Properties

Label 363.8.a.q.1.14
Level $363$
Weight $8$
Character 363.1
Self dual yes
Analytic conductor $113.396$
Analytic rank $0$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [363,8,Mod(1,363)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(363, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("363.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 363.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(113.395764251\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 2 x^{13} - 1447 x^{12} + 2312 x^{11} + 800984 x^{10} - 1116196 x^{9} - 213596799 x^{8} + \cdots - 84027524573916 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{4}\cdot 5\cdot 11^{8} \)
Twist minimal: no (minimal twist has level 33)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Root \(20.9545\) of defining polynomial
Character \(\chi\) \(=\) 363.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+22.5726 q^{2} -27.0000 q^{3} +381.522 q^{4} +369.687 q^{5} -609.460 q^{6} +757.126 q^{7} +5722.64 q^{8} +729.000 q^{9} +8344.78 q^{10} -10301.1 q^{12} -2036.16 q^{13} +17090.3 q^{14} -9981.54 q^{15} +80339.9 q^{16} +4701.64 q^{17} +16455.4 q^{18} -485.463 q^{19} +141043. q^{20} -20442.4 q^{21} +10368.5 q^{23} -154511. q^{24} +58543.3 q^{25} -45961.4 q^{26} -19683.0 q^{27} +288860. q^{28} -120912. q^{29} -225309. q^{30} +103372. q^{31} +1.08098e6 q^{32} +106128. q^{34} +279900. q^{35} +278129. q^{36} -446110. q^{37} -10958.2 q^{38} +54976.3 q^{39} +2.11558e6 q^{40} +134189. q^{41} -461438. q^{42} -412551. q^{43} +269502. q^{45} +234045. q^{46} -688723. q^{47} -2.16918e6 q^{48} -250303. q^{49} +1.32147e6 q^{50} -126944. q^{51} -776838. q^{52} -1.14687e6 q^{53} -444296. q^{54} +4.33276e6 q^{56} +13107.5 q^{57} -2.72929e6 q^{58} -1.18564e6 q^{59} -3.80817e6 q^{60} -2.51141e6 q^{61} +2.33338e6 q^{62} +551945. q^{63} +1.41170e7 q^{64} -752741. q^{65} +2.82253e6 q^{67} +1.79378e6 q^{68} -279951. q^{69} +6.31806e6 q^{70} +2.93679e6 q^{71} +4.17180e6 q^{72} +3.65685e6 q^{73} -1.00699e7 q^{74} -1.58067e6 q^{75} -185215. q^{76} +1.24096e6 q^{78} +107494. q^{79} +2.97006e7 q^{80} +531441. q^{81} +3.02899e6 q^{82} -516375. q^{83} -7.79922e6 q^{84} +1.73814e6 q^{85} -9.31233e6 q^{86} +3.26461e6 q^{87} -3.22551e6 q^{89} +6.08335e6 q^{90} -1.54163e6 q^{91} +3.95582e6 q^{92} -2.79105e6 q^{93} -1.55463e7 q^{94} -179469. q^{95} -2.91865e7 q^{96} +6.24150e6 q^{97} -5.64998e6 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 9 q^{2} - 378 q^{3} + 1129 q^{4} - 71 q^{5} - 243 q^{6} - 534 q^{7} + 3384 q^{8} + 10206 q^{9} - 676 q^{10} - 30483 q^{12} + 12320 q^{13} - 39924 q^{14} + 1917 q^{15} + 121041 q^{16} + 33141 q^{17}+ \cdots - 8477109 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 22.5726 1.99515 0.997577 0.0695758i \(-0.0221646\pi\)
0.997577 + 0.0695758i \(0.0221646\pi\)
\(3\) −27.0000 −0.577350
\(4\) 381.522 2.98064
\(5\) 369.687 1.32263 0.661316 0.750108i \(-0.269998\pi\)
0.661316 + 0.750108i \(0.269998\pi\)
\(6\) −609.460 −1.15190
\(7\) 757.126 0.834306 0.417153 0.908836i \(-0.363028\pi\)
0.417153 + 0.908836i \(0.363028\pi\)
\(8\) 5722.64 3.95167
\(9\) 729.000 0.333333
\(10\) 8344.78 2.63885
\(11\) 0 0
\(12\) −10301.1 −1.72087
\(13\) −2036.16 −0.257045 −0.128523 0.991707i \(-0.541024\pi\)
−0.128523 + 0.991707i \(0.541024\pi\)
\(14\) 17090.3 1.66457
\(15\) −9981.54 −0.763622
\(16\) 80339.9 4.90356
\(17\) 4701.64 0.232102 0.116051 0.993243i \(-0.462976\pi\)
0.116051 + 0.993243i \(0.462976\pi\)
\(18\) 16455.4 0.665051
\(19\) −485.463 −0.0162375 −0.00811874 0.999967i \(-0.502584\pi\)
−0.00811874 + 0.999967i \(0.502584\pi\)
\(20\) 141043. 3.94228
\(21\) −20442.4 −0.481687
\(22\) 0 0
\(23\) 10368.5 0.177693 0.0888465 0.996045i \(-0.471682\pi\)
0.0888465 + 0.996045i \(0.471682\pi\)
\(24\) −154511. −2.28150
\(25\) 58543.3 0.749354
\(26\) −45961.4 −0.512845
\(27\) −19683.0 −0.192450
\(28\) 288860. 2.48676
\(29\) −120912. −0.920608 −0.460304 0.887761i \(-0.652260\pi\)
−0.460304 + 0.887761i \(0.652260\pi\)
\(30\) −225309. −1.52354
\(31\) 103372. 0.623215 0.311608 0.950211i \(-0.399133\pi\)
0.311608 + 0.950211i \(0.399133\pi\)
\(32\) 1.08098e6 5.83168
\(33\) 0 0
\(34\) 106128. 0.463079
\(35\) 279900. 1.10348
\(36\) 278129. 0.993546
\(37\) −446110. −1.44789 −0.723945 0.689857i \(-0.757673\pi\)
−0.723945 + 0.689857i \(0.757673\pi\)
\(38\) −10958.2 −0.0323963
\(39\) 54976.3 0.148405
\(40\) 2.11558e6 5.22661
\(41\) 134189. 0.304070 0.152035 0.988375i \(-0.451417\pi\)
0.152035 + 0.988375i \(0.451417\pi\)
\(42\) −461438. −0.961039
\(43\) −412551. −0.791293 −0.395647 0.918403i \(-0.629480\pi\)
−0.395647 + 0.918403i \(0.629480\pi\)
\(44\) 0 0
\(45\) 269502. 0.440877
\(46\) 234045. 0.354525
\(47\) −688723. −0.967615 −0.483807 0.875175i \(-0.660746\pi\)
−0.483807 + 0.875175i \(0.660746\pi\)
\(48\) −2.16918e6 −2.83107
\(49\) −250303. −0.303934
\(50\) 1.32147e6 1.49508
\(51\) −126944. −0.134004
\(52\) −776838. −0.766159
\(53\) −1.14687e6 −1.05816 −0.529078 0.848573i \(-0.677462\pi\)
−0.529078 + 0.848573i \(0.677462\pi\)
\(54\) −444296. −0.383967
\(55\) 0 0
\(56\) 4.33276e6 3.29690
\(57\) 13107.5 0.00937471
\(58\) −2.72929e6 −1.83675
\(59\) −1.18564e6 −0.751573 −0.375787 0.926706i \(-0.622627\pi\)
−0.375787 + 0.926706i \(0.622627\pi\)
\(60\) −3.80817e6 −2.27608
\(61\) −2.51141e6 −1.41665 −0.708326 0.705886i \(-0.750549\pi\)
−0.708326 + 0.705886i \(0.750549\pi\)
\(62\) 2.33338e6 1.24341
\(63\) 551945. 0.278102
\(64\) 1.41170e7 6.73153
\(65\) −752741. −0.339976
\(66\) 0 0
\(67\) 2.82253e6 1.14651 0.573254 0.819377i \(-0.305681\pi\)
0.573254 + 0.819377i \(0.305681\pi\)
\(68\) 1.79378e6 0.691811
\(69\) −279951. −0.102591
\(70\) 6.31806e6 2.20161
\(71\) 2.93679e6 0.973797 0.486899 0.873458i \(-0.338128\pi\)
0.486899 + 0.873458i \(0.338128\pi\)
\(72\) 4.17180e6 1.31722
\(73\) 3.65685e6 1.10021 0.550107 0.835094i \(-0.314587\pi\)
0.550107 + 0.835094i \(0.314587\pi\)
\(74\) −1.00699e7 −2.88876
\(75\) −1.58067e6 −0.432640
\(76\) −185215. −0.0483980
\(77\) 0 0
\(78\) 1.24096e6 0.296091
\(79\) 107494. 0.0245294 0.0122647 0.999925i \(-0.496096\pi\)
0.0122647 + 0.999925i \(0.496096\pi\)
\(80\) 2.97006e7 6.48560
\(81\) 531441. 0.111111
\(82\) 3.02899e6 0.606666
\(83\) −516375. −0.0991270 −0.0495635 0.998771i \(-0.515783\pi\)
−0.0495635 + 0.998771i \(0.515783\pi\)
\(84\) −7.79922e6 −1.43573
\(85\) 1.73814e6 0.306985
\(86\) −9.31233e6 −1.57875
\(87\) 3.26461e6 0.531513
\(88\) 0 0
\(89\) −3.22551e6 −0.484990 −0.242495 0.970153i \(-0.577966\pi\)
−0.242495 + 0.970153i \(0.577966\pi\)
\(90\) 6.08335e6 0.879618
\(91\) −1.54163e6 −0.214454
\(92\) 3.95582e6 0.529639
\(93\) −2.79105e6 −0.359814
\(94\) −1.55463e7 −1.93054
\(95\) −179469. −0.0214762
\(96\) −2.91865e7 −3.36692
\(97\) 6.24150e6 0.694366 0.347183 0.937797i \(-0.387138\pi\)
0.347183 + 0.937797i \(0.387138\pi\)
\(98\) −5.64998e6 −0.606395
\(99\) 0 0
\(100\) 2.23355e7 2.23355
\(101\) 1.42558e7 1.37679 0.688395 0.725336i \(-0.258316\pi\)
0.688395 + 0.725336i \(0.258316\pi\)
\(102\) −2.86546e6 −0.267359
\(103\) 1.45860e6 0.131525 0.0657623 0.997835i \(-0.479052\pi\)
0.0657623 + 0.997835i \(0.479052\pi\)
\(104\) −1.16522e7 −1.01576
\(105\) −7.55729e6 −0.637094
\(106\) −2.58879e7 −2.11118
\(107\) 2.14587e6 0.169340 0.0846701 0.996409i \(-0.473016\pi\)
0.0846701 + 0.996409i \(0.473016\pi\)
\(108\) −7.50949e6 −0.573624
\(109\) −2.97884e6 −0.220320 −0.110160 0.993914i \(-0.535136\pi\)
−0.110160 + 0.993914i \(0.535136\pi\)
\(110\) 0 0
\(111\) 1.20450e7 0.835940
\(112\) 6.08275e7 4.09107
\(113\) −1.42275e7 −0.927587 −0.463793 0.885943i \(-0.653512\pi\)
−0.463793 + 0.885943i \(0.653512\pi\)
\(114\) 295870. 0.0187040
\(115\) 3.83311e6 0.235022
\(116\) −4.61304e7 −2.74400
\(117\) −1.48436e6 −0.0856818
\(118\) −2.67630e7 −1.49950
\(119\) 3.55974e6 0.193644
\(120\) −5.71207e7 −3.01758
\(121\) 0 0
\(122\) −5.66890e7 −2.82644
\(123\) −3.62310e6 −0.175555
\(124\) 3.94387e7 1.85758
\(125\) −7.23910e6 −0.331512
\(126\) 1.24588e7 0.554856
\(127\) −1.42832e6 −0.0618745 −0.0309373 0.999521i \(-0.509849\pi\)
−0.0309373 + 0.999521i \(0.509849\pi\)
\(128\) 1.80293e8 7.59876
\(129\) 1.11389e7 0.456853
\(130\) −1.69913e7 −0.678305
\(131\) 3.05006e7 1.18538 0.592691 0.805430i \(-0.298065\pi\)
0.592691 + 0.805430i \(0.298065\pi\)
\(132\) 0 0
\(133\) −367557. −0.0135470
\(134\) 6.37119e7 2.28746
\(135\) −7.27654e6 −0.254541
\(136\) 2.69058e7 0.917191
\(137\) 4.27546e7 1.42056 0.710282 0.703917i \(-0.248567\pi\)
0.710282 + 0.703917i \(0.248567\pi\)
\(138\) −6.31921e6 −0.204685
\(139\) −1.93259e7 −0.610362 −0.305181 0.952294i \(-0.598717\pi\)
−0.305181 + 0.952294i \(0.598717\pi\)
\(140\) 1.06788e8 3.28907
\(141\) 1.85955e7 0.558653
\(142\) 6.62909e7 1.94287
\(143\) 0 0
\(144\) 5.85678e7 1.63452
\(145\) −4.46994e7 −1.21763
\(146\) 8.25445e7 2.19509
\(147\) 6.75818e6 0.175476
\(148\) −1.70200e8 −4.31564
\(149\) 6.96560e7 1.72507 0.862535 0.505998i \(-0.168876\pi\)
0.862535 + 0.505998i \(0.168876\pi\)
\(150\) −3.56798e7 −0.863183
\(151\) −6.29202e7 −1.48720 −0.743602 0.668622i \(-0.766884\pi\)
−0.743602 + 0.668622i \(0.766884\pi\)
\(152\) −2.77813e6 −0.0641652
\(153\) 3.42750e6 0.0773673
\(154\) 0 0
\(155\) 3.82154e7 0.824284
\(156\) 2.09746e7 0.442342
\(157\) 792275. 0.0163391 0.00816953 0.999967i \(-0.497400\pi\)
0.00816953 + 0.999967i \(0.497400\pi\)
\(158\) 2.42641e6 0.0489400
\(159\) 3.09656e7 0.610927
\(160\) 3.99625e8 7.71316
\(161\) 7.85030e6 0.148250
\(162\) 1.19960e7 0.221684
\(163\) 5.63784e7 1.01966 0.509831 0.860275i \(-0.329708\pi\)
0.509831 + 0.860275i \(0.329708\pi\)
\(164\) 5.11960e7 0.906321
\(165\) 0 0
\(166\) −1.16559e7 −0.197774
\(167\) −1.11325e8 −1.84963 −0.924815 0.380418i \(-0.875780\pi\)
−0.924815 + 0.380418i \(0.875780\pi\)
\(168\) −1.16984e8 −1.90347
\(169\) −5.86026e7 −0.933928
\(170\) 3.92342e7 0.612482
\(171\) −353903. −0.00541249
\(172\) −1.57397e8 −2.35856
\(173\) −5.32446e7 −0.781834 −0.390917 0.920426i \(-0.627842\pi\)
−0.390917 + 0.920426i \(0.627842\pi\)
\(174\) 7.36907e7 1.06045
\(175\) 4.43246e7 0.625190
\(176\) 0 0
\(177\) 3.20123e7 0.433921
\(178\) −7.28080e7 −0.967629
\(179\) 7.17234e7 0.934706 0.467353 0.884071i \(-0.345208\pi\)
0.467353 + 0.884071i \(0.345208\pi\)
\(180\) 1.02821e8 1.31409
\(181\) 1.15264e8 1.44483 0.722416 0.691458i \(-0.243031\pi\)
0.722416 + 0.691458i \(0.243031\pi\)
\(182\) −3.47986e7 −0.427870
\(183\) 6.78081e7 0.817904
\(184\) 5.93354e7 0.702185
\(185\) −1.64921e8 −1.91503
\(186\) −6.30012e7 −0.717883
\(187\) 0 0
\(188\) −2.62763e8 −2.88411
\(189\) −1.49025e7 −0.160562
\(190\) −4.05108e6 −0.0428483
\(191\) −1.37922e8 −1.43224 −0.716120 0.697977i \(-0.754084\pi\)
−0.716120 + 0.697977i \(0.754084\pi\)
\(192\) −3.81160e8 −3.88645
\(193\) 8.80512e6 0.0881627 0.0440813 0.999028i \(-0.485964\pi\)
0.0440813 + 0.999028i \(0.485964\pi\)
\(194\) 1.40887e8 1.38537
\(195\) 2.03240e7 0.196285
\(196\) −9.54959e7 −0.905917
\(197\) 7.10547e7 0.662157 0.331079 0.943603i \(-0.392587\pi\)
0.331079 + 0.943603i \(0.392587\pi\)
\(198\) 0 0
\(199\) −6.79775e7 −0.611476 −0.305738 0.952116i \(-0.598903\pi\)
−0.305738 + 0.952116i \(0.598903\pi\)
\(200\) 3.35022e8 2.96120
\(201\) −7.62084e7 −0.661937
\(202\) 3.21791e8 2.74691
\(203\) −9.15453e7 −0.768069
\(204\) −4.84320e7 −0.399417
\(205\) 4.96079e7 0.402172
\(206\) 3.29244e7 0.262412
\(207\) 7.55867e6 0.0592310
\(208\) −1.63585e8 −1.26044
\(209\) 0 0
\(210\) −1.70587e8 −1.27110
\(211\) 3.71879e7 0.272529 0.136265 0.990672i \(-0.456490\pi\)
0.136265 + 0.990672i \(0.456490\pi\)
\(212\) −4.37557e8 −3.15398
\(213\) −7.92933e7 −0.562222
\(214\) 4.84378e7 0.337860
\(215\) −1.52514e8 −1.04659
\(216\) −1.12639e8 −0.760500
\(217\) 7.82658e7 0.519952
\(218\) −6.72401e7 −0.439573
\(219\) −9.87349e7 −0.635208
\(220\) 0 0
\(221\) −9.57329e6 −0.0596607
\(222\) 2.71886e8 1.66783
\(223\) −7.92903e7 −0.478799 −0.239400 0.970921i \(-0.576951\pi\)
−0.239400 + 0.970921i \(0.576951\pi\)
\(224\) 8.18440e8 4.86540
\(225\) 4.26780e7 0.249785
\(226\) −3.21152e8 −1.85068
\(227\) −3.38486e8 −1.92066 −0.960328 0.278871i \(-0.910040\pi\)
−0.960328 + 0.278871i \(0.910040\pi\)
\(228\) 5.00079e6 0.0279426
\(229\) 2.29754e8 1.26427 0.632133 0.774860i \(-0.282180\pi\)
0.632133 + 0.774860i \(0.282180\pi\)
\(230\) 8.65233e7 0.468906
\(231\) 0 0
\(232\) −6.91933e8 −3.63794
\(233\) 1.72505e8 0.893422 0.446711 0.894678i \(-0.352595\pi\)
0.446711 + 0.894678i \(0.352595\pi\)
\(234\) −3.35058e7 −0.170948
\(235\) −2.54612e8 −1.27980
\(236\) −4.52348e8 −2.24017
\(237\) −2.90233e6 −0.0141621
\(238\) 8.03525e7 0.386349
\(239\) −5.91779e7 −0.280393 −0.140196 0.990124i \(-0.544773\pi\)
−0.140196 + 0.990124i \(0.544773\pi\)
\(240\) −8.01916e8 −3.74446
\(241\) −3.11722e8 −1.43452 −0.717262 0.696804i \(-0.754605\pi\)
−0.717262 + 0.696804i \(0.754605\pi\)
\(242\) 0 0
\(243\) −1.43489e7 −0.0641500
\(244\) −9.58157e8 −4.22252
\(245\) −9.25337e7 −0.401993
\(246\) −8.17828e7 −0.350259
\(247\) 988480. 0.00417377
\(248\) 5.91562e8 2.46274
\(249\) 1.39421e7 0.0572310
\(250\) −1.63405e8 −0.661418
\(251\) −4.46504e8 −1.78224 −0.891122 0.453764i \(-0.850081\pi\)
−0.891122 + 0.453764i \(0.850081\pi\)
\(252\) 2.10579e8 0.828921
\(253\) 0 0
\(254\) −3.22408e7 −0.123449
\(255\) −4.69297e7 −0.177238
\(256\) 2.26269e9 8.42916
\(257\) −3.52039e8 −1.29368 −0.646838 0.762628i \(-0.723909\pi\)
−0.646838 + 0.762628i \(0.723909\pi\)
\(258\) 2.51433e8 0.911493
\(259\) −3.37761e8 −1.20798
\(260\) −2.87187e8 −1.01335
\(261\) −8.81445e7 −0.306869
\(262\) 6.88477e8 2.36502
\(263\) 2.75435e8 0.933630 0.466815 0.884355i \(-0.345401\pi\)
0.466815 + 0.884355i \(0.345401\pi\)
\(264\) 0 0
\(265\) −4.23984e8 −1.39955
\(266\) −8.29671e6 −0.0270284
\(267\) 8.70887e7 0.280009
\(268\) 1.07686e9 3.41733
\(269\) −3.09082e8 −0.968147 −0.484074 0.875027i \(-0.660843\pi\)
−0.484074 + 0.875027i \(0.660843\pi\)
\(270\) −1.64250e8 −0.507847
\(271\) 3.18134e8 0.970995 0.485498 0.874238i \(-0.338638\pi\)
0.485498 + 0.874238i \(0.338638\pi\)
\(272\) 3.77730e8 1.13812
\(273\) 4.16240e7 0.123815
\(274\) 9.65082e8 2.83424
\(275\) 0 0
\(276\) −1.06807e8 −0.305787
\(277\) 4.17374e8 1.17990 0.589951 0.807439i \(-0.299147\pi\)
0.589951 + 0.807439i \(0.299147\pi\)
\(278\) −4.36235e8 −1.21777
\(279\) 7.53584e7 0.207738
\(280\) 1.60176e9 4.36059
\(281\) −2.78776e7 −0.0749520 −0.0374760 0.999298i \(-0.511932\pi\)
−0.0374760 + 0.999298i \(0.511932\pi\)
\(282\) 4.19749e8 1.11460
\(283\) 7.00496e7 0.183719 0.0918593 0.995772i \(-0.470719\pi\)
0.0918593 + 0.995772i \(0.470719\pi\)
\(284\) 1.12045e9 2.90254
\(285\) 4.84567e6 0.0123993
\(286\) 0 0
\(287\) 1.01598e8 0.253687
\(288\) 7.88036e8 1.94389
\(289\) −3.88233e8 −0.946129
\(290\) −1.00898e9 −2.42935
\(291\) −1.68521e8 −0.400892
\(292\) 1.39517e9 3.27934
\(293\) 5.10340e7 0.118528 0.0592642 0.998242i \(-0.481125\pi\)
0.0592642 + 0.998242i \(0.481125\pi\)
\(294\) 1.52550e8 0.350103
\(295\) −4.38316e8 −0.994054
\(296\) −2.55292e9 −5.72159
\(297\) 0 0
\(298\) 1.57232e9 3.44178
\(299\) −2.11120e7 −0.0456752
\(300\) −6.03059e8 −1.28954
\(301\) −3.12353e8 −0.660180
\(302\) −1.42027e9 −2.96720
\(303\) −3.84907e8 −0.794890
\(304\) −3.90021e7 −0.0796214
\(305\) −9.28435e8 −1.87371
\(306\) 7.73675e7 0.154360
\(307\) 6.44678e8 1.27162 0.635812 0.771844i \(-0.280665\pi\)
0.635812 + 0.771844i \(0.280665\pi\)
\(308\) 0 0
\(309\) −3.93823e7 −0.0759357
\(310\) 8.62619e8 1.64457
\(311\) −3.38991e8 −0.639037 −0.319519 0.947580i \(-0.603521\pi\)
−0.319519 + 0.947580i \(0.603521\pi\)
\(312\) 3.14609e8 0.586449
\(313\) 2.07682e8 0.382819 0.191410 0.981510i \(-0.438694\pi\)
0.191410 + 0.981510i \(0.438694\pi\)
\(314\) 1.78837e7 0.0325989
\(315\) 2.04047e8 0.367826
\(316\) 4.10111e7 0.0731133
\(317\) −2.14341e8 −0.377918 −0.188959 0.981985i \(-0.560511\pi\)
−0.188959 + 0.981985i \(0.560511\pi\)
\(318\) 6.98973e8 1.21889
\(319\) 0 0
\(320\) 5.21889e9 8.90334
\(321\) −5.79385e7 −0.0977687
\(322\) 1.77202e8 0.295782
\(323\) −2.28247e6 −0.00376875
\(324\) 2.02756e8 0.331182
\(325\) −1.19203e8 −0.192618
\(326\) 1.27261e9 2.03438
\(327\) 8.04287e7 0.127202
\(328\) 7.67914e8 1.20158
\(329\) −5.21451e8 −0.807286
\(330\) 0 0
\(331\) −6.23530e8 −0.945060 −0.472530 0.881315i \(-0.656659\pi\)
−0.472530 + 0.881315i \(0.656659\pi\)
\(332\) −1.97008e8 −0.295461
\(333\) −3.25214e8 −0.482630
\(334\) −2.51289e9 −3.69029
\(335\) 1.04345e9 1.51641
\(336\) −1.64234e9 −2.36198
\(337\) 7.47270e8 1.06359 0.531793 0.846874i \(-0.321518\pi\)
0.531793 + 0.846874i \(0.321518\pi\)
\(338\) −1.32281e9 −1.86333
\(339\) 3.84143e8 0.535542
\(340\) 6.63136e8 0.915011
\(341\) 0 0
\(342\) −7.98849e6 −0.0107988
\(343\) −8.13037e8 −1.08788
\(344\) −2.36088e9 −3.12693
\(345\) −1.03494e8 −0.135690
\(346\) −1.20187e9 −1.55988
\(347\) −2.67533e8 −0.343736 −0.171868 0.985120i \(-0.554980\pi\)
−0.171868 + 0.985120i \(0.554980\pi\)
\(348\) 1.24552e9 1.58425
\(349\) 1.32034e8 0.166263 0.0831315 0.996539i \(-0.473508\pi\)
0.0831315 + 0.996539i \(0.473508\pi\)
\(350\) 1.00052e9 1.24735
\(351\) 4.00777e7 0.0494684
\(352\) 0 0
\(353\) −1.32339e9 −1.60131 −0.800656 0.599124i \(-0.795516\pi\)
−0.800656 + 0.599124i \(0.795516\pi\)
\(354\) 7.22601e8 0.865739
\(355\) 1.08569e9 1.28797
\(356\) −1.23060e9 −1.44558
\(357\) −9.61129e7 −0.111800
\(358\) 1.61898e9 1.86488
\(359\) −8.72846e8 −0.995650 −0.497825 0.867277i \(-0.665868\pi\)
−0.497825 + 0.867277i \(0.665868\pi\)
\(360\) 1.54226e9 1.74220
\(361\) −8.93636e8 −0.999736
\(362\) 2.60180e9 2.88266
\(363\) 0 0
\(364\) −5.88165e8 −0.639211
\(365\) 1.35189e9 1.45518
\(366\) 1.53060e9 1.63184
\(367\) −1.05019e9 −1.10901 −0.554506 0.832180i \(-0.687093\pi\)
−0.554506 + 0.832180i \(0.687093\pi\)
\(368\) 8.33008e8 0.871329
\(369\) 9.78237e7 0.101357
\(370\) −3.72269e9 −3.82077
\(371\) −8.68328e8 −0.882826
\(372\) −1.06485e9 −1.07247
\(373\) 9.52962e8 0.950812 0.475406 0.879767i \(-0.342301\pi\)
0.475406 + 0.879767i \(0.342301\pi\)
\(374\) 0 0
\(375\) 1.95456e8 0.191399
\(376\) −3.94131e9 −3.82370
\(377\) 2.46195e8 0.236638
\(378\) −3.36388e8 −0.320346
\(379\) 1.32631e9 1.25143 0.625716 0.780051i \(-0.284807\pi\)
0.625716 + 0.780051i \(0.284807\pi\)
\(380\) −6.84714e7 −0.0640127
\(381\) 3.85646e7 0.0357233
\(382\) −3.11325e9 −2.85754
\(383\) 1.63402e9 1.48615 0.743073 0.669210i \(-0.233367\pi\)
0.743073 + 0.669210i \(0.233367\pi\)
\(384\) −4.86790e9 −4.38715
\(385\) 0 0
\(386\) 1.98754e8 0.175898
\(387\) −3.00749e8 −0.263764
\(388\) 2.38127e9 2.06965
\(389\) 3.84635e8 0.331303 0.165651 0.986184i \(-0.447027\pi\)
0.165651 + 0.986184i \(0.447027\pi\)
\(390\) 4.58765e8 0.391620
\(391\) 4.87492e7 0.0412429
\(392\) −1.43239e9 −1.20105
\(393\) −8.23516e8 −0.684381
\(394\) 1.60389e9 1.32111
\(395\) 3.97389e7 0.0324434
\(396\) 0 0
\(397\) −2.14022e8 −0.171669 −0.0858345 0.996309i \(-0.527356\pi\)
−0.0858345 + 0.996309i \(0.527356\pi\)
\(398\) −1.53443e9 −1.21999
\(399\) 9.92403e6 0.00782137
\(400\) 4.70336e9 3.67450
\(401\) 1.37334e9 1.06359 0.531795 0.846873i \(-0.321518\pi\)
0.531795 + 0.846873i \(0.321518\pi\)
\(402\) −1.72022e9 −1.32067
\(403\) −2.10482e8 −0.160195
\(404\) 5.43890e9 4.10371
\(405\) 1.96467e8 0.146959
\(406\) −2.06641e9 −1.53241
\(407\) 0 0
\(408\) −7.26456e8 −0.529540
\(409\) 1.88430e9 1.36182 0.680908 0.732369i \(-0.261585\pi\)
0.680908 + 0.732369i \(0.261585\pi\)
\(410\) 1.11978e9 0.802395
\(411\) −1.15437e9 −0.820163
\(412\) 5.56488e8 0.392027
\(413\) −8.97680e8 −0.627042
\(414\) 1.70619e8 0.118175
\(415\) −1.90897e8 −0.131108
\(416\) −2.20105e9 −1.49901
\(417\) 5.21799e8 0.352393
\(418\) 0 0
\(419\) −4.02965e8 −0.267620 −0.133810 0.991007i \(-0.542721\pi\)
−0.133810 + 0.991007i \(0.542721\pi\)
\(420\) −2.88327e9 −1.89895
\(421\) −2.30810e6 −0.00150754 −0.000753768 1.00000i \(-0.500240\pi\)
−0.000753768 1.00000i \(0.500240\pi\)
\(422\) 8.39427e8 0.543738
\(423\) −5.02079e8 −0.322538
\(424\) −6.56314e9 −4.18149
\(425\) 2.75250e8 0.173926
\(426\) −1.78985e9 −1.12172
\(427\) −1.90145e9 −1.18192
\(428\) 8.18696e8 0.504742
\(429\) 0 0
\(430\) −3.44265e9 −2.08811
\(431\) 1.32080e9 0.794631 0.397315 0.917682i \(-0.369942\pi\)
0.397315 + 0.917682i \(0.369942\pi\)
\(432\) −1.58133e9 −0.943690
\(433\) −3.17778e8 −0.188112 −0.0940559 0.995567i \(-0.529983\pi\)
−0.0940559 + 0.995567i \(0.529983\pi\)
\(434\) 1.76666e9 1.03738
\(435\) 1.20688e9 0.702996
\(436\) −1.13649e9 −0.656695
\(437\) −5.03355e6 −0.00288529
\(438\) −2.22870e9 −1.26734
\(439\) 1.30278e9 0.734928 0.367464 0.930038i \(-0.380226\pi\)
0.367464 + 0.930038i \(0.380226\pi\)
\(440\) 0 0
\(441\) −1.82471e8 −0.101311
\(442\) −2.16094e8 −0.119032
\(443\) −1.19448e9 −0.652779 −0.326389 0.945235i \(-0.605832\pi\)
−0.326389 + 0.945235i \(0.605832\pi\)
\(444\) 4.59541e9 2.49163
\(445\) −1.19243e9 −0.641463
\(446\) −1.78979e9 −0.955277
\(447\) −1.88071e9 −0.995969
\(448\) 1.06884e10 5.61616
\(449\) −7.10632e8 −0.370495 −0.185247 0.982692i \(-0.559309\pi\)
−0.185247 + 0.982692i \(0.559309\pi\)
\(450\) 9.63354e8 0.498359
\(451\) 0 0
\(452\) −5.42810e9 −2.76480
\(453\) 1.69884e9 0.858638
\(454\) −7.64050e9 −3.83201
\(455\) −5.69920e8 −0.283644
\(456\) 7.50095e7 0.0370458
\(457\) 3.47868e8 0.170494 0.0852468 0.996360i \(-0.472832\pi\)
0.0852468 + 0.996360i \(0.472832\pi\)
\(458\) 5.18614e9 2.52241
\(459\) −9.25425e7 −0.0446680
\(460\) 1.46242e9 0.700517
\(461\) 1.99406e9 0.947948 0.473974 0.880539i \(-0.342819\pi\)
0.473974 + 0.880539i \(0.342819\pi\)
\(462\) 0 0
\(463\) −9.86608e7 −0.0461967 −0.0230984 0.999733i \(-0.507353\pi\)
−0.0230984 + 0.999733i \(0.507353\pi\)
\(464\) −9.71403e9 −4.51426
\(465\) −1.03181e9 −0.475901
\(466\) 3.89389e9 1.78251
\(467\) 4.62965e7 0.0210348 0.0105174 0.999945i \(-0.496652\pi\)
0.0105174 + 0.999945i \(0.496652\pi\)
\(468\) −5.66315e8 −0.255386
\(469\) 2.13701e9 0.956539
\(470\) −5.74725e9 −2.55339
\(471\) −2.13914e7 −0.00943336
\(472\) −6.78499e9 −2.96997
\(473\) 0 0
\(474\) −6.55130e7 −0.0282555
\(475\) −2.84206e7 −0.0121676
\(476\) 1.35812e9 0.577182
\(477\) −8.36070e8 −0.352719
\(478\) −1.33580e9 −0.559427
\(479\) −2.66837e9 −1.10936 −0.554680 0.832064i \(-0.687159\pi\)
−0.554680 + 0.832064i \(0.687159\pi\)
\(480\) −1.07899e10 −4.45320
\(481\) 9.08351e8 0.372174
\(482\) −7.03637e9 −2.86209
\(483\) −2.11958e8 −0.0855924
\(484\) 0 0
\(485\) 2.30740e9 0.918390
\(486\) −3.23892e8 −0.127989
\(487\) −3.49516e9 −1.37125 −0.685623 0.727957i \(-0.740470\pi\)
−0.685623 + 0.727957i \(0.740470\pi\)
\(488\) −1.43719e10 −5.59815
\(489\) −1.52222e9 −0.588702
\(490\) −2.08872e9 −0.802038
\(491\) 1.11582e7 0.00425413 0.00212706 0.999998i \(-0.499323\pi\)
0.00212706 + 0.999998i \(0.499323\pi\)
\(492\) −1.38229e9 −0.523265
\(493\) −5.68483e8 −0.213675
\(494\) 2.23125e7 0.00832731
\(495\) 0 0
\(496\) 8.30492e9 3.05597
\(497\) 2.22352e9 0.812445
\(498\) 3.14710e8 0.114185
\(499\) −1.66807e9 −0.600984 −0.300492 0.953784i \(-0.597151\pi\)
−0.300492 + 0.953784i \(0.597151\pi\)
\(500\) −2.76187e9 −0.988118
\(501\) 3.00577e9 1.06788
\(502\) −1.00787e10 −3.55585
\(503\) 3.13985e9 1.10007 0.550035 0.835141i \(-0.314614\pi\)
0.550035 + 0.835141i \(0.314614\pi\)
\(504\) 3.15858e9 1.09897
\(505\) 5.27019e9 1.82099
\(506\) 0 0
\(507\) 1.58227e9 0.539203
\(508\) −5.44934e8 −0.184425
\(509\) −1.32992e9 −0.447005 −0.223503 0.974703i \(-0.571749\pi\)
−0.223503 + 0.974703i \(0.571749\pi\)
\(510\) −1.05932e9 −0.353617
\(511\) 2.76870e9 0.917914
\(512\) 2.79972e10 9.21871
\(513\) 9.55537e6 0.00312490
\(514\) −7.94644e9 −2.58108
\(515\) 5.39226e8 0.173959
\(516\) 4.24972e9 1.36171
\(517\) 0 0
\(518\) −7.62415e9 −2.41011
\(519\) 1.43761e9 0.451392
\(520\) −4.30766e9 −1.34348
\(521\) 1.06631e9 0.330332 0.165166 0.986266i \(-0.447184\pi\)
0.165166 + 0.986266i \(0.447184\pi\)
\(522\) −1.98965e9 −0.612252
\(523\) 2.59234e9 0.792385 0.396193 0.918167i \(-0.370331\pi\)
0.396193 + 0.918167i \(0.370331\pi\)
\(524\) 1.16366e10 3.53319
\(525\) −1.19677e9 −0.360954
\(526\) 6.21729e9 1.86273
\(527\) 4.86020e8 0.144649
\(528\) 0 0
\(529\) −3.29732e9 −0.968425
\(530\) −9.57041e9 −2.79232
\(531\) −8.64332e8 −0.250524
\(532\) −1.40231e8 −0.0403787
\(533\) −2.73230e8 −0.0781598
\(534\) 1.96582e9 0.558661
\(535\) 7.93300e8 0.223975
\(536\) 1.61523e10 4.53063
\(537\) −1.93653e9 −0.539653
\(538\) −6.97679e9 −1.93160
\(539\) 0 0
\(540\) −2.77616e9 −0.758693
\(541\) 1.68997e9 0.458869 0.229435 0.973324i \(-0.426312\pi\)
0.229435 + 0.973324i \(0.426312\pi\)
\(542\) 7.18110e9 1.93728
\(543\) −3.11212e9 −0.834174
\(544\) 5.08239e9 1.35354
\(545\) −1.10124e9 −0.291403
\(546\) 9.39561e8 0.247031
\(547\) 1.31553e9 0.343674 0.171837 0.985125i \(-0.445030\pi\)
0.171837 + 0.985125i \(0.445030\pi\)
\(548\) 1.63118e10 4.23419
\(549\) −1.83082e9 −0.472217
\(550\) 0 0
\(551\) 5.86981e7 0.0149484
\(552\) −1.60206e9 −0.405407
\(553\) 8.13862e7 0.0204650
\(554\) 9.42121e9 2.35409
\(555\) 4.45286e9 1.10564
\(556\) −7.37324e9 −1.81927
\(557\) 3.52954e9 0.865416 0.432708 0.901534i \(-0.357558\pi\)
0.432708 + 0.901534i \(0.357558\pi\)
\(558\) 1.70103e9 0.414470
\(559\) 8.40018e8 0.203398
\(560\) 2.24871e10 5.41097
\(561\) 0 0
\(562\) −6.29270e8 −0.149541
\(563\) 1.74244e9 0.411507 0.205754 0.978604i \(-0.434035\pi\)
0.205754 + 0.978604i \(0.434035\pi\)
\(564\) 7.09460e9 1.66514
\(565\) −5.25972e9 −1.22686
\(566\) 1.58120e9 0.366547
\(567\) 4.02368e8 0.0927006
\(568\) 1.68062e10 3.84813
\(569\) 1.65109e9 0.375731 0.187865 0.982195i \(-0.439843\pi\)
0.187865 + 0.982195i \(0.439843\pi\)
\(570\) 1.09379e8 0.0247385
\(571\) −1.50229e9 −0.337698 −0.168849 0.985642i \(-0.554005\pi\)
−0.168849 + 0.985642i \(0.554005\pi\)
\(572\) 0 0
\(573\) 3.72389e9 0.826905
\(574\) 2.29333e9 0.506145
\(575\) 6.07009e8 0.133155
\(576\) 1.02913e10 2.24384
\(577\) −7.21698e9 −1.56401 −0.782007 0.623270i \(-0.785804\pi\)
−0.782007 + 0.623270i \(0.785804\pi\)
\(578\) −8.76343e9 −1.88767
\(579\) −2.37738e8 −0.0509007
\(580\) −1.70538e10 −3.62930
\(581\) −3.90961e8 −0.0827022
\(582\) −3.80395e9 −0.799841
\(583\) 0 0
\(584\) 2.09268e10 4.34768
\(585\) −5.48748e8 −0.113325
\(586\) 1.15197e9 0.236482
\(587\) −8.76023e9 −1.78765 −0.893825 0.448416i \(-0.851988\pi\)
−0.893825 + 0.448416i \(0.851988\pi\)
\(588\) 2.57839e9 0.523032
\(589\) −5.01834e7 −0.0101194
\(590\) −9.89392e9 −1.98329
\(591\) −1.91848e9 −0.382297
\(592\) −3.58404e10 −7.09982
\(593\) −5.37529e9 −1.05855 −0.529273 0.848451i \(-0.677535\pi\)
−0.529273 + 0.848451i \(0.677535\pi\)
\(594\) 0 0
\(595\) 1.31599e9 0.256119
\(596\) 2.65753e10 5.14181
\(597\) 1.83539e9 0.353036
\(598\) −4.76553e8 −0.0911290
\(599\) 4.15321e9 0.789568 0.394784 0.918774i \(-0.370819\pi\)
0.394784 + 0.918774i \(0.370819\pi\)
\(600\) −9.04559e9 −1.70965
\(601\) −2.03055e9 −0.381552 −0.190776 0.981634i \(-0.561100\pi\)
−0.190776 + 0.981634i \(0.561100\pi\)
\(602\) −7.05061e9 −1.31716
\(603\) 2.05763e9 0.382170
\(604\) −2.40054e10 −4.43282
\(605\) 0 0
\(606\) −8.68835e9 −1.58593
\(607\) −1.06928e10 −1.94058 −0.970292 0.241935i \(-0.922218\pi\)
−0.970292 + 0.241935i \(0.922218\pi\)
\(608\) −5.24777e8 −0.0946917
\(609\) 2.47172e9 0.443445
\(610\) −2.09572e10 −3.73834
\(611\) 1.40235e9 0.248721
\(612\) 1.30766e9 0.230604
\(613\) 6.43717e9 1.12871 0.564356 0.825531i \(-0.309124\pi\)
0.564356 + 0.825531i \(0.309124\pi\)
\(614\) 1.45520e10 2.53708
\(615\) −1.33941e9 −0.232194
\(616\) 0 0
\(617\) 2.64748e9 0.453768 0.226884 0.973922i \(-0.427146\pi\)
0.226884 + 0.973922i \(0.427146\pi\)
\(618\) −8.88960e8 −0.151503
\(619\) −6.80618e9 −1.15342 −0.576708 0.816950i \(-0.695663\pi\)
−0.576708 + 0.816950i \(0.695663\pi\)
\(620\) 1.45800e10 2.45689
\(621\) −2.04084e8 −0.0341971
\(622\) −7.65189e9 −1.27498
\(623\) −2.44212e9 −0.404630
\(624\) 4.41679e9 0.727714
\(625\) −7.24989e9 −1.18782
\(626\) 4.68792e9 0.763783
\(627\) 0 0
\(628\) 3.02270e8 0.0487008
\(629\) −2.09745e9 −0.336058
\(630\) 4.60586e9 0.733870
\(631\) 6.80335e9 1.07800 0.539002 0.842305i \(-0.318802\pi\)
0.539002 + 0.842305i \(0.318802\pi\)
\(632\) 6.15146e8 0.0969323
\(633\) −1.00407e9 −0.157345
\(634\) −4.83823e9 −0.754004
\(635\) −5.28030e8 −0.0818372
\(636\) 1.18140e10 1.82095
\(637\) 5.09656e8 0.0781249
\(638\) 0 0
\(639\) 2.14092e9 0.324599
\(640\) 6.66518e10 10.0504
\(641\) −1.23182e9 −0.184733 −0.0923665 0.995725i \(-0.529443\pi\)
−0.0923665 + 0.995725i \(0.529443\pi\)
\(642\) −1.30782e9 −0.195063
\(643\) 8.94158e9 1.32640 0.663202 0.748440i \(-0.269197\pi\)
0.663202 + 0.748440i \(0.269197\pi\)
\(644\) 2.99506e9 0.441880
\(645\) 4.11789e9 0.604249
\(646\) −5.15213e7 −0.00751923
\(647\) −6.39256e9 −0.927919 −0.463959 0.885857i \(-0.653572\pi\)
−0.463959 + 0.885857i \(0.653572\pi\)
\(648\) 3.04124e9 0.439075
\(649\) 0 0
\(650\) −2.69073e9 −0.384303
\(651\) −2.11318e9 −0.300194
\(652\) 2.15096e10 3.03924
\(653\) 1.19315e10 1.67687 0.838434 0.545004i \(-0.183472\pi\)
0.838434 + 0.545004i \(0.183472\pi\)
\(654\) 1.81548e9 0.253788
\(655\) 1.12757e10 1.56782
\(656\) 1.07807e10 1.49102
\(657\) 2.66584e9 0.366738
\(658\) −1.17705e10 −1.61066
\(659\) −8.83201e9 −1.20215 −0.601077 0.799191i \(-0.705262\pi\)
−0.601077 + 0.799191i \(0.705262\pi\)
\(660\) 0 0
\(661\) −5.97465e9 −0.804651 −0.402325 0.915497i \(-0.631798\pi\)
−0.402325 + 0.915497i \(0.631798\pi\)
\(662\) −1.40747e10 −1.88554
\(663\) 2.58479e8 0.0344451
\(664\) −2.95503e9 −0.391717
\(665\) −1.35881e8 −0.0179177
\(666\) −7.34092e9 −0.962921
\(667\) −1.25368e9 −0.163586
\(668\) −4.24728e10 −5.51307
\(669\) 2.14084e9 0.276435
\(670\) 2.35534e10 3.02547
\(671\) 0 0
\(672\) −2.20979e10 −2.80904
\(673\) 6.44511e9 0.815038 0.407519 0.913197i \(-0.366394\pi\)
0.407519 + 0.913197i \(0.366394\pi\)
\(674\) 1.68678e10 2.12202
\(675\) −1.15231e9 −0.144213
\(676\) −2.23581e10 −2.78370
\(677\) 4.29897e9 0.532480 0.266240 0.963907i \(-0.414219\pi\)
0.266240 + 0.963907i \(0.414219\pi\)
\(678\) 8.67110e9 1.06849
\(679\) 4.72561e9 0.579313
\(680\) 9.94671e9 1.21311
\(681\) 9.13911e9 1.10889
\(682\) 0 0
\(683\) 3.81095e8 0.0457678 0.0228839 0.999738i \(-0.492715\pi\)
0.0228839 + 0.999738i \(0.492715\pi\)
\(684\) −1.35021e8 −0.0161327
\(685\) 1.58058e10 1.87888
\(686\) −1.83523e10 −2.17049
\(687\) −6.20335e9 −0.729925
\(688\) −3.31443e10 −3.88015
\(689\) 2.33522e9 0.271994
\(690\) −2.33613e9 −0.270723
\(691\) 8.25120e9 0.951358 0.475679 0.879619i \(-0.342202\pi\)
0.475679 + 0.879619i \(0.342202\pi\)
\(692\) −2.03140e10 −2.33036
\(693\) 0 0
\(694\) −6.03892e9 −0.685806
\(695\) −7.14452e9 −0.807284
\(696\) 1.86822e10 2.10037
\(697\) 6.30909e8 0.0705751
\(698\) 2.98034e9 0.331720
\(699\) −4.65764e9 −0.515817
\(700\) 1.69108e10 1.86346
\(701\) 8.83850e9 0.969093 0.484547 0.874765i \(-0.338985\pi\)
0.484547 + 0.874765i \(0.338985\pi\)
\(702\) 9.04658e8 0.0986971
\(703\) 2.16570e8 0.0235101
\(704\) 0 0
\(705\) 6.87452e9 0.738891
\(706\) −2.98723e10 −3.19486
\(707\) 1.07935e10 1.14866
\(708\) 1.22134e10 1.29336
\(709\) 1.15716e10 1.21936 0.609680 0.792648i \(-0.291298\pi\)
0.609680 + 0.792648i \(0.291298\pi\)
\(710\) 2.45069e10 2.56971
\(711\) 7.83628e7 0.00817648
\(712\) −1.84584e10 −1.91652
\(713\) 1.07182e9 0.110741
\(714\) −2.16952e9 −0.223059
\(715\) 0 0
\(716\) 2.73640e10 2.78602
\(717\) 1.59780e9 0.161885
\(718\) −1.97024e10 −1.98648
\(719\) 3.22237e9 0.323313 0.161657 0.986847i \(-0.448316\pi\)
0.161657 + 0.986847i \(0.448316\pi\)
\(720\) 2.16517e10 2.16187
\(721\) 1.10435e9 0.109732
\(722\) −2.01717e10 −1.99463
\(723\) 8.41649e9 0.828223
\(724\) 4.39756e10 4.30652
\(725\) −7.07856e9 −0.689861
\(726\) 0 0
\(727\) 4.17821e9 0.403292 0.201646 0.979458i \(-0.435371\pi\)
0.201646 + 0.979458i \(0.435371\pi\)
\(728\) −8.82218e9 −0.847454
\(729\) 3.87420e8 0.0370370
\(730\) 3.05156e10 2.90330
\(731\) −1.93967e9 −0.183661
\(732\) 2.58702e10 2.43788
\(733\) −5.44726e9 −0.510874 −0.255437 0.966826i \(-0.582219\pi\)
−0.255437 + 0.966826i \(0.582219\pi\)
\(734\) −2.37055e10 −2.21265
\(735\) 2.49841e9 0.232091
\(736\) 1.12082e10 1.03625
\(737\) 0 0
\(738\) 2.20813e9 0.202222
\(739\) −4.05591e9 −0.369686 −0.184843 0.982768i \(-0.559178\pi\)
−0.184843 + 0.982768i \(0.559178\pi\)
\(740\) −6.29209e10 −5.70800
\(741\) −2.66890e7 −0.00240973
\(742\) −1.96004e10 −1.76137
\(743\) 2.80251e9 0.250661 0.125330 0.992115i \(-0.460001\pi\)
0.125330 + 0.992115i \(0.460001\pi\)
\(744\) −1.59722e10 −1.42187
\(745\) 2.57509e10 2.28163
\(746\) 2.15108e10 1.89702
\(747\) −3.76437e8 −0.0330423
\(748\) 0 0
\(749\) 1.62469e9 0.141282
\(750\) 4.41194e9 0.381870
\(751\) −1.66390e10 −1.43346 −0.716732 0.697349i \(-0.754363\pi\)
−0.716732 + 0.697349i \(0.754363\pi\)
\(752\) −5.53320e10 −4.74476
\(753\) 1.20556e10 1.02898
\(754\) 5.55726e9 0.472130
\(755\) −2.32608e10 −1.96702
\(756\) −5.68563e9 −0.478578
\(757\) −7.88200e9 −0.660390 −0.330195 0.943913i \(-0.607115\pi\)
−0.330195 + 0.943913i \(0.607115\pi\)
\(758\) 2.99382e10 2.49680
\(759\) 0 0
\(760\) −1.02704e9 −0.0848669
\(761\) 2.13478e10 1.75592 0.877962 0.478730i \(-0.158903\pi\)
0.877962 + 0.478730i \(0.158903\pi\)
\(762\) 8.70502e8 0.0712734
\(763\) −2.25536e9 −0.183815
\(764\) −5.26201e10 −4.26899
\(765\) 1.26710e9 0.102328
\(766\) 3.68841e10 2.96509
\(767\) 2.41415e9 0.193188
\(768\) −6.10925e10 −4.86658
\(769\) −1.93037e10 −1.53073 −0.765365 0.643596i \(-0.777442\pi\)
−0.765365 + 0.643596i \(0.777442\pi\)
\(770\) 0 0
\(771\) 9.50506e9 0.746904
\(772\) 3.35934e9 0.262781
\(773\) 1.04348e10 0.812562 0.406281 0.913748i \(-0.366825\pi\)
0.406281 + 0.913748i \(0.366825\pi\)
\(774\) −6.78869e9 −0.526251
\(775\) 6.05175e9 0.467009
\(776\) 3.57179e10 2.74391
\(777\) 9.11956e9 0.697429
\(778\) 8.68221e9 0.661000
\(779\) −6.51438e7 −0.00493733
\(780\) 7.75405e9 0.585056
\(781\) 0 0
\(782\) 1.10040e9 0.0822859
\(783\) 2.37990e9 0.177171
\(784\) −2.01093e10 −1.49036
\(785\) 2.92893e8 0.0216105
\(786\) −1.85889e10 −1.36544
\(787\) −1.43512e10 −1.04949 −0.524744 0.851260i \(-0.675839\pi\)
−0.524744 + 0.851260i \(0.675839\pi\)
\(788\) 2.71089e10 1.97365
\(789\) −7.43676e9 −0.539031
\(790\) 8.97011e8 0.0647296
\(791\) −1.07720e10 −0.773891
\(792\) 0 0
\(793\) 5.11363e9 0.364144
\(794\) −4.83103e9 −0.342506
\(795\) 1.14476e10 0.808031
\(796\) −2.59349e10 −1.82259
\(797\) −1.61771e10 −1.13187 −0.565935 0.824450i \(-0.691485\pi\)
−0.565935 + 0.824450i \(0.691485\pi\)
\(798\) 2.24011e8 0.0156048
\(799\) −3.23813e9 −0.224585
\(800\) 6.32842e10 4.36999
\(801\) −2.35139e9 −0.161663
\(802\) 3.09999e10 2.12202
\(803\) 0 0
\(804\) −2.90751e10 −1.97299
\(805\) 2.90215e9 0.196081
\(806\) −4.75113e9 −0.319613
\(807\) 8.34523e9 0.558960
\(808\) 8.15809e10 5.44062
\(809\) 7.11605e9 0.472519 0.236259 0.971690i \(-0.424078\pi\)
0.236259 + 0.971690i \(0.424078\pi\)
\(810\) 4.43476e9 0.293206
\(811\) 2.50874e10 1.65152 0.825759 0.564024i \(-0.190747\pi\)
0.825759 + 0.564024i \(0.190747\pi\)
\(812\) −3.49265e10 −2.28933
\(813\) −8.58961e9 −0.560604
\(814\) 0 0
\(815\) 2.08423e10 1.34864
\(816\) −1.01987e10 −0.657097
\(817\) 2.00278e8 0.0128486
\(818\) 4.25335e10 2.71703
\(819\) −1.12385e9 −0.0714848
\(820\) 1.89265e10 1.19873
\(821\) 1.43609e10 0.905691 0.452846 0.891589i \(-0.350409\pi\)
0.452846 + 0.891589i \(0.350409\pi\)
\(822\) −2.60572e10 −1.63635
\(823\) −1.84581e10 −1.15422 −0.577109 0.816667i \(-0.695819\pi\)
−0.577109 + 0.816667i \(0.695819\pi\)
\(824\) 8.34705e9 0.519742
\(825\) 0 0
\(826\) −2.02630e10 −1.25104
\(827\) 1.56854e9 0.0964334 0.0482167 0.998837i \(-0.484646\pi\)
0.0482167 + 0.998837i \(0.484646\pi\)
\(828\) 2.88380e9 0.176546
\(829\) 2.62637e10 1.60109 0.800545 0.599273i \(-0.204543\pi\)
0.800545 + 0.599273i \(0.204543\pi\)
\(830\) −4.30904e9 −0.261581
\(831\) −1.12691e10 −0.681217
\(832\) −2.87446e10 −1.73031
\(833\) −1.17683e9 −0.0705437
\(834\) 1.17783e10 0.703077
\(835\) −4.11553e10 −2.44638
\(836\) 0 0
\(837\) −2.03468e9 −0.119938
\(838\) −9.09596e9 −0.533943
\(839\) −9.69865e9 −0.566950 −0.283475 0.958980i \(-0.591487\pi\)
−0.283475 + 0.958980i \(0.591487\pi\)
\(840\) −4.32476e10 −2.51759
\(841\) −2.63027e9 −0.152480
\(842\) −5.20998e7 −0.00300776
\(843\) 7.52695e8 0.0432736
\(844\) 1.41880e10 0.812311
\(845\) −2.16646e10 −1.23524
\(846\) −1.13332e10 −0.643513
\(847\) 0 0
\(848\) −9.21397e10 −5.18873
\(849\) −1.89134e9 −0.106070
\(850\) 6.21310e9 0.347010
\(851\) −4.62551e9 −0.257280
\(852\) −3.02521e10 −1.67578
\(853\) 2.21086e10 1.21966 0.609830 0.792532i \(-0.291238\pi\)
0.609830 + 0.792532i \(0.291238\pi\)
\(854\) −4.29207e10 −2.35811
\(855\) −1.30833e8 −0.00715873
\(856\) 1.22800e10 0.669178
\(857\) 1.69648e10 0.920696 0.460348 0.887739i \(-0.347725\pi\)
0.460348 + 0.887739i \(0.347725\pi\)
\(858\) 0 0
\(859\) 5.51307e9 0.296768 0.148384 0.988930i \(-0.452593\pi\)
0.148384 + 0.988930i \(0.452593\pi\)
\(860\) −5.81875e10 −3.11950
\(861\) −2.74315e9 −0.146466
\(862\) 2.98138e10 1.58541
\(863\) −6.16691e9 −0.326610 −0.163305 0.986576i \(-0.552215\pi\)
−0.163305 + 0.986576i \(0.552215\pi\)
\(864\) −2.12770e10 −1.12231
\(865\) −1.96838e10 −1.03408
\(866\) −7.17307e9 −0.375312
\(867\) 1.04823e10 0.546248
\(868\) 2.98601e10 1.54979
\(869\) 0 0
\(870\) 2.72425e10 1.40259
\(871\) −5.74713e9 −0.294705
\(872\) −1.70468e10 −0.870634
\(873\) 4.55006e9 0.231455
\(874\) −1.13620e8 −0.00575659
\(875\) −5.48092e9 −0.276583
\(876\) −3.76695e10 −1.89333
\(877\) 9.33197e9 0.467170 0.233585 0.972336i \(-0.424954\pi\)
0.233585 + 0.972336i \(0.424954\pi\)
\(878\) 2.94071e10 1.46629
\(879\) −1.37792e9 −0.0684324
\(880\) 0 0
\(881\) 8.00522e9 0.394419 0.197209 0.980361i \(-0.436812\pi\)
0.197209 + 0.980361i \(0.436812\pi\)
\(882\) −4.11884e9 −0.202132
\(883\) −1.44308e10 −0.705387 −0.352693 0.935739i \(-0.614734\pi\)
−0.352693 + 0.935739i \(0.614734\pi\)
\(884\) −3.65242e9 −0.177827
\(885\) 1.18345e10 0.573918
\(886\) −2.69625e10 −1.30239
\(887\) 1.05088e10 0.505615 0.252807 0.967517i \(-0.418646\pi\)
0.252807 + 0.967517i \(0.418646\pi\)
\(888\) 6.89289e10 3.30336
\(889\) −1.08142e9 −0.0516223
\(890\) −2.69162e10 −1.27982
\(891\) 0 0
\(892\) −3.02510e10 −1.42713
\(893\) 3.34350e8 0.0157116
\(894\) −4.24525e10 −1.98711
\(895\) 2.65152e10 1.23627
\(896\) 1.36504e11 6.33969
\(897\) 5.70024e8 0.0263706
\(898\) −1.60408e10 −0.739194
\(899\) −1.24989e10 −0.573737
\(900\) 1.62826e10 0.744517
\(901\) −5.39219e9 −0.245600
\(902\) 0 0
\(903\) 8.43353e9 0.381155
\(904\) −8.14189e10 −3.66552
\(905\) 4.26115e10 1.91098
\(906\) 3.83473e10 1.71311
\(907\) 8.15333e9 0.362835 0.181418 0.983406i \(-0.441931\pi\)
0.181418 + 0.983406i \(0.441931\pi\)
\(908\) −1.29140e11 −5.72478
\(909\) 1.03925e10 0.458930
\(910\) −1.28646e10 −0.565914
\(911\) −4.19000e10 −1.83611 −0.918057 0.396448i \(-0.870243\pi\)
−0.918057 + 0.396448i \(0.870243\pi\)
\(912\) 1.05306e9 0.0459695
\(913\) 0 0
\(914\) 7.85228e9 0.340161
\(915\) 2.50677e10 1.08179
\(916\) 8.76560e10 3.76832
\(917\) 2.30928e10 0.988971
\(918\) −2.08892e9 −0.0891195
\(919\) 4.24752e10 1.80522 0.902612 0.430455i \(-0.141647\pi\)
0.902612 + 0.430455i \(0.141647\pi\)
\(920\) 2.19355e10 0.928732
\(921\) −1.74063e10 −0.734172
\(922\) 4.50110e10 1.89130
\(923\) −5.97977e9 −0.250310
\(924\) 0 0
\(925\) −2.61167e10 −1.08498
\(926\) −2.22703e9 −0.0921696
\(927\) 1.06332e9 0.0438415
\(928\) −1.30703e11 −5.36869
\(929\) 3.11681e10 1.27543 0.637713 0.770274i \(-0.279881\pi\)
0.637713 + 0.770274i \(0.279881\pi\)
\(930\) −2.32907e10 −0.949495
\(931\) 1.21513e8 0.00493512
\(932\) 6.58145e10 2.66297
\(933\) 9.15275e9 0.368948
\(934\) 1.04503e9 0.0419677
\(935\) 0 0
\(936\) −8.49445e9 −0.338587
\(937\) −3.47809e10 −1.38119 −0.690594 0.723243i \(-0.742651\pi\)
−0.690594 + 0.723243i \(0.742651\pi\)
\(938\) 4.82379e10 1.90844
\(939\) −5.60741e9 −0.221021
\(940\) −9.71399e10 −3.81461
\(941\) 1.69704e10 0.663940 0.331970 0.943290i \(-0.392287\pi\)
0.331970 + 0.943290i \(0.392287\pi\)
\(942\) −4.82859e8 −0.0188210
\(943\) 1.39134e9 0.0540311
\(944\) −9.52543e10 −3.68538
\(945\) −5.50926e9 −0.212365
\(946\) 0 0
\(947\) 3.94704e10 1.51024 0.755121 0.655585i \(-0.227578\pi\)
0.755121 + 0.655585i \(0.227578\pi\)
\(948\) −1.10730e9 −0.0422120
\(949\) −7.44592e9 −0.282805
\(950\) −6.41526e8 −0.0242763
\(951\) 5.78720e9 0.218191
\(952\) 2.03711e10 0.765217
\(953\) 3.97393e10 1.48729 0.743643 0.668577i \(-0.233096\pi\)
0.743643 + 0.668577i \(0.233096\pi\)
\(954\) −1.88723e10 −0.703728
\(955\) −5.09879e10 −1.89433
\(956\) −2.25777e10 −0.835750
\(957\) 0 0
\(958\) −6.02321e10 −2.21334
\(959\) 3.23706e10 1.18518
\(960\) −1.40910e11 −5.14034
\(961\) −1.68268e10 −0.611603
\(962\) 2.05038e10 0.742544
\(963\) 1.56434e9 0.0564468
\(964\) −1.18929e11 −4.27579
\(965\) 3.25514e9 0.116607
\(966\) −4.78444e9 −0.170770
\(967\) 4.14224e10 1.47314 0.736568 0.676363i \(-0.236445\pi\)
0.736568 + 0.676363i \(0.236445\pi\)
\(968\) 0 0
\(969\) 6.16268e7 0.00217589
\(970\) 5.20840e10 1.83233
\(971\) 4.51848e10 1.58389 0.791945 0.610592i \(-0.209068\pi\)
0.791945 + 0.610592i \(0.209068\pi\)
\(972\) −5.47442e9 −0.191208
\(973\) −1.46321e10 −0.509228
\(974\) −7.88947e10 −2.73584
\(975\) 3.21849e9 0.111208
\(976\) −2.01766e11 −6.94664
\(977\) 2.53625e10 0.870082 0.435041 0.900411i \(-0.356734\pi\)
0.435041 + 0.900411i \(0.356734\pi\)
\(978\) −3.43603e10 −1.17455
\(979\) 0 0
\(980\) −3.53036e10 −1.19819
\(981\) −2.17158e9 −0.0734401
\(982\) 2.51870e8 0.00848764
\(983\) −6.71205e9 −0.225381 −0.112691 0.993630i \(-0.535947\pi\)
−0.112691 + 0.993630i \(0.535947\pi\)
\(984\) −2.07337e10 −0.693735
\(985\) 2.62680e10 0.875790
\(986\) −1.28321e10 −0.426314
\(987\) 1.40792e10 0.466087
\(988\) 3.77126e8 0.0124405
\(989\) −4.27755e9 −0.140607
\(990\) 0 0
\(991\) 2.79748e10 0.913082 0.456541 0.889702i \(-0.349088\pi\)
0.456541 + 0.889702i \(0.349088\pi\)
\(992\) 1.11744e11 3.63439
\(993\) 1.68353e10 0.545631
\(994\) 5.01906e10 1.62095
\(995\) −2.51304e10 −0.808757
\(996\) 5.31922e9 0.170585
\(997\) −4.39464e10 −1.40440 −0.702200 0.711980i \(-0.747799\pi\)
−0.702200 + 0.711980i \(0.747799\pi\)
\(998\) −3.76527e10 −1.19906
\(999\) 8.78078e9 0.278647
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.8.a.q.1.14 14
11.5 even 5 33.8.e.a.25.1 yes 28
11.9 even 5 33.8.e.a.4.1 28
11.10 odd 2 363.8.a.p.1.1 14
33.5 odd 10 99.8.f.c.91.7 28
33.20 odd 10 99.8.f.c.37.7 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.8.e.a.4.1 28 11.9 even 5
33.8.e.a.25.1 yes 28 11.5 even 5
99.8.f.c.37.7 28 33.20 odd 10
99.8.f.c.91.7 28 33.5 odd 10
363.8.a.p.1.1 14 11.10 odd 2
363.8.a.q.1.14 14 1.1 even 1 trivial