
\(927\) −1.02021e10 −0.420638
\(928\) −1.88478e10 −0.774181
\(929\) −2.99302e10 −1.22477 −0.612386 0.790559i \(-0.709790\pi\)
−0.612386 + 0.790559i \(0.709790\pi\)
\(930\) −7.46792e8 −0.0304445
\(931\) 3.95513e10 1.60634
\(932\) −1.60520e9 −0.0649493
\(933\) 1.61043e10 0.649166
\(934\) −3.23134e10 −1.29768
\(935\) 0 0
\(936\) −1.53943e10 −0.613614
\(937\) −2.71339e10 −1.07752 −0.538759 0.842460i \(-0.681107\pi\)
−0.538759 + 0.842460i \(0.681107\pi\)
\(938\) 5.77971e8 0.0228663
\(939\) −1.26453e10 −0.498425
\(940\) −7.03925e8 −0.0276426
\(941\) 7.19172e9 0.281364 0.140682 0.990055i \(-0.455070\pi\)
0.140682 + 0.990055i \(0.455070\pi\)
\(942\) −1.06447e10 −0.414911
\(943\) −4.52899e10 −1.75877
\(944\) 1.00979e10 0.390687
\(945\) −9.69952e7 −0.00373886
\(946\) 0 0
\(947\) 2.04057e10 0.780774 0.390387 0.920651i \(-0.372341\pi\)
0.390387 + 0.920651i \(0.372341\pi\)
\(948\) −5.01890e9 −0.191328
\(949\) −3.10804e9 −0.118047
\(950\) −2.54777e10 −0.964114
\(951\) −6.44460e9 −0.242976
\(952\) 1.76571e9 0.0663270
\(953\) −2.32200e10 −0.869034 −0.434517 0.900664i \(-0.643081\pi\)
−0.434517 + 0.900664i \(0.643081\pi\)
\(954\) 5.91628e9 0.220612
\(955\) −1.83154e10 −0.680465
\(956\) −8.71038e9 −0.322429
\(957\) 0 0
\(958\) −1.56171e10 −0.573881
\(959\) 1.51666e9 0.0555295
\(960\) −8.02484e9 −0.292743
\(961\) −2.69971e10 −0.981264
\(962\) −3.14435e10 −1.13872
\(963\) 9.02242e9 0.325560
\(964\) −1.09166e10 −0.392480
\(965\) −1.13703e10 −0.407313
\(966\) −6.64214e8 −0.0237076
\(967\) 2.01004e10 0.714845 0.357422 0.933943i \(-0.383656\pi\)
0.357422 + 0.933943i \(0.383656\pi\)
\(968\) 0 0
\(969\) −4.04263e10 −1.42735
\(970\) −1.75634e10 −0.617885
\(971\) −4.08237e10 −1.43102 −0.715510 0.698603i \(-0.753805\pi\)
−0.715510 + 0.698603i \(0.753805\pi\)
\(972\) −6.97179e8 −0.0243508
\(973\) 1.96707e9 0.0684582
\(974\) 3.08413e10 1.06949
\(975\) 2.15352e10 0.744103
\(976\) −9.51077e9 −0.327447
\(977\) 3.68949e10 1.26571 0.632857 0.774268i \(-0.281882\pi\)
0.632857 + 0.774268i \(0.281882\pi\)
\(978\) 2.44048e8 0.00834237
\(979\) 0 0
\(980\) −5.46146e9 −0.185361
\(981\) 8.19049e9 0.276993
\(982\) 2.09950e10 0.707499
\(983\) −2.14087e10 −0.718874 −0.359437 0.933169i \(-0.617031\pi\)
−0.359437 + 0.933169i \(0.617031\pi\)
\(984\) −2.51273e10 −0.840742
\(985\) 1.13146e10 0.377235
\(986\) −3.96426e10 −1.31702
\(987\) −1.03147e8 −0.00341467
\(988\) −3.13628e10 −1.03458
\(989\) 5.74479e10 1.88837
\(990\) 0 0
\(991\) 4.09883e10 1.33783 0.668917 0.743337i \(-0.266758\pi\)
0.668917 + 0.743337i \(0.266758\pi\)
\(992\) 2.99427e9 0.0973869
\(993\) 2.41735e10 0.783462
\(994\) −3.56024e8 −0.0114981
\(995\) −6.91416e9 −0.222515
\(996\) −3.20649e9 −0.102831
\(997\) 1.43146e10 0.457453 0.228727 0.973491i \(-0.426544\pi\)
0.228727 + 0.973491i \(0.426544\pi\)
\(998\) 2.28699e8 0.00728296
\(999\) −5.17545e9 −0.164236
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.8.a.r.1.4 14
11.7 odd 10 33.8.e.b.16.6 28
11.8 odd 10 33.8.e.b.31.6 yes 28
11.10 odd 2 363.8.a.o.1.11 14
33.8 even 10 99.8.f.b.64.2 28
33.29 even 10 99.8.f.b.82.2 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.8.e.b.16.6 28 11.7 odd 10
33.8.e.b.31.6 yes 28 11.8 odd 10
99.8.f.b.64.2 28 33.8 even 10
99.8.f.b.82.2 28 33.29 even 10
363.8.a.o.1.11 14 11.10 odd 2
363.8.a.r.1.4 14 1.1 even 1 trivial