Properties

Label 363.8.a.r.1.2
Level $363$
Weight $8$
Character 363.1
Self dual yes
Analytic conductor $113.396$
Analytic rank $0$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [363,8,Mod(1,363)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(363, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("363.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 363.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,23] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(113.395764251\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 2 x^{13} - 1289 x^{12} + 2366 x^{11} + 623758 x^{10} - 908404 x^{9} - 141535137 x^{8} + \cdots - 20874968128476 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{4}\cdot 11^{8} \)
Twist minimal: no (minimal twist has level 33)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-18.6486\) of defining polynomial
Character \(\chi\) \(=\) 363.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-16.0306 q^{2} +27.0000 q^{3} +128.979 q^{4} +322.621 q^{5} -432.825 q^{6} +992.956 q^{7} -15.6903 q^{8} +729.000 q^{9} -5171.79 q^{10} +3482.43 q^{12} +14438.4 q^{13} -15917.6 q^{14} +8710.76 q^{15} -16257.8 q^{16} -21255.8 q^{17} -11686.3 q^{18} +43770.9 q^{19} +41611.2 q^{20} +26809.8 q^{21} +22525.3 q^{23} -423.637 q^{24} +25959.1 q^{25} -231455. q^{26} +19683.0 q^{27} +128070. q^{28} +180217. q^{29} -139638. q^{30} -133133. q^{31} +262629. q^{32} +340743. q^{34} +320348. q^{35} +94025.5 q^{36} +368583. q^{37} -701672. q^{38} +389836. q^{39} -5062.01 q^{40} -20045.0 q^{41} -429776. q^{42} +366072. q^{43} +235190. q^{45} -361093. q^{46} +582130. q^{47} -438959. q^{48} +162419. q^{49} -416139. q^{50} -573908. q^{51} +1.86224e6 q^{52} +12091.0 q^{53} -315529. q^{54} -15579.8 q^{56} +1.18181e6 q^{57} -2.88898e6 q^{58} -635842. q^{59} +1.12350e6 q^{60} +3.07463e6 q^{61} +2.13420e6 q^{62} +723865. q^{63} -2.12910e6 q^{64} +4.65811e6 q^{65} +442702. q^{67} -2.74155e6 q^{68} +608184. q^{69} -5.13536e6 q^{70} -1.43752e6 q^{71} -11438.2 q^{72} -3.49069e6 q^{73} -5.90859e6 q^{74} +700896. q^{75} +5.64552e6 q^{76} -6.24928e6 q^{78} -8.08855e6 q^{79} -5.24509e6 q^{80} +531441. q^{81} +321332. q^{82} -2.67768e6 q^{83} +3.45790e6 q^{84} -6.85757e6 q^{85} -5.86834e6 q^{86} +4.86587e6 q^{87} +2.91852e6 q^{89} -3.77023e6 q^{90} +1.43367e7 q^{91} +2.90529e6 q^{92} -3.59459e6 q^{93} -9.33186e6 q^{94} +1.41214e7 q^{95} +7.09099e6 q^{96} -9.41306e6 q^{97} -2.60367e6 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 23 q^{2} + 378 q^{3} + 845 q^{4} + 69 q^{5} + 621 q^{6} + 3278 q^{7} + 4602 q^{8} + 10206 q^{9} + 5320 q^{10} + 22815 q^{12} + 32188 q^{13} - 7794 q^{14} + 1863 q^{15} + 86137 q^{16} + 42917 q^{17}+ \cdots - 70266089 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −16.0306 −1.41691 −0.708457 0.705754i \(-0.750609\pi\)
−0.708457 + 0.705754i \(0.750609\pi\)
\(3\) 27.0000 0.577350
\(4\) 128.979 1.00765
\(5\) 322.621 1.15424 0.577121 0.816658i \(-0.304176\pi\)
0.577121 + 0.816658i \(0.304176\pi\)
\(6\) −432.825 −0.818056
\(7\) 992.956 1.09418 0.547088 0.837075i \(-0.315736\pi\)
0.547088 + 0.837075i \(0.315736\pi\)
\(8\) −15.6903 −0.0108347
\(9\) 729.000 0.333333
\(10\) −5171.79 −1.63546
\(11\) 0 0
\(12\) 3482.43 0.581765
\(13\) 14438.4 1.82270 0.911352 0.411628i \(-0.135040\pi\)
0.911352 + 0.411628i \(0.135040\pi\)
\(14\) −15917.6 −1.55035
\(15\) 8710.76 0.666402
\(16\) −16257.8 −0.992295
\(17\) −21255.8 −1.04932 −0.524659 0.851313i \(-0.675807\pi\)
−0.524659 + 0.851313i \(0.675807\pi\)
\(18\) −11686.3 −0.472305
\(19\) 43770.9 1.46402 0.732012 0.681292i \(-0.238582\pi\)
0.732012 + 0.681292i \(0.238582\pi\)
\(20\) 41611.2 1.16307
\(21\) 26809.8 0.631723
\(22\) 0 0
\(23\) 22525.3 0.386032 0.193016 0.981196i \(-0.438173\pi\)
0.193016 + 0.981196i \(0.438173\pi\)
\(24\) −423.637 −0.00625540
\(25\) 25959.1 0.332277
\(26\) −231455. −2.58262
\(27\) 19683.0 0.192450
\(28\) 128070. 1.10254
\(29\) 180217. 1.37216 0.686078 0.727528i \(-0.259331\pi\)
0.686078 + 0.727528i \(0.259331\pi\)
\(30\) −139638. −0.944235
\(31\) −133133. −0.802639 −0.401319 0.915938i \(-0.631448\pi\)
−0.401319 + 0.915938i \(0.631448\pi\)
\(32\) 262629. 1.41683
\(33\) 0 0
\(34\) 340743. 1.48679
\(35\) 320348. 1.26294
\(36\) 94025.5 0.335882
\(37\) 368583. 1.19627 0.598135 0.801396i \(-0.295909\pi\)
0.598135 + 0.801396i \(0.295909\pi\)
\(38\) −701672. −2.07440
\(39\) 389836. 1.05234
\(40\) −5062.01 −0.0125058
\(41\) −20045.0 −0.0454216 −0.0227108 0.999742i \(-0.507230\pi\)
−0.0227108 + 0.999742i \(0.507230\pi\)
\(42\) −429776. −0.895097
\(43\) 366072. 0.702146 0.351073 0.936348i \(-0.385817\pi\)
0.351073 + 0.936348i \(0.385817\pi\)
\(44\) 0 0
\(45\) 235190. 0.384748
\(46\) −361093. −0.546975
\(47\) 582130. 0.817857 0.408928 0.912567i \(-0.365903\pi\)
0.408928 + 0.912567i \(0.365903\pi\)
\(48\) −438959. −0.572902
\(49\) 162419. 0.197220
\(50\) −416139. −0.470808
\(51\) −573908. −0.605824
\(52\) 1.86224e6 1.83664
\(53\) 12091.0 0.0111557 0.00557785 0.999984i \(-0.498225\pi\)
0.00557785 + 0.999984i \(0.498225\pi\)
\(54\) −315529. −0.272685
\(55\) 0 0
\(56\) −15579.8 −0.0118550
\(57\) 1.18181e6 0.845254
\(58\) −2.88898e6 −1.94423
\(59\) −635842. −0.403058 −0.201529 0.979483i \(-0.564591\pi\)
−0.201529 + 0.979483i \(0.564591\pi\)
\(60\) 1.12350e6 0.671498
\(61\) 3.07463e6 1.73436 0.867179 0.497996i \(-0.165931\pi\)
0.867179 + 0.497996i \(0.165931\pi\)
\(62\) 2.13420e6 1.13727
\(63\) 723865. 0.364725
\(64\) −2.12910e6 −1.01523
\(65\) 4.65811e6 2.10384
\(66\) 0 0
\(67\) 442702. 0.179825 0.0899124 0.995950i \(-0.471341\pi\)
0.0899124 + 0.995950i \(0.471341\pi\)
\(68\) −2.74155e6 −1.05734
\(69\) 608184. 0.222876
\(70\) −5.13536e6 −1.78948
\(71\) −1.43752e6 −0.476662 −0.238331 0.971184i \(-0.576600\pi\)
−0.238331 + 0.971184i \(0.576600\pi\)
\(72\) −11438.2 −0.00361156
\(73\) −3.49069e6 −1.05022 −0.525111 0.851034i \(-0.675976\pi\)
−0.525111 + 0.851034i \(0.675976\pi\)
\(74\) −5.90859e6 −1.69501
\(75\) 700896. 0.191840
\(76\) 5.64552e6 1.47522
\(77\) 0 0
\(78\) −6.24928e6 −1.49107
\(79\) −8.08855e6 −1.84576 −0.922882 0.385083i \(-0.874173\pi\)
−0.922882 + 0.385083i \(0.874173\pi\)
\(80\) −5.24509e6 −1.14535
\(81\) 531441. 0.111111
\(82\) 321332. 0.0643585
\(83\) −2.67768e6 −0.514027 −0.257013 0.966408i \(-0.582738\pi\)
−0.257013 + 0.966408i \(0.582738\pi\)
\(84\) 3.45790e6 0.636553
\(85\) −6.85757e6 −1.21117
\(86\) −5.86834e6 −0.994880
\(87\) 4.86587e6 0.792215
\(88\) 0 0
\(89\) 2.91852e6 0.438831 0.219415 0.975632i \(-0.429585\pi\)
0.219415 + 0.975632i \(0.429585\pi\)
\(90\) −3.77023e6 −0.545154
\(91\) 1.43367e7 1.99436
\(92\) 2.90529e6 0.388984
\(93\) −3.59459e6 −0.463404
\(94\) −9.33186e6 −1.15883
\(95\) 1.41214e7 1.68984
\(96\) 7.09099e6 0.818008
\(97\) −9.41306e6 −1.04720 −0.523600 0.851964i \(-0.675411\pi\)
−0.523600 + 0.851964i \(0.675411\pi\)
\(98\) −2.60367e6 −0.279444
\(99\) 0 0
\(100\) 3.34817e6 0.334817
\(101\) −9.84888e6 −0.951178 −0.475589 0.879668i \(-0.657765\pi\)
−0.475589 + 0.879668i \(0.657765\pi\)
\(102\) 9.20006e6 0.858401
\(103\) −2.61799e6 −0.236069 −0.118034 0.993010i \(-0.537659\pi\)
−0.118034 + 0.993010i \(0.537659\pi\)
\(104\) −226542. −0.0197484
\(105\) 8.64940e6 0.729161
\(106\) −193826. −0.0158067
\(107\) −9.50506e6 −0.750087 −0.375043 0.927007i \(-0.622372\pi\)
−0.375043 + 0.927007i \(0.622372\pi\)
\(108\) 2.53869e6 0.193922
\(109\) 6.17065e6 0.456392 0.228196 0.973615i \(-0.426717\pi\)
0.228196 + 0.973615i \(0.426717\pi\)
\(110\) 0 0
\(111\) 9.95173e6 0.690666
\(112\) −1.61432e7 −1.08574
\(113\) −1.78915e7 −1.16646 −0.583232 0.812306i \(-0.698212\pi\)
−0.583232 + 0.812306i \(0.698212\pi\)
\(114\) −1.89451e7 −1.19765
\(115\) 7.26714e6 0.445575
\(116\) 2.32442e7 1.38265
\(117\) 1.05256e7 0.607568
\(118\) 1.01929e7 0.571098
\(119\) −2.11061e7 −1.14814
\(120\) −136674. −0.00722025
\(121\) 0 0
\(122\) −4.92881e7 −2.45744
\(123\) −541214. −0.0262241
\(124\) −1.71713e7 −0.808776
\(125\) −1.68298e7 −0.770715
\(126\) −1.16040e7 −0.516784
\(127\) 1.74127e6 0.0754314 0.0377157 0.999289i \(-0.487992\pi\)
0.0377157 + 0.999289i \(0.487992\pi\)
\(128\) 514124. 0.0216687
\(129\) 9.88395e6 0.405384
\(130\) −7.46722e7 −2.98097
\(131\) 1.17590e7 0.457003 0.228502 0.973544i \(-0.426617\pi\)
0.228502 + 0.973544i \(0.426617\pi\)
\(132\) 0 0
\(133\) 4.34626e7 1.60190
\(134\) −7.09676e6 −0.254796
\(135\) 6.35014e6 0.222134
\(136\) 333510. 0.0113690
\(137\) −4.46391e7 −1.48318 −0.741589 0.670855i \(-0.765927\pi\)
−0.741589 + 0.670855i \(0.765927\pi\)
\(138\) −9.74952e6 −0.315796
\(139\) −6.87526e6 −0.217139 −0.108569 0.994089i \(-0.534627\pi\)
−0.108569 + 0.994089i \(0.534627\pi\)
\(140\) 4.13181e7 1.27260
\(141\) 1.57175e7 0.472190
\(142\) 2.30443e7 0.675389
\(143\) 0 0
\(144\) −1.18519e7 −0.330765
\(145\) 5.81418e7 1.58380
\(146\) 5.59577e7 1.48808
\(147\) 4.38532e6 0.113865
\(148\) 4.75393e7 1.20542
\(149\) −6.92543e7 −1.71512 −0.857561 0.514382i \(-0.828021\pi\)
−0.857561 + 0.514382i \(0.828021\pi\)
\(150\) −1.12358e7 −0.271821
\(151\) 6.48231e7 1.53218 0.766092 0.642731i \(-0.222199\pi\)
0.766092 + 0.642731i \(0.222199\pi\)
\(152\) −686777. −0.0158622
\(153\) −1.54955e7 −0.349773
\(154\) 0 0
\(155\) −4.29515e7 −0.926440
\(156\) 5.02805e7 1.06039
\(157\) 5.23787e7 1.08020 0.540102 0.841600i \(-0.318386\pi\)
0.540102 + 0.841600i \(0.318386\pi\)
\(158\) 1.29664e8 2.61529
\(159\) 326457. 0.00644075
\(160\) 8.47296e7 1.63537
\(161\) 2.23667e7 0.422387
\(162\) −8.51930e6 −0.157435
\(163\) 2.00487e7 0.362602 0.181301 0.983428i \(-0.441969\pi\)
0.181301 + 0.983428i \(0.441969\pi\)
\(164\) −2.58538e6 −0.0457689
\(165\) 0 0
\(166\) 4.29247e7 0.728332
\(167\) −2.68917e7 −0.446798 −0.223399 0.974727i \(-0.571715\pi\)
−0.223399 + 0.974727i \(0.571715\pi\)
\(168\) −420653. −0.00684450
\(169\) 1.45718e8 2.32225
\(170\) 1.09931e8 1.71612
\(171\) 3.19090e7 0.488008
\(172\) 4.72156e7 0.707515
\(173\) 1.03395e8 1.51824 0.759118 0.650953i \(-0.225631\pi\)
0.759118 + 0.650953i \(0.225631\pi\)
\(174\) −7.80026e7 −1.12250
\(175\) 2.57763e7 0.363569
\(176\) 0 0
\(177\) −1.71677e7 −0.232705
\(178\) −4.67854e7 −0.621786
\(179\) −9.15502e7 −1.19309 −0.596546 0.802579i \(-0.703461\pi\)
−0.596546 + 0.802579i \(0.703461\pi\)
\(180\) 3.03346e7 0.387690
\(181\) −1.95434e7 −0.244977 −0.122489 0.992470i \(-0.539087\pi\)
−0.122489 + 0.992470i \(0.539087\pi\)
\(182\) −2.29825e8 −2.82584
\(183\) 8.30151e7 1.00133
\(184\) −353428. −0.00418253
\(185\) 1.18912e8 1.38079
\(186\) 5.76234e7 0.656604
\(187\) 0 0
\(188\) 7.50824e7 0.824110
\(189\) 1.95444e7 0.210574
\(190\) −2.26374e8 −2.39436
\(191\) −5.06038e6 −0.0525492 −0.0262746 0.999655i \(-0.508364\pi\)
−0.0262746 + 0.999655i \(0.508364\pi\)
\(192\) −5.74857e7 −0.586146
\(193\) −6.66308e7 −0.667151 −0.333576 0.942723i \(-0.608255\pi\)
−0.333576 + 0.942723i \(0.608255\pi\)
\(194\) 1.50897e8 1.48379
\(195\) 1.25769e8 1.21465
\(196\) 2.09487e7 0.198728
\(197\) 1.88947e8 1.76080 0.880398 0.474236i \(-0.157276\pi\)
0.880398 + 0.474236i \(0.157276\pi\)
\(198\) 0 0
\(199\) 1.11378e6 0.0100187 0.00500935 0.999987i \(-0.498405\pi\)
0.00500935 + 0.999987i \(0.498405\pi\)
\(200\) −407306. −0.00360011
\(201\) 1.19529e7 0.103822
\(202\) 1.57883e8 1.34774
\(203\) 1.78948e8 1.50138
\(204\) −7.40219e7 −0.610456
\(205\) −6.46692e6 −0.0524275
\(206\) 4.19679e7 0.334489
\(207\) 1.64210e7 0.128677
\(208\) −2.34735e8 −1.80866
\(209\) 0 0
\(210\) −1.38655e8 −1.03316
\(211\) 2.44732e8 1.79350 0.896751 0.442536i \(-0.145921\pi\)
0.896751 + 0.442536i \(0.145921\pi\)
\(212\) 1.55948e6 0.0112410
\(213\) −3.88131e7 −0.275201
\(214\) 1.52371e8 1.06281
\(215\) 1.18102e8 0.810447
\(216\) −308832. −0.00208513
\(217\) −1.32195e8 −0.878228
\(218\) −9.89189e7 −0.646669
\(219\) −9.42486e7 −0.606346
\(220\) 0 0
\(221\) −3.06899e8 −1.91260
\(222\) −1.59532e8 −0.978615
\(223\) 8.32265e7 0.502568 0.251284 0.967913i \(-0.419147\pi\)
0.251284 + 0.967913i \(0.419147\pi\)
\(224\) 2.60779e8 1.55026
\(225\) 1.89242e7 0.110759
\(226\) 2.86810e8 1.65278
\(227\) −1.87772e8 −1.06547 −0.532734 0.846283i \(-0.678835\pi\)
−0.532734 + 0.846283i \(0.678835\pi\)
\(228\) 1.52429e8 0.851717
\(229\) 5.33918e7 0.293799 0.146899 0.989151i \(-0.453071\pi\)
0.146899 + 0.989151i \(0.453071\pi\)
\(230\) −1.16496e8 −0.631342
\(231\) 0 0
\(232\) −2.82766e6 −0.0148669
\(233\) 6.92698e7 0.358755 0.179378 0.983780i \(-0.442592\pi\)
0.179378 + 0.983780i \(0.442592\pi\)
\(234\) −1.68731e8 −0.860872
\(235\) 1.87807e8 0.944005
\(236\) −8.20101e7 −0.406140
\(237\) −2.18391e8 −1.06565
\(238\) 3.38343e8 1.62681
\(239\) 6.76984e7 0.320764 0.160382 0.987055i \(-0.448727\pi\)
0.160382 + 0.987055i \(0.448727\pi\)
\(240\) −1.41617e8 −0.661268
\(241\) 5.69151e7 0.261919 0.130960 0.991388i \(-0.458194\pi\)
0.130960 + 0.991388i \(0.458194\pi\)
\(242\) 0 0
\(243\) 1.43489e7 0.0641500
\(244\) 3.96562e8 1.74762
\(245\) 5.23998e7 0.227640
\(246\) 8.67597e6 0.0371574
\(247\) 6.31980e8 2.66848
\(248\) 2.08890e6 0.00869632
\(249\) −7.22974e7 −0.296773
\(250\) 2.69791e8 1.09204
\(251\) −1.58681e8 −0.633385 −0.316693 0.948528i \(-0.602572\pi\)
−0.316693 + 0.948528i \(0.602572\pi\)
\(252\) 9.33632e7 0.367514
\(253\) 0 0
\(254\) −2.79135e7 −0.106880
\(255\) −1.85154e8 −0.699268
\(256\) 2.64283e8 0.984532
\(257\) −2.00591e8 −0.737134 −0.368567 0.929601i \(-0.620151\pi\)
−0.368567 + 0.929601i \(0.620151\pi\)
\(258\) −1.58445e8 −0.574394
\(259\) 3.65987e8 1.30893
\(260\) 6.00798e8 2.11993
\(261\) 1.31378e8 0.457385
\(262\) −1.88503e8 −0.647534
\(263\) −5.37363e8 −1.82147 −0.910737 0.412987i \(-0.864486\pi\)
−0.910737 + 0.412987i \(0.864486\pi\)
\(264\) 0 0
\(265\) 3.90081e6 0.0128764
\(266\) −6.96730e8 −2.26975
\(267\) 7.87999e7 0.253359
\(268\) 5.70991e7 0.181200
\(269\) −3.96719e7 −0.124265 −0.0621327 0.998068i \(-0.519790\pi\)
−0.0621327 + 0.998068i \(0.519790\pi\)
\(270\) −1.01796e8 −0.314745
\(271\) −6.31573e7 −0.192766 −0.0963832 0.995344i \(-0.530727\pi\)
−0.0963832 + 0.995344i \(0.530727\pi\)
\(272\) 3.45572e8 1.04123
\(273\) 3.87090e8 1.15144
\(274\) 7.15589e8 2.10154
\(275\) 0 0
\(276\) 7.84428e7 0.224580
\(277\) −3.69188e8 −1.04368 −0.521841 0.853043i \(-0.674755\pi\)
−0.521841 + 0.853043i \(0.674755\pi\)
\(278\) 1.10214e8 0.307667
\(279\) −9.70541e7 −0.267546
\(280\) −5.02635e6 −0.0136836
\(281\) 4.31318e8 1.15964 0.579822 0.814743i \(-0.303122\pi\)
0.579822 + 0.814743i \(0.303122\pi\)
\(282\) −2.51960e8 −0.669052
\(283\) −6.91736e8 −1.81421 −0.907105 0.420904i \(-0.861713\pi\)
−0.907105 + 0.420904i \(0.861713\pi\)
\(284\) −1.85410e8 −0.480307
\(285\) 3.81278e8 0.975629
\(286\) 0 0
\(287\) −1.99038e7 −0.0496992
\(288\) 1.91457e8 0.472277
\(289\) 4.14719e7 0.101068
\(290\) −9.32046e8 −2.24411
\(291\) −2.54152e8 −0.604601
\(292\) −4.50225e8 −1.05825
\(293\) −3.99794e8 −0.928539 −0.464269 0.885694i \(-0.653683\pi\)
−0.464269 + 0.885694i \(0.653683\pi\)
\(294\) −7.02992e7 −0.161337
\(295\) −2.05136e8 −0.465227
\(296\) −5.78316e6 −0.0129612
\(297\) 0 0
\(298\) 1.11019e9 2.43018
\(299\) 3.25229e8 0.703623
\(300\) 9.04007e7 0.193307
\(301\) 3.63494e8 0.768271
\(302\) −1.03915e9 −2.17097
\(303\) −2.65920e8 −0.549163
\(304\) −7.11617e8 −1.45274
\(305\) 9.91940e8 2.00187
\(306\) 2.48402e8 0.495598
\(307\) 2.11615e8 0.417410 0.208705 0.977979i \(-0.433075\pi\)
0.208705 + 0.977979i \(0.433075\pi\)
\(308\) 0 0
\(309\) −7.06858e7 −0.136294
\(310\) 6.88537e8 1.31269
\(311\) −2.81020e7 −0.0529755 −0.0264878 0.999649i \(-0.508432\pi\)
−0.0264878 + 0.999649i \(0.508432\pi\)
\(312\) −6.11663e6 −0.0114017
\(313\) 3.26533e6 0.00601897 0.00300948 0.999995i \(-0.499042\pi\)
0.00300948 + 0.999995i \(0.499042\pi\)
\(314\) −8.39659e8 −1.53056
\(315\) 2.33534e8 0.420981
\(316\) −1.04325e9 −1.85988
\(317\) −4.32150e8 −0.761951 −0.380976 0.924585i \(-0.624412\pi\)
−0.380976 + 0.924585i \(0.624412\pi\)
\(318\) −5.23329e6 −0.00912599
\(319\) 0 0
\(320\) −6.86892e8 −1.17183
\(321\) −2.56637e8 −0.433063
\(322\) −3.58550e8 −0.598486
\(323\) −9.30387e8 −1.53623
\(324\) 6.85446e7 0.111961
\(325\) 3.74807e8 0.605642
\(326\) −3.21392e8 −0.513776
\(327\) 1.66608e8 0.263498
\(328\) 314511. 0.000492127 0
\(329\) 5.78029e8 0.894879
\(330\) 0 0
\(331\) 3.76606e8 0.570807 0.285404 0.958407i \(-0.407872\pi\)
0.285404 + 0.958407i \(0.407872\pi\)
\(332\) −3.45364e8 −0.517957
\(333\) 2.68697e8 0.398756
\(334\) 4.31090e8 0.633075
\(335\) 1.42825e8 0.207561
\(336\) −4.35868e8 −0.626855
\(337\) 3.98784e8 0.567588 0.283794 0.958885i \(-0.408407\pi\)
0.283794 + 0.958885i \(0.408407\pi\)
\(338\) −2.33594e9 −3.29043
\(339\) −4.83070e8 −0.673458
\(340\) −8.84481e8 −1.22043
\(341\) 0 0
\(342\) −5.11519e8 −0.691465
\(343\) −6.56467e8 −0.878382
\(344\) −5.74377e6 −0.00760751
\(345\) 1.96213e8 0.257253
\(346\) −1.65748e9 −2.15121
\(347\) −2.24353e7 −0.0288256 −0.0144128 0.999896i \(-0.504588\pi\)
−0.0144128 + 0.999896i \(0.504588\pi\)
\(348\) 6.27594e8 0.798273
\(349\) −2.76106e8 −0.347685 −0.173843 0.984773i \(-0.555618\pi\)
−0.173843 + 0.984773i \(0.555618\pi\)
\(350\) −4.13208e8 −0.515146
\(351\) 2.84190e8 0.350780
\(352\) 0 0
\(353\) −8.63323e8 −1.04463 −0.522314 0.852753i \(-0.674931\pi\)
−0.522314 + 0.852753i \(0.674931\pi\)
\(354\) 2.75208e8 0.329724
\(355\) −4.63775e8 −0.550184
\(356\) 3.76427e8 0.442186
\(357\) −5.69865e8 −0.662878
\(358\) 1.46760e9 1.69051
\(359\) 5.95095e8 0.678821 0.339411 0.940638i \(-0.389772\pi\)
0.339411 + 0.940638i \(0.389772\pi\)
\(360\) −3.69020e6 −0.00416861
\(361\) 1.02202e9 1.14336
\(362\) 3.13292e8 0.347112
\(363\) 0 0
\(364\) 1.84913e9 2.00961
\(365\) −1.12617e9 −1.21221
\(366\) −1.33078e9 −1.41880
\(367\) −1.48566e9 −1.56888 −0.784438 0.620207i \(-0.787048\pi\)
−0.784438 + 0.620207i \(0.787048\pi\)
\(368\) −3.66211e8 −0.383058
\(369\) −1.46128e7 −0.0151405
\(370\) −1.90623e9 −1.95645
\(371\) 1.20058e7 0.0122063
\(372\) −4.63626e8 −0.466947
\(373\) 9.31856e8 0.929753 0.464877 0.885375i \(-0.346099\pi\)
0.464877 + 0.885375i \(0.346099\pi\)
\(374\) 0 0
\(375\) −4.54404e8 −0.444972
\(376\) −9.13377e6 −0.00886120
\(377\) 2.60204e9 2.50104
\(378\) −3.13307e8 −0.298366
\(379\) 1.47733e9 1.39393 0.696966 0.717104i \(-0.254533\pi\)
0.696966 + 0.717104i \(0.254533\pi\)
\(380\) 1.82136e9 1.70276
\(381\) 4.70142e7 0.0435503
\(382\) 8.11207e7 0.0744578
\(383\) 1.64065e9 1.49218 0.746090 0.665846i \(-0.231929\pi\)
0.746090 + 0.665846i \(0.231929\pi\)
\(384\) 1.38813e7 0.0125104
\(385\) 0 0
\(386\) 1.06813e9 0.945296
\(387\) 2.66867e8 0.234049
\(388\) −1.21408e9 −1.05521
\(389\) −1.20892e9 −1.04130 −0.520648 0.853772i \(-0.674309\pi\)
−0.520648 + 0.853772i \(0.674309\pi\)
\(390\) −2.01615e9 −1.72106
\(391\) −4.78795e8 −0.405070
\(392\) −2.54840e6 −0.00213682
\(393\) 3.17492e8 0.263851
\(394\) −3.02893e9 −2.49490
\(395\) −2.60953e9 −2.13046
\(396\) 0 0
\(397\) 3.60149e8 0.288879 0.144439 0.989514i \(-0.453862\pi\)
0.144439 + 0.989514i \(0.453862\pi\)
\(398\) −1.78544e7 −0.0141957
\(399\) 1.17349e9 0.924856
\(400\) −4.22037e8 −0.329716
\(401\) 2.22451e9 1.72278 0.861390 0.507945i \(-0.169595\pi\)
0.861390 + 0.507945i \(0.169595\pi\)
\(402\) −1.91612e8 −0.147107
\(403\) −1.92222e9 −1.46297
\(404\) −1.27030e9 −0.958452
\(405\) 1.71454e8 0.128249
\(406\) −2.86864e9 −2.12733
\(407\) 0 0
\(408\) 9.00477e6 0.00656390
\(409\) −1.26528e9 −0.914439 −0.457219 0.889354i \(-0.651155\pi\)
−0.457219 + 0.889354i \(0.651155\pi\)
\(410\) 1.03668e8 0.0742853
\(411\) −1.20525e9 −0.856313
\(412\) −3.37665e8 −0.237874
\(413\) −6.31363e8 −0.441016
\(414\) −2.63237e8 −0.182325
\(415\) −8.63876e8 −0.593312
\(416\) 3.79194e9 2.58247
\(417\) −1.85632e8 −0.125365
\(418\) 0 0
\(419\) −5.76631e8 −0.382956 −0.191478 0.981497i \(-0.561328\pi\)
−0.191478 + 0.981497i \(0.561328\pi\)
\(420\) 1.11559e9 0.734737
\(421\) −6.27680e8 −0.409969 −0.204984 0.978765i \(-0.565714\pi\)
−0.204984 + 0.978765i \(0.565714\pi\)
\(422\) −3.92319e9 −2.54124
\(423\) 4.24372e8 0.272619
\(424\) −189711. −0.000120868 0
\(425\) −5.51783e8 −0.348664
\(426\) 6.22196e8 0.389936
\(427\) 3.05298e9 1.89769
\(428\) −1.22595e9 −0.755822
\(429\) 0 0
\(430\) −1.89325e9 −1.14833
\(431\) −4.12434e8 −0.248133 −0.124066 0.992274i \(-0.539594\pi\)
−0.124066 + 0.992274i \(0.539594\pi\)
\(432\) −3.20001e8 −0.190967
\(433\) 1.92048e9 1.13684 0.568422 0.822737i \(-0.307554\pi\)
0.568422 + 0.822737i \(0.307554\pi\)
\(434\) 2.11917e9 1.24437
\(435\) 1.56983e9 0.914408
\(436\) 7.95883e8 0.459882
\(437\) 9.85954e8 0.565160
\(438\) 1.51086e9 0.859141
\(439\) 3.46529e9 1.95485 0.977427 0.211275i \(-0.0677614\pi\)
0.977427 + 0.211275i \(0.0677614\pi\)
\(440\) 0 0
\(441\) 1.18404e8 0.0657401
\(442\) 4.91977e9 2.70998
\(443\) 2.28463e8 0.124854 0.0624271 0.998050i \(-0.480116\pi\)
0.0624271 + 0.998050i \(0.480116\pi\)
\(444\) 1.28356e9 0.695948
\(445\) 9.41574e8 0.506517
\(446\) −1.33417e9 −0.712096
\(447\) −1.86987e9 −0.990226
\(448\) −2.11410e9 −1.11084
\(449\) 1.93253e9 1.00755 0.503773 0.863836i \(-0.331945\pi\)
0.503773 + 0.863836i \(0.331945\pi\)
\(450\) −3.03365e8 −0.156936
\(451\) 0 0
\(452\) −2.30762e9 −1.17538
\(453\) 1.75022e9 0.884606
\(454\) 3.01009e9 1.50968
\(455\) 4.62530e9 2.30197
\(456\) −1.85430e7 −0.00915805
\(457\) −9.40231e8 −0.460816 −0.230408 0.973094i \(-0.574006\pi\)
−0.230408 + 0.973094i \(0.574006\pi\)
\(458\) −8.55900e8 −0.416288
\(459\) −4.18379e8 −0.201941
\(460\) 9.37306e8 0.448982
\(461\) 1.27339e9 0.605352 0.302676 0.953094i \(-0.402120\pi\)
0.302676 + 0.953094i \(0.402120\pi\)
\(462\) 0 0
\(463\) 3.08457e9 1.44431 0.722156 0.691730i \(-0.243151\pi\)
0.722156 + 0.691730i \(0.243151\pi\)
\(464\) −2.92993e9 −1.36158
\(465\) −1.15969e9 −0.534881
\(466\) −1.11043e9 −0.508325
\(467\) 1.91563e9 0.870365 0.435183 0.900342i \(-0.356684\pi\)
0.435183 + 0.900342i \(0.356684\pi\)
\(468\) 1.35757e9 0.612214
\(469\) 4.39583e8 0.196760
\(470\) −3.01065e9 −1.33757
\(471\) 1.41422e9 0.623656
\(472\) 9.97654e6 0.00436700
\(473\) 0 0
\(474\) 3.50093e9 1.50994
\(475\) 1.13625e9 0.486461
\(476\) −2.72224e9 −1.15692
\(477\) 8.81435e6 0.00371857
\(478\) −1.08524e9 −0.454495
\(479\) 1.45734e9 0.605880 0.302940 0.953010i \(-0.402032\pi\)
0.302940 + 0.953010i \(0.402032\pi\)
\(480\) 2.28770e9 0.944180
\(481\) 5.32173e9 2.18044
\(482\) −9.12381e8 −0.371117
\(483\) 6.03900e8 0.243865
\(484\) 0 0
\(485\) −3.03685e9 −1.20872
\(486\) −2.30021e8 −0.0908951
\(487\) 1.04638e9 0.410523 0.205261 0.978707i \(-0.434196\pi\)
0.205261 + 0.978707i \(0.434196\pi\)
\(488\) −4.82418e7 −0.0187912
\(489\) 5.41315e8 0.209348
\(490\) −8.39999e8 −0.322547
\(491\) −2.27978e9 −0.869177 −0.434588 0.900629i \(-0.643106\pi\)
−0.434588 + 0.900629i \(0.643106\pi\)
\(492\) −6.98052e7 −0.0264247
\(493\) −3.83067e9 −1.43983
\(494\) −1.01310e10 −3.78101
\(495\) 0 0
\(496\) 2.16445e9 0.796454
\(497\) −1.42740e9 −0.521552
\(498\) 1.15897e9 0.420503
\(499\) −4.78157e8 −0.172274 −0.0861368 0.996283i \(-0.527452\pi\)
−0.0861368 + 0.996283i \(0.527452\pi\)
\(500\) −2.17069e9 −0.776608
\(501\) −7.26077e8 −0.257959
\(502\) 2.54375e9 0.897453
\(503\) −3.65939e9 −1.28210 −0.641048 0.767501i \(-0.721500\pi\)
−0.641048 + 0.767501i \(0.721500\pi\)
\(504\) −1.13576e7 −0.00395168
\(505\) −3.17745e9 −1.09789
\(506\) 0 0
\(507\) 3.93438e9 1.34075
\(508\) 2.24586e8 0.0760082
\(509\) −4.79542e9 −1.61181 −0.805906 0.592044i \(-0.798321\pi\)
−0.805906 + 0.592044i \(0.798321\pi\)
\(510\) 2.96813e9 0.990803
\(511\) −3.46610e9 −1.14913
\(512\) −4.30242e9 −1.41667
\(513\) 8.61543e8 0.281751
\(514\) 3.21559e9 1.04446
\(515\) −8.44619e8 −0.272480
\(516\) 1.27482e9 0.408484
\(517\) 0 0
\(518\) −5.86697e9 −1.85464
\(519\) 2.79167e9 0.876554
\(520\) −7.30871e7 −0.0227944
\(521\) 2.12623e9 0.658687 0.329344 0.944210i \(-0.393173\pi\)
0.329344 + 0.944210i \(0.393173\pi\)
\(522\) −2.10607e9 −0.648076
\(523\) −5.50855e8 −0.168376 −0.0841882 0.996450i \(-0.526830\pi\)
−0.0841882 + 0.996450i \(0.526830\pi\)
\(524\) 1.51666e9 0.460498
\(525\) 6.95959e8 0.209907
\(526\) 8.61423e9 2.58087
\(527\) 2.82986e9 0.842223
\(528\) 0 0
\(529\) −2.89744e9 −0.850979
\(530\) −6.25322e7 −0.0182447
\(531\) −4.63529e8 −0.134353
\(532\) 5.60575e9 1.61415
\(533\) −2.89417e8 −0.0827901
\(534\) −1.26321e9 −0.358988
\(535\) −3.06653e9 −0.865782
\(536\) −6.94611e6 −0.00194834
\(537\) −2.47186e9 −0.688832
\(538\) 6.35963e8 0.176074
\(539\) 0 0
\(540\) 8.19034e8 0.223833
\(541\) 4.39966e9 1.19462 0.597309 0.802011i \(-0.296237\pi\)
0.597309 + 0.802011i \(0.296237\pi\)
\(542\) 1.01245e9 0.273133
\(543\) −5.27672e8 −0.141438
\(544\) −5.58241e9 −1.48671
\(545\) 1.99078e9 0.526787
\(546\) −6.20527e9 −1.63150
\(547\) −1.38269e9 −0.361218 −0.180609 0.983555i \(-0.557807\pi\)
−0.180609 + 0.983555i \(0.557807\pi\)
\(548\) −5.75749e9 −1.49452
\(549\) 2.24141e9 0.578119
\(550\) 0 0
\(551\) 7.88828e9 2.00887
\(552\) −9.54257e6 −0.00241479
\(553\) −8.03158e9 −2.01959
\(554\) 5.91829e9 1.47881
\(555\) 3.21063e9 0.797197
\(556\) −8.86763e8 −0.218799
\(557\) 2.68689e9 0.658804 0.329402 0.944190i \(-0.393153\pi\)
0.329402 + 0.944190i \(0.393153\pi\)
\(558\) 1.55583e9 0.379090
\(559\) 5.28548e9 1.27980
\(560\) −5.20815e9 −1.25321
\(561\) 0 0
\(562\) −6.91426e9 −1.64312
\(563\) 1.74583e9 0.412309 0.206155 0.978519i \(-0.433905\pi\)
0.206155 + 0.978519i \(0.433905\pi\)
\(564\) 2.02722e9 0.475800
\(565\) −5.77216e9 −1.34638
\(566\) 1.10889e10 2.57058
\(567\) 5.27698e8 0.121575
\(568\) 2.25551e7 0.00516447
\(569\) −3.49925e9 −0.796311 −0.398155 0.917318i \(-0.630349\pi\)
−0.398155 + 0.917318i \(0.630349\pi\)
\(570\) −6.11210e9 −1.38238
\(571\) 3.99974e9 0.899094 0.449547 0.893257i \(-0.351585\pi\)
0.449547 + 0.893257i \(0.351585\pi\)
\(572\) 0 0
\(573\) −1.36630e8 −0.0303393
\(574\) 3.19069e8 0.0704195
\(575\) 5.84737e8 0.128269
\(576\) −1.55211e9 −0.338411
\(577\) 2.02940e9 0.439797 0.219898 0.975523i \(-0.429427\pi\)
0.219898 + 0.975523i \(0.429427\pi\)
\(578\) −6.64818e8 −0.143204
\(579\) −1.79903e9 −0.385180
\(580\) 7.49906e9 1.59591
\(581\) −2.65882e9 −0.562435
\(582\) 4.07421e9 0.856668
\(583\) 0 0
\(584\) 5.47699e7 0.0113788
\(585\) 3.39577e9 0.701281
\(586\) 6.40893e9 1.31566
\(587\) −5.08799e9 −1.03828 −0.519139 0.854690i \(-0.673747\pi\)
−0.519139 + 0.854690i \(0.673747\pi\)
\(588\) 5.65614e8 0.114736
\(589\) −5.82736e9 −1.17508
\(590\) 3.28844e9 0.659186
\(591\) 5.10158e9 1.01660
\(592\) −5.99233e9 −1.18705
\(593\) 6.28144e9 1.23700 0.618498 0.785787i \(-0.287742\pi\)
0.618498 + 0.785787i \(0.287742\pi\)
\(594\) 0 0
\(595\) −6.80927e9 −1.32523
\(596\) −8.93234e9 −1.72824
\(597\) 3.00719e7 0.00578430
\(598\) −5.21360e9 −0.996973
\(599\) 3.27746e9 0.623080 0.311540 0.950233i \(-0.399155\pi\)
0.311540 + 0.950233i \(0.399155\pi\)
\(600\) −1.09972e7 −0.00207852
\(601\) 7.23030e9 1.35861 0.679306 0.733855i \(-0.262281\pi\)
0.679306 + 0.733855i \(0.262281\pi\)
\(602\) −5.82701e9 −1.08857
\(603\) 3.22730e8 0.0599416
\(604\) 8.36081e9 1.54390
\(605\) 0 0
\(606\) 4.26284e9 0.778117
\(607\) −9.44913e9 −1.71487 −0.857435 0.514591i \(-0.827944\pi\)
−0.857435 + 0.514591i \(0.827944\pi\)
\(608\) 1.14955e10 2.07427
\(609\) 4.83160e9 0.866822
\(610\) −1.59014e10 −2.83648
\(611\) 8.40500e9 1.49071
\(612\) −1.99859e9 −0.352447
\(613\) 9.37577e9 1.64397 0.821987 0.569506i \(-0.192865\pi\)
0.821987 + 0.569506i \(0.192865\pi\)
\(614\) −3.39231e9 −0.591434
\(615\) −1.74607e8 −0.0302690
\(616\) 0 0
\(617\) 5.19986e9 0.891239 0.445619 0.895223i \(-0.352984\pi\)
0.445619 + 0.895223i \(0.352984\pi\)
\(618\) 1.13313e9 0.193117
\(619\) 7.78909e9 1.31999 0.659993 0.751272i \(-0.270559\pi\)
0.659993 + 0.751272i \(0.270559\pi\)
\(620\) −5.53983e9 −0.933524
\(621\) 4.43366e8 0.0742919
\(622\) 4.50490e8 0.0750618
\(623\) 2.89796e9 0.480158
\(624\) −6.33786e9 −1.04423
\(625\) −7.45770e9 −1.22187
\(626\) −5.23451e7 −0.00852836
\(627\) 0 0
\(628\) 6.75573e9 1.08846
\(629\) −7.83453e9 −1.25527
\(630\) −3.74368e9 −0.596495
\(631\) −1.35874e9 −0.215294 −0.107647 0.994189i \(-0.534332\pi\)
−0.107647 + 0.994189i \(0.534332\pi\)
\(632\) 1.26912e8 0.0199982
\(633\) 6.60776e9 1.03548
\(634\) 6.92761e9 1.07962
\(635\) 5.61768e8 0.0870661
\(636\) 4.21061e7 0.00649000
\(637\) 2.34507e9 0.359474
\(638\) 0 0
\(639\) −1.04795e9 −0.158887
\(640\) 1.65867e8 0.0250109
\(641\) 6.32968e9 0.949246 0.474623 0.880189i \(-0.342584\pi\)
0.474623 + 0.880189i \(0.342584\pi\)
\(642\) 4.11403e9 0.613613
\(643\) −5.55981e9 −0.824748 −0.412374 0.911015i \(-0.635300\pi\)
−0.412374 + 0.911015i \(0.635300\pi\)
\(644\) 2.88482e9 0.425617
\(645\) 3.18877e9 0.467912
\(646\) 1.49146e10 2.17670
\(647\) 2.76364e9 0.401160 0.200580 0.979677i \(-0.435717\pi\)
0.200580 + 0.979677i \(0.435717\pi\)
\(648\) −8.33845e6 −0.00120385
\(649\) 0 0
\(650\) −6.00837e9 −0.858143
\(651\) −3.56928e9 −0.507045
\(652\) 2.58586e9 0.365374
\(653\) −8.64892e9 −1.21553 −0.607765 0.794117i \(-0.707934\pi\)
−0.607765 + 0.794117i \(0.707934\pi\)
\(654\) −2.67081e9 −0.373354
\(655\) 3.79368e9 0.527493
\(656\) 3.25886e8 0.0450716
\(657\) −2.54471e9 −0.350074
\(658\) −9.26613e9 −1.26797
\(659\) −6.77833e9 −0.922623 −0.461311 0.887238i \(-0.652621\pi\)
−0.461311 + 0.887238i \(0.652621\pi\)
\(660\) 0 0
\(661\) −1.43126e10 −1.92759 −0.963795 0.266643i \(-0.914086\pi\)
−0.963795 + 0.266643i \(0.914086\pi\)
\(662\) −6.03721e9 −0.808785
\(663\) −8.28629e9 −1.10424
\(664\) 4.20136e7 0.00556931
\(665\) 1.40219e10 1.84898
\(666\) −4.30736e9 −0.565004
\(667\) 4.05945e9 0.529697
\(668\) −3.46846e9 −0.450214
\(669\) 2.24712e9 0.290158
\(670\) −2.28956e9 −0.294097
\(671\) 0 0
\(672\) 7.04104e9 0.895045
\(673\) −1.02245e10 −1.29297 −0.646487 0.762925i \(-0.723762\pi\)
−0.646487 + 0.762925i \(0.723762\pi\)
\(674\) −6.39273e9 −0.804223
\(675\) 5.10953e8 0.0639467
\(676\) 1.87945e10 2.34001
\(677\) −3.53176e9 −0.437452 −0.218726 0.975786i \(-0.570190\pi\)
−0.218726 + 0.975786i \(0.570190\pi\)
\(678\) 7.74387e9 0.954233
\(679\) −9.34675e9 −1.14582
\(680\) 1.07597e8 0.0131226
\(681\) −5.06984e9 −0.615148
\(682\) 0 0
\(683\) −3.60355e9 −0.432770 −0.216385 0.976308i \(-0.569427\pi\)
−0.216385 + 0.976308i \(0.569427\pi\)
\(684\) 4.11558e9 0.491739
\(685\) −1.44015e10 −1.71195
\(686\) 1.05235e10 1.24459
\(687\) 1.44158e9 0.169625
\(688\) −5.95151e9 −0.696736
\(689\) 1.74574e8 0.0203336
\(690\) −3.14540e9 −0.364505
\(691\) −1.01407e10 −1.16921 −0.584605 0.811318i \(-0.698751\pi\)
−0.584605 + 0.811318i \(0.698751\pi\)
\(692\) 1.33358e10 1.52985
\(693\) 0 0
\(694\) 3.59650e8 0.0408434
\(695\) −2.21810e9 −0.250631
\(696\) −7.63468e7 −0.00858338
\(697\) 4.26073e8 0.0476616
\(698\) 4.42613e9 0.492640
\(699\) 1.87028e9 0.207127
\(700\) 3.32459e9 0.366349
\(701\) 7.60003e9 0.833301 0.416651 0.909067i \(-0.363204\pi\)
0.416651 + 0.909067i \(0.363204\pi\)
\(702\) −4.55573e9 −0.497025
\(703\) 1.61332e10 1.75137
\(704\) 0 0
\(705\) 5.07079e9 0.545022
\(706\) 1.38395e10 1.48015
\(707\) −9.77950e9 −1.04076
\(708\) −2.21427e9 −0.234485
\(709\) −1.21320e10 −1.27841 −0.639206 0.769036i \(-0.720737\pi\)
−0.639206 + 0.769036i \(0.720737\pi\)
\(710\) 7.43457e9 0.779563
\(711\) −5.89656e9 −0.615255
\(712\) −4.57923e7 −0.00475459
\(713\) −2.99887e9 −0.309845
\(714\) 9.13526e9 0.939241
\(715\) 0 0
\(716\) −1.18080e10 −1.20221
\(717\) 1.82786e9 0.185193
\(718\) −9.53970e9 −0.961832
\(719\) −1.08273e10 −1.08635 −0.543176 0.839619i \(-0.682778\pi\)
−0.543176 + 0.839619i \(0.682778\pi\)
\(720\) −3.82367e9 −0.381783
\(721\) −2.59955e9 −0.258300
\(722\) −1.63836e10 −1.62005
\(723\) 1.53671e9 0.151219
\(724\) −2.52069e9 −0.246850
\(725\) 4.67828e9 0.455936
\(726\) 0 0
\(727\) −2.33605e9 −0.225482 −0.112741 0.993624i \(-0.535963\pi\)
−0.112741 + 0.993624i \(0.535963\pi\)
\(728\) −2.24946e8 −0.0216082
\(729\) 3.87420e8 0.0370370
\(730\) 1.80531e10 1.71760
\(731\) −7.78117e9 −0.736774
\(732\) 1.07072e10 1.00899
\(733\) 1.46677e10 1.37562 0.687808 0.725893i \(-0.258573\pi\)
0.687808 + 0.725893i \(0.258573\pi\)
\(734\) 2.38160e10 2.22296
\(735\) 1.41480e9 0.131428
\(736\) 5.91581e9 0.546943
\(737\) 0 0
\(738\) 2.34251e8 0.0214528
\(739\) 8.70105e8 0.0793078 0.0396539 0.999213i \(-0.487374\pi\)
0.0396539 + 0.999213i \(0.487374\pi\)
\(740\) 1.53372e10 1.39134
\(741\) 1.70635e10 1.54065
\(742\) −1.92460e8 −0.0172953
\(743\) 1.03941e10 0.929663 0.464831 0.885399i \(-0.346115\pi\)
0.464831 + 0.885399i \(0.346115\pi\)
\(744\) 5.64002e7 0.00502083
\(745\) −2.23429e10 −1.97967
\(746\) −1.49382e10 −1.31738
\(747\) −1.95203e9 −0.171342
\(748\) 0 0
\(749\) −9.43811e9 −0.820727
\(750\) 7.28436e9 0.630488
\(751\) −7.76502e9 −0.668964 −0.334482 0.942402i \(-0.608561\pi\)
−0.334482 + 0.942402i \(0.608561\pi\)
\(752\) −9.46412e9 −0.811555
\(753\) −4.28440e9 −0.365685
\(754\) −4.17122e10 −3.54375
\(755\) 2.09133e10 1.76851
\(756\) 2.52081e9 0.212184
\(757\) −1.35473e9 −0.113506 −0.0567528 0.998388i \(-0.518075\pi\)
−0.0567528 + 0.998388i \(0.518075\pi\)
\(758\) −2.36825e10 −1.97508
\(759\) 0 0
\(760\) −2.21569e8 −0.0183088
\(761\) 3.16501e9 0.260332 0.130166 0.991492i \(-0.458449\pi\)
0.130166 + 0.991492i \(0.458449\pi\)
\(762\) −7.53664e8 −0.0617071
\(763\) 6.12719e9 0.499373
\(764\) −6.52682e8 −0.0529511
\(765\) −4.99917e9 −0.403722
\(766\) −2.63006e10 −2.11429
\(767\) −9.18052e9 −0.734655
\(768\) 7.13565e9 0.568420
\(769\) 1.56443e10 1.24055 0.620273 0.784386i \(-0.287022\pi\)
0.620273 + 0.784386i \(0.287022\pi\)
\(770\) 0 0
\(771\) −5.41597e9 −0.425584
\(772\) −8.59396e9 −0.672253
\(773\) −1.21091e9 −0.0942936 −0.0471468 0.998888i \(-0.515013\pi\)
−0.0471468 + 0.998888i \(0.515013\pi\)
\(774\) −4.27802e9 −0.331627
\(775\) −3.45602e9 −0.266698
\(776\) 1.47693e8 0.0113461
\(777\) 9.88164e9 0.755710
\(778\) 1.93797e10 1.47543
\(779\) −8.77387e8 −0.0664982
\(780\) 1.62215e10 1.22394
\(781\) 0 0
\(782\) 7.67534e9 0.573950
\(783\) 3.54722e9 0.264072
\(784\) −2.64057e9 −0.195701
\(785\) 1.68984e10 1.24682
\(786\) −5.08957e9 −0.373854
\(787\) 2.18541e10 1.59817 0.799084 0.601220i \(-0.205318\pi\)
0.799084 + 0.601220i \(0.205318\pi\)
\(788\) 2.43702e10 1.77426
\(789\) −1.45088e10 −1.05163
\(790\) 4.18323e10 3.01868
\(791\) −1.77654e10 −1.27632
\(792\) 0 0
\(793\) 4.43927e10 3.16122
\(794\) −5.77339e9 −0.409316
\(795\) 1.05322e8 0.00743419
\(796\) 1.43653e8 0.0100953
\(797\) 2.09736e10 1.46747 0.733734 0.679437i \(-0.237776\pi\)
0.733734 + 0.679437i \(0.237776\pi\)
\(798\) −1.88117e10 −1.31044
\(799\) −1.23736e10 −0.858191
\(800\) 6.81762e9 0.470780
\(801\) 2.12760e9 0.146277
\(802\) −3.56602e10 −2.44103
\(803\) 0 0
\(804\) 1.54168e9 0.104616
\(805\) 7.21595e9 0.487537
\(806\) 3.08143e10 2.07291
\(807\) −1.07114e9 −0.0717447
\(808\) 1.54532e8 0.0103057
\(809\) −2.28362e9 −0.151637 −0.0758184 0.997122i \(-0.524157\pi\)
−0.0758184 + 0.997122i \(0.524157\pi\)
\(810\) −2.74850e9 −0.181718
\(811\) 6.19706e9 0.407956 0.203978 0.978976i \(-0.434613\pi\)
0.203978 + 0.978976i \(0.434613\pi\)
\(812\) 2.30805e10 1.51286
\(813\) −1.70525e9 −0.111294
\(814\) 0 0
\(815\) 6.46813e9 0.418530
\(816\) 9.33045e9 0.601156
\(817\) 1.60233e10 1.02796
\(818\) 2.02831e10 1.29568
\(819\) 1.04514e10 0.664786
\(820\) −8.34096e8 −0.0528284
\(821\) −5.98432e9 −0.377410 −0.188705 0.982034i \(-0.560429\pi\)
−0.188705 + 0.982034i \(0.560429\pi\)
\(822\) 1.93209e10 1.21332
\(823\) −7.55206e9 −0.472243 −0.236122 0.971724i \(-0.575876\pi\)
−0.236122 + 0.971724i \(0.575876\pi\)
\(824\) 4.10770e7 0.00255772
\(825\) 0 0
\(826\) 1.01211e10 0.624882
\(827\) 2.89939e10 1.78253 0.891265 0.453482i \(-0.149818\pi\)
0.891265 + 0.453482i \(0.149818\pi\)
\(828\) 2.11796e9 0.129661
\(829\) −3.92715e9 −0.239407 −0.119703 0.992810i \(-0.538194\pi\)
−0.119703 + 0.992810i \(0.538194\pi\)
\(830\) 1.38484e10 0.840672
\(831\) −9.96808e9 −0.602571
\(832\) −3.07407e10 −1.85047
\(833\) −3.45236e9 −0.206947
\(834\) 2.97578e9 0.177632
\(835\) −8.67583e9 −0.515713
\(836\) 0 0
\(837\) −2.62046e9 −0.154468
\(838\) 9.24371e9 0.542616
\(839\) −3.17273e10 −1.85467 −0.927334 0.374235i \(-0.877905\pi\)
−0.927334 + 0.374235i \(0.877905\pi\)
\(840\) −1.35711e8 −0.00790022
\(841\) 1.52284e10 0.882813
\(842\) 1.00621e10 0.580891
\(843\) 1.16456e10 0.669521
\(844\) 3.15652e10 1.80722
\(845\) 4.70116e10 2.68044
\(846\) −6.80293e9 −0.386278
\(847\) 0 0
\(848\) −1.96573e8 −0.0110697
\(849\) −1.86769e10 −1.04743
\(850\) 8.84538e9 0.494027
\(851\) 8.30244e9 0.461798
\(852\) −5.00607e9 −0.277305
\(853\) 2.55424e10 1.40909 0.704546 0.709658i \(-0.251151\pi\)
0.704546 + 0.709658i \(0.251151\pi\)
\(854\) −4.89409e10 −2.68887
\(855\) 1.02945e10 0.563279
\(856\) 1.49137e8 0.00812694
\(857\) 7.63993e9 0.414626 0.207313 0.978275i \(-0.433528\pi\)
0.207313 + 0.978275i \(0.433528\pi\)
\(858\) 0 0
\(859\) −2.29262e10 −1.23412 −0.617058 0.786917i \(-0.711676\pi\)
−0.617058 + 0.786917i \(0.711676\pi\)
\(860\) 1.52327e10 0.816644
\(861\) −5.37402e8 −0.0286938
\(862\) 6.61155e9 0.351583
\(863\) −3.32382e10 −1.76035 −0.880177 0.474646i \(-0.842576\pi\)
−0.880177 + 0.474646i \(0.842576\pi\)
\(864\) 5.16933e9 0.272669
\(865\) 3.33574e10 1.75241
\(866\) −3.07863e10 −1.61081
\(867\) 1.11974e9 0.0583514
\(868\) −1.70504e10 −0.884943
\(869\) 0 0
\(870\) −2.51652e10 −1.29564
\(871\) 6.39189e9 0.327767
\(872\) −9.68192e7 −0.00494486
\(873\) −6.86212e9 −0.349067
\(874\) −1.58054e10 −0.800784
\(875\) −1.67113e10 −0.843297
\(876\) −1.21561e10 −0.610983
\(877\) −3.34265e9 −0.167337 −0.0836687 0.996494i \(-0.526664\pi\)
−0.0836687 + 0.996494i \(0.526664\pi\)
\(878\) −5.55506e10 −2.76986
\(879\) −1.07944e10 −0.536092
\(880\) 0 0
\(881\) −3.41347e10 −1.68183 −0.840913 0.541171i \(-0.817981\pi\)
−0.840913 + 0.541171i \(0.817981\pi\)
\(882\) −1.89808e9 −0.0931481
\(883\) −3.78866e8 −0.0185192 −0.00925962 0.999957i \(-0.502947\pi\)
−0.00925962 + 0.999957i \(0.502947\pi\)
\(884\) −3.95835e10 −1.92722
\(885\) −5.53867e9 −0.268599
\(886\) −3.66239e9 −0.176908
\(887\) 9.48340e9 0.456280 0.228140 0.973628i \(-0.426736\pi\)
0.228140 + 0.973628i \(0.426736\pi\)
\(888\) −1.56145e8 −0.00748314
\(889\) 1.72900e9 0.0825352
\(890\) −1.50940e10 −0.717692
\(891\) 0 0
\(892\) 1.07345e10 0.506411
\(893\) 2.54803e10 1.19736
\(894\) 2.99750e10 1.40307
\(895\) −2.95360e10 −1.37712
\(896\) 5.10503e8 0.0237094
\(897\) 8.78118e9 0.406237
\(898\) −3.09796e10 −1.42761
\(899\) −2.39929e10 −1.10135
\(900\) 2.44082e9 0.111606
\(901\) −2.57005e8 −0.0117059
\(902\) 0 0
\(903\) 9.81433e9 0.443561
\(904\) 2.80722e8 0.0126382
\(905\) −6.30511e9 −0.282763
\(906\) −2.80571e10 −1.25341
\(907\) 3.10341e10 1.38107 0.690533 0.723301i \(-0.257376\pi\)
0.690533 + 0.723301i \(0.257376\pi\)
\(908\) −2.42186e10 −1.07361
\(909\) −7.17983e9 −0.317059
\(910\) −7.41462e10 −3.26170
\(911\) 2.61852e10 1.14747 0.573735 0.819041i \(-0.305494\pi\)
0.573735 + 0.819041i \(0.305494\pi\)
\(912\) −1.92137e10 −0.838741
\(913\) 0 0
\(914\) 1.50724e10 0.652937
\(915\) 2.67824e10 1.15578
\(916\) 6.88641e9 0.296046
\(917\) 1.16761e10 0.500042
\(918\) 6.70684e9 0.286134
\(919\) 2.39284e10 1.01697 0.508487 0.861070i \(-0.330205\pi\)
0.508487 + 0.861070i \(0.330205\pi\)
\(920\) −1.14023e8 −0.00482766
\(921\) 5.71361e9 0.240992
\(922\) −2.04131e10 −0.857732
\(923\) −2.07555e10 −0.868814
\(924\) 0 0
\(925\) 9.56808e9 0.397492
\(926\) −4.94473e10 −2.04647
\(927\) −1.90852e9 −0.0786895
\(928\) 4.73304e10 1.94411
\(929\) −3.19314e8 −0.0130666 −0.00653330 0.999979i \(-0.502080\pi\)
−0.00653330 + 0.999979i \(0.502080\pi\)
\(930\) 1.85905e10 0.757880
\(931\) 7.10924e9 0.288735
\(932\) 8.93433e9 0.361498
\(933\) −7.58753e8 −0.0305854
\(934\) −3.07085e10 −1.23323
\(935\) 0 0
\(936\) −1.65149e8 −0.00658280
\(937\) −2.24942e10 −0.893270 −0.446635 0.894716i \(-0.647378\pi\)
−0.446635 + 0.894716i \(0.647378\pi\)
\(938\) −7.04677e9 −0.278792
\(939\) 8.81639e7 0.00347505
\(940\) 2.42231e10 0.951224
\(941\) −3.22210e10 −1.26059 −0.630296 0.776355i \(-0.717067\pi\)
−0.630296 + 0.776355i \(0.717067\pi\)
\(942\) −2.26708e10 −0.883667
\(943\) −4.51520e8 −0.0175342
\(944\) 1.03374e10 0.399952
\(945\) 6.30542e9 0.243054
\(946\) 0 0
\(947\) 2.26003e10 0.864747 0.432373 0.901695i \(-0.357676\pi\)
0.432373 + 0.901695i \(0.357676\pi\)
\(948\) −2.81678e10 −1.07380
\(949\) −5.03999e10 −1.91424
\(950\) −1.82148e10 −0.689273
\(951\) −1.16680e10 −0.439913
\(952\) 3.31161e8 0.0124397
\(953\) −2.14078e10 −0.801211 −0.400606 0.916251i \(-0.631200\pi\)
−0.400606 + 0.916251i \(0.631200\pi\)
\(954\) −1.41299e8 −0.00526889
\(955\) −1.63258e9 −0.0606546
\(956\) 8.73166e9 0.323217
\(957\) 0 0
\(958\) −2.33620e10 −0.858480
\(959\) −4.43247e10 −1.62286
\(960\) −1.85461e10 −0.676555
\(961\) −9.78818e9 −0.355771
\(962\) −8.53103e10 −3.08950
\(963\) −6.92919e9 −0.250029
\(964\) 7.34084e9 0.263922
\(965\) −2.14965e10 −0.770055
\(966\) −9.68085e9 −0.345536
\(967\) 1.75493e10 0.624118 0.312059 0.950063i \(-0.398981\pi\)
0.312059 + 0.950063i \(0.398981\pi\)
\(968\) 0 0
\(969\) −2.51205e10 −0.886940
\(970\) 4.86823e10 1.71266
\(971\) 1.27674e9 0.0447545 0.0223772 0.999750i \(-0.492877\pi\)
0.0223772 + 0.999750i \(0.492877\pi\)
\(972\) 1.85070e9 0.0646406
\(973\) −6.82683e9 −0.237588
\(974\) −1.67740e10 −0.581676
\(975\) 1.01198e10 0.349668
\(976\) −4.99866e10 −1.72099
\(977\) 1.99064e10 0.682908 0.341454 0.939898i \(-0.389081\pi\)
0.341454 + 0.939898i \(0.389081\pi\)
\(978\) −8.67759e9 −0.296629
\(979\) 0 0
\(980\) 6.75847e9 0.229381
\(981\) 4.49840e9 0.152131
\(982\) 3.65462e10 1.23155
\(983\) −3.29569e10 −1.10665 −0.553324 0.832966i \(-0.686641\pi\)
−0.553324 + 0.832966i \(0.686641\pi\)
\(984\) 8.49180e6 0.000284130 0
\(985\) 6.09583e10 2.03239
\(986\) 6.14078e10 2.04011
\(987\) 1.56068e10 0.516658
\(988\) 8.15120e10 2.68889
\(989\) 8.24590e9 0.271051
\(990\) 0 0
\(991\) 1.80350e10 0.588652 0.294326 0.955705i \(-0.404905\pi\)
0.294326 + 0.955705i \(0.404905\pi\)
\(992\) −3.49647e10 −1.13720
\(993\) 1.01684e10 0.329556
\(994\) 2.28820e10 0.738994
\(995\) 3.59327e8 0.0115640
\(996\) −9.32483e9 −0.299043
\(997\) −9.32859e9 −0.298115 −0.149057 0.988829i \(-0.547624\pi\)
−0.149057 + 0.988829i \(0.547624\pi\)
\(998\) 7.66512e9 0.244097
\(999\) 7.25481e9 0.230222
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.8.a.r.1.2 14
11.7 odd 10 33.8.e.b.16.7 28
11.8 odd 10 33.8.e.b.31.7 yes 28
11.10 odd 2 363.8.a.o.1.13 14
33.8 even 10 99.8.f.b.64.1 28
33.29 even 10 99.8.f.b.82.1 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.8.e.b.16.7 28 11.7 odd 10
33.8.e.b.31.7 yes 28 11.8 odd 10
99.8.f.b.64.1 28 33.8 even 10
99.8.f.b.82.1 28 33.29 even 10
363.8.a.o.1.13 14 11.10 odd 2
363.8.a.r.1.2 14 1.1 even 1 trivial