Properties

Label 363.8.a.n.1.6
Level $363$
Weight $8$
Character 363.1
Self dual yes
Analytic conductor $113.396$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [363,8,Mod(1,363)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(363, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("363.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 363.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(113.395764251\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 1139x^{10} + 474732x^{8} - 87245660x^{6} + 6439013152x^{4} - 100879962816x^{2} + 359539347456 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{8}\cdot 3\cdot 11^{6} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-2.26509\) of defining polynomial
Character \(\chi\) \(=\) 363.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.26509 q^{2} -27.0000 q^{3} -122.869 q^{4} -77.8195 q^{5} +61.1574 q^{6} -799.987 q^{7} +568.242 q^{8} +729.000 q^{9} +176.268 q^{10} +3317.47 q^{12} -3.56354 q^{13} +1812.04 q^{14} +2101.13 q^{15} +14440.2 q^{16} +7190.73 q^{17} -1651.25 q^{18} -28280.5 q^{19} +9561.64 q^{20} +21599.7 q^{21} -69227.9 q^{23} -15342.5 q^{24} -72069.1 q^{25} +8.07175 q^{26} -19683.0 q^{27} +98293.9 q^{28} -117962. q^{29} -4759.24 q^{30} -102566. q^{31} -105443. q^{32} -16287.6 q^{34} +62254.6 q^{35} -89571.8 q^{36} -326829. q^{37} +64057.8 q^{38} +96.2157 q^{39} -44220.3 q^{40} -401254. q^{41} -48925.1 q^{42} +319823. q^{43} -56730.5 q^{45} +156807. q^{46} +131421. q^{47} -389884. q^{48} -183563. q^{49} +163243. q^{50} -194150. q^{51} +437.850 q^{52} -2.06067e6 q^{53} +44583.8 q^{54} -454586. q^{56} +763573. q^{57} +267194. q^{58} -374567. q^{59} -258164. q^{60} -25265.2 q^{61} +232322. q^{62} -583191. q^{63} -1.60950e6 q^{64} +277.313 q^{65} +675543. q^{67} -883521. q^{68} +1.86915e6 q^{69} -141012. q^{70} +1.04454e6 q^{71} +414248. q^{72} -2.73896e6 q^{73} +740297. q^{74} +1.94587e6 q^{75} +3.47481e6 q^{76} -217.937 q^{78} +808349. q^{79} -1.12373e6 q^{80} +531441. q^{81} +908877. q^{82} -4.64558e6 q^{83} -2.65394e6 q^{84} -559579. q^{85} -724427. q^{86} +3.18497e6 q^{87} -4.27067e6 q^{89} +128500. q^{90} +2850.79 q^{91} +8.50599e6 q^{92} +2.76930e6 q^{93} -297681. q^{94} +2.20078e6 q^{95} +2.84697e6 q^{96} +8.25067e6 q^{97} +415788. q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 324 q^{3} + 742 q^{4} + 54 q^{5} + 8748 q^{9} - 20034 q^{12} + 25512 q^{14} - 1458 q^{15} + 17570 q^{16} - 14730 q^{20} - 108720 q^{23} + 395498 q^{25} + 498174 q^{26} - 236196 q^{27} - 261362 q^{31}+ \cdots - 51696396 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.26509 −0.200208 −0.100104 0.994977i \(-0.531917\pi\)
−0.100104 + 0.994977i \(0.531917\pi\)
\(3\) −27.0000 −0.577350
\(4\) −122.869 −0.959917
\(5\) −77.8195 −0.278416 −0.139208 0.990263i \(-0.544456\pi\)
−0.139208 + 0.990263i \(0.544456\pi\)
\(6\) 61.1574 0.115590
\(7\) −799.987 −0.881536 −0.440768 0.897621i \(-0.645294\pi\)
−0.440768 + 0.897621i \(0.645294\pi\)
\(8\) 568.242 0.392390
\(9\) 729.000 0.333333
\(10\) 176.268 0.0557409
\(11\) 0 0
\(12\) 3317.47 0.554208
\(13\) −3.56354 −0.000449863 0 −0.000224932 1.00000i \(-0.500072\pi\)
−0.000224932 1.00000i \(0.500072\pi\)
\(14\) 1812.04 0.176490
\(15\) 2101.13 0.160743
\(16\) 14440.2 0.881358
\(17\) 7190.73 0.354978 0.177489 0.984123i \(-0.443203\pi\)
0.177489 + 0.984123i \(0.443203\pi\)
\(18\) −1651.25 −0.0667358
\(19\) −28280.5 −0.945909 −0.472955 0.881087i \(-0.656813\pi\)
−0.472955 + 0.881087i \(0.656813\pi\)
\(20\) 9561.64 0.267256
\(21\) 21599.7 0.508955
\(22\) 0 0
\(23\) −69227.9 −1.18641 −0.593204 0.805052i \(-0.702137\pi\)
−0.593204 + 0.805052i \(0.702137\pi\)
\(24\) −15342.5 −0.226547
\(25\) −72069.1 −0.922485
\(26\) 8.07175 9.00660e−5 0
\(27\) −19683.0 −0.192450
\(28\) 98293.9 0.846201
\(29\) −117962. −0.898148 −0.449074 0.893495i \(-0.648246\pi\)
−0.449074 + 0.893495i \(0.648246\pi\)
\(30\) −4759.24 −0.0321820
\(31\) −102566. −0.618357 −0.309179 0.951004i \(-0.600054\pi\)
−0.309179 + 0.951004i \(0.600054\pi\)
\(32\) −105443. −0.568844
\(33\) 0 0
\(34\) −16287.6 −0.0710693
\(35\) 62254.6 0.245433
\(36\) −89571.8 −0.319972
\(37\) −326829. −1.06075 −0.530377 0.847762i \(-0.677950\pi\)
−0.530377 + 0.847762i \(0.677950\pi\)
\(38\) 64057.8 0.189378
\(39\) 96.2157 0.000259729 0
\(40\) −44220.3 −0.109248
\(41\) −401254. −0.909235 −0.454618 0.890687i \(-0.650224\pi\)
−0.454618 + 0.890687i \(0.650224\pi\)
\(42\) −48925.1 −0.101897
\(43\) 319823. 0.613436 0.306718 0.951800i \(-0.400769\pi\)
0.306718 + 0.951800i \(0.400769\pi\)
\(44\) 0 0
\(45\) −56730.5 −0.0928052
\(46\) 156807. 0.237528
\(47\) 131421. 0.184639 0.0923195 0.995729i \(-0.470572\pi\)
0.0923195 + 0.995729i \(0.470572\pi\)
\(48\) −389884. −0.508852
\(49\) −183563. −0.222895
\(50\) 163243. 0.184688
\(51\) −194150. −0.204947
\(52\) 437.850 0.000431831 0
\(53\) −2.06067e6 −1.90126 −0.950631 0.310324i \(-0.899562\pi\)
−0.950631 + 0.310324i \(0.899562\pi\)
\(54\) 44583.8 0.0385300
\(55\) 0 0
\(56\) −454586. −0.345906
\(57\) 763573. 0.546121
\(58\) 267194. 0.179816
\(59\) −374567. −0.237436 −0.118718 0.992928i \(-0.537879\pi\)
−0.118718 + 0.992928i \(0.537879\pi\)
\(60\) −258164. −0.154300
\(61\) −25265.2 −0.0142517 −0.00712587 0.999975i \(-0.502268\pi\)
−0.00712587 + 0.999975i \(0.502268\pi\)
\(62\) 232322. 0.123800
\(63\) −583191. −0.293845
\(64\) −1.60950e6 −0.767471
\(65\) 277.313 0.000125249 0
\(66\) 0 0
\(67\) 675543. 0.274405 0.137202 0.990543i \(-0.456189\pi\)
0.137202 + 0.990543i \(0.456189\pi\)
\(68\) −883521. −0.340750
\(69\) 1.86915e6 0.684973
\(70\) −141012. −0.0491376
\(71\) 1.04454e6 0.346356 0.173178 0.984891i \(-0.444596\pi\)
0.173178 + 0.984891i \(0.444596\pi\)
\(72\) 414248. 0.130797
\(73\) −2.73896e6 −0.824053 −0.412026 0.911172i \(-0.635179\pi\)
−0.412026 + 0.911172i \(0.635179\pi\)
\(74\) 740297. 0.212371
\(75\) 1.94587e6 0.532597
\(76\) 3.47481e6 0.907994
\(77\) 0 0
\(78\) −217.937 −5.19996e−5 0
\(79\) 808349. 0.184461 0.0922304 0.995738i \(-0.470600\pi\)
0.0922304 + 0.995738i \(0.470600\pi\)
\(80\) −1.12373e6 −0.245384
\(81\) 531441. 0.111111
\(82\) 908877. 0.182036
\(83\) −4.64558e6 −0.891798 −0.445899 0.895083i \(-0.647116\pi\)
−0.445899 + 0.895083i \(0.647116\pi\)
\(84\) −2.65394e6 −0.488554
\(85\) −559579. −0.0988315
\(86\) −724427. −0.122815
\(87\) 3.18497e6 0.518546
\(88\) 0 0
\(89\) −4.27067e6 −0.642142 −0.321071 0.947055i \(-0.604043\pi\)
−0.321071 + 0.947055i \(0.604043\pi\)
\(90\) 128500. 0.0185803
\(91\) 2850.79 0.000396570 0
\(92\) 8.50599e6 1.13885
\(93\) 2.76930e6 0.357009
\(94\) −297681. −0.0369661
\(95\) 2.20078e6 0.263356
\(96\) 2.84697e6 0.328423
\(97\) 8.25067e6 0.917884 0.458942 0.888466i \(-0.348229\pi\)
0.458942 + 0.888466i \(0.348229\pi\)
\(98\) 415788. 0.0446252
\(99\) 0 0
\(100\) 8.85509e6 0.885509
\(101\) −1.98620e7 −1.91822 −0.959108 0.283039i \(-0.908657\pi\)
−0.959108 + 0.283039i \(0.908657\pi\)
\(102\) 439766. 0.0410319
\(103\) −1.24682e6 −0.112428 −0.0562138 0.998419i \(-0.517903\pi\)
−0.0562138 + 0.998419i \(0.517903\pi\)
\(104\) −2024.95 −0.000176522 0
\(105\) −1.68088e6 −0.141701
\(106\) 4.66759e6 0.380647
\(107\) −1.59947e7 −1.26222 −0.631109 0.775694i \(-0.717400\pi\)
−0.631109 + 0.775694i \(0.717400\pi\)
\(108\) 2.41844e6 0.184736
\(109\) 1.27763e7 0.944961 0.472480 0.881341i \(-0.343359\pi\)
0.472480 + 0.881341i \(0.343359\pi\)
\(110\) 0 0
\(111\) 8.82438e6 0.612426
\(112\) −1.15519e7 −0.776948
\(113\) 1.95390e7 1.27388 0.636939 0.770914i \(-0.280200\pi\)
0.636939 + 0.770914i \(0.280200\pi\)
\(114\) −1.72956e6 −0.109337
\(115\) 5.38729e6 0.330314
\(116\) 1.44939e7 0.862148
\(117\) −2597.82 −0.000149954 0
\(118\) 848427. 0.0475366
\(119\) −5.75249e6 −0.312926
\(120\) 1.19395e6 0.0630741
\(121\) 0 0
\(122\) 57227.9 0.00285331
\(123\) 1.08339e7 0.524947
\(124\) 1.26023e7 0.593572
\(125\) 1.16880e7 0.535250
\(126\) 1.32098e6 0.0588300
\(127\) −1.88123e7 −0.814946 −0.407473 0.913217i \(-0.633590\pi\)
−0.407473 + 0.913217i \(0.633590\pi\)
\(128\) 1.71424e7 0.722498
\(129\) −8.63521e6 −0.354168
\(130\) −628.140 −2.50758e−5 0
\(131\) 6.79288e6 0.264000 0.132000 0.991250i \(-0.457860\pi\)
0.132000 + 0.991250i \(0.457860\pi\)
\(132\) 0 0
\(133\) 2.26240e7 0.833853
\(134\) −1.53017e6 −0.0549379
\(135\) 1.53172e6 0.0535811
\(136\) 4.08607e6 0.139290
\(137\) −2.32183e6 −0.0771451 −0.0385726 0.999256i \(-0.512281\pi\)
−0.0385726 + 0.999256i \(0.512281\pi\)
\(138\) −4.23380e6 −0.137137
\(139\) 2.48978e7 0.786337 0.393168 0.919467i \(-0.371379\pi\)
0.393168 + 0.919467i \(0.371379\pi\)
\(140\) −7.64919e6 −0.235596
\(141\) −3.54838e6 −0.106601
\(142\) −2.36599e6 −0.0693431
\(143\) 0 0
\(144\) 1.05269e7 0.293786
\(145\) 9.17973e6 0.250059
\(146\) 6.20398e6 0.164982
\(147\) 4.95621e6 0.128688
\(148\) 4.01573e7 1.01824
\(149\) 7.41339e7 1.83597 0.917984 0.396618i \(-0.129816\pi\)
0.917984 + 0.396618i \(0.129816\pi\)
\(150\) −4.40756e6 −0.106630
\(151\) −8.36707e7 −1.97767 −0.988836 0.149007i \(-0.952392\pi\)
−0.988836 + 0.149007i \(0.952392\pi\)
\(152\) −1.60702e7 −0.371165
\(153\) 5.24204e6 0.118326
\(154\) 0 0
\(155\) 7.98168e6 0.172160
\(156\) −11822.0 −0.000249318 0
\(157\) 4.71338e7 0.972040 0.486020 0.873948i \(-0.338448\pi\)
0.486020 + 0.873948i \(0.338448\pi\)
\(158\) −1.83098e6 −0.0369304
\(159\) 5.56380e7 1.09769
\(160\) 8.20554e6 0.158375
\(161\) 5.53815e7 1.04586
\(162\) −1.20376e6 −0.0222453
\(163\) −4.54460e7 −0.821937 −0.410969 0.911649i \(-0.634809\pi\)
−0.410969 + 0.911649i \(0.634809\pi\)
\(164\) 4.93019e7 0.872790
\(165\) 0 0
\(166\) 1.05226e7 0.178545
\(167\) −7.33883e7 −1.21932 −0.609662 0.792661i \(-0.708695\pi\)
−0.609662 + 0.792661i \(0.708695\pi\)
\(168\) 1.22738e7 0.199709
\(169\) −6.27485e7 −1.00000
\(170\) 1.26750e6 0.0197868
\(171\) −2.06165e7 −0.315303
\(172\) −3.92964e7 −0.588848
\(173\) −1.06183e8 −1.55917 −0.779583 0.626299i \(-0.784569\pi\)
−0.779583 + 0.626299i \(0.784569\pi\)
\(174\) −7.21423e6 −0.103817
\(175\) 5.76544e7 0.813203
\(176\) 0 0
\(177\) 1.01133e7 0.137084
\(178\) 9.67345e6 0.128562
\(179\) 1.85019e7 0.241119 0.120559 0.992706i \(-0.461531\pi\)
0.120559 + 0.992706i \(0.461531\pi\)
\(180\) 6.97043e6 0.0890853
\(181\) 1.31714e8 1.65103 0.825516 0.564378i \(-0.190884\pi\)
0.825516 + 0.564378i \(0.190884\pi\)
\(182\) −6457.29 −7.93964e−5 0
\(183\) 682160. 0.00822825
\(184\) −3.93382e7 −0.465535
\(185\) 2.54337e7 0.295330
\(186\) −6.27270e6 −0.0714758
\(187\) 0 0
\(188\) −1.61477e7 −0.177238
\(189\) 1.57461e7 0.169652
\(190\) −4.98495e6 −0.0527258
\(191\) −7.57338e7 −0.786453 −0.393226 0.919442i \(-0.628641\pi\)
−0.393226 + 0.919442i \(0.628641\pi\)
\(192\) 4.34566e7 0.443099
\(193\) 2.24931e7 0.225216 0.112608 0.993640i \(-0.464080\pi\)
0.112608 + 0.993640i \(0.464080\pi\)
\(194\) −1.86885e7 −0.183767
\(195\) −7487.46 −7.23125e−5 0
\(196\) 2.25543e7 0.213960
\(197\) 2.01700e8 1.87964 0.939818 0.341674i \(-0.110994\pi\)
0.939818 + 0.341674i \(0.110994\pi\)
\(198\) 0 0
\(199\) 8.69613e7 0.782240 0.391120 0.920340i \(-0.372088\pi\)
0.391120 + 0.920340i \(0.372088\pi\)
\(200\) −4.09527e7 −0.361974
\(201\) −1.82397e7 −0.158428
\(202\) 4.49892e7 0.384041
\(203\) 9.43678e7 0.791750
\(204\) 2.38551e7 0.196732
\(205\) 3.12254e7 0.253145
\(206\) 2.82416e6 0.0225089
\(207\) −5.04672e7 −0.395469
\(208\) −51458.2 −0.000396490 0
\(209\) 0 0
\(210\) 3.80733e6 0.0283696
\(211\) −2.00011e8 −1.46577 −0.732883 0.680355i \(-0.761826\pi\)
−0.732883 + 0.680355i \(0.761826\pi\)
\(212\) 2.53193e8 1.82505
\(213\) −2.82027e7 −0.199969
\(214\) 3.62295e7 0.252705
\(215\) −2.48884e7 −0.170790
\(216\) −1.11847e7 −0.0755155
\(217\) 8.20519e7 0.545104
\(218\) −2.89396e7 −0.189188
\(219\) 7.39518e7 0.475767
\(220\) 0 0
\(221\) −25624.5 −0.000159692 0
\(222\) −1.99880e7 −0.122612
\(223\) 2.27414e8 1.37325 0.686624 0.727012i \(-0.259092\pi\)
0.686624 + 0.727012i \(0.259092\pi\)
\(224\) 8.43532e7 0.501457
\(225\) −5.25384e7 −0.307495
\(226\) −4.42576e7 −0.255040
\(227\) 8.42594e7 0.478110 0.239055 0.971006i \(-0.423162\pi\)
0.239055 + 0.971006i \(0.423162\pi\)
\(228\) −9.38198e7 −0.524231
\(229\) −1.31617e8 −0.724246 −0.362123 0.932130i \(-0.617948\pi\)
−0.362123 + 0.932130i \(0.617948\pi\)
\(230\) −1.22027e7 −0.0661314
\(231\) 0 0
\(232\) −6.70307e7 −0.352424
\(233\) −1.16265e8 −0.602148 −0.301074 0.953601i \(-0.597345\pi\)
−0.301074 + 0.953601i \(0.597345\pi\)
\(234\) 5884.30 3.00220e−5 0
\(235\) −1.02272e7 −0.0514064
\(236\) 4.60228e7 0.227919
\(237\) −2.18254e7 −0.106498
\(238\) 1.30299e7 0.0626501
\(239\) 1.01515e8 0.480991 0.240496 0.970650i \(-0.422690\pi\)
0.240496 + 0.970650i \(0.422690\pi\)
\(240\) 3.03406e7 0.141672
\(241\) 2.69100e8 1.23838 0.619189 0.785242i \(-0.287461\pi\)
0.619189 + 0.785242i \(0.287461\pi\)
\(242\) 0 0
\(243\) −1.43489e7 −0.0641500
\(244\) 3.10432e6 0.0136805
\(245\) 1.42848e7 0.0620574
\(246\) −2.45397e7 −0.105098
\(247\) 100779. 0.000425530 0
\(248\) −5.82825e7 −0.242637
\(249\) 1.25431e8 0.514880
\(250\) −2.64745e7 −0.107161
\(251\) 1.29877e8 0.518411 0.259205 0.965822i \(-0.416539\pi\)
0.259205 + 0.965822i \(0.416539\pi\)
\(252\) 7.16563e7 0.282067
\(253\) 0 0
\(254\) 4.26115e7 0.163158
\(255\) 1.51086e7 0.0570604
\(256\) 1.67187e8 0.622821
\(257\) 3.65091e8 1.34164 0.670820 0.741621i \(-0.265942\pi\)
0.670820 + 0.741621i \(0.265942\pi\)
\(258\) 1.95595e7 0.0709070
\(259\) 2.61459e8 0.935092
\(260\) −34073.3 −0.000120229 0
\(261\) −8.59941e7 −0.299383
\(262\) −1.53865e7 −0.0528549
\(263\) 1.75897e8 0.596229 0.298114 0.954530i \(-0.403642\pi\)
0.298114 + 0.954530i \(0.403642\pi\)
\(264\) 0 0
\(265\) 1.60360e8 0.529341
\(266\) −5.12455e7 −0.166944
\(267\) 1.15308e8 0.370741
\(268\) −8.30036e7 −0.263406
\(269\) 2.96594e8 0.929031 0.464515 0.885565i \(-0.346229\pi\)
0.464515 + 0.885565i \(0.346229\pi\)
\(270\) −3.46949e6 −0.0107273
\(271\) 1.24423e8 0.379760 0.189880 0.981807i \(-0.439190\pi\)
0.189880 + 0.981807i \(0.439190\pi\)
\(272\) 1.03835e8 0.312863
\(273\) −76971.3 −0.000228960 0
\(274\) 5.25915e6 0.0154450
\(275\) 0 0
\(276\) −2.29662e8 −0.657517
\(277\) −6.39650e7 −0.180827 −0.0904134 0.995904i \(-0.528819\pi\)
−0.0904134 + 0.995904i \(0.528819\pi\)
\(278\) −5.63956e7 −0.157430
\(279\) −7.47710e7 −0.206119
\(280\) 3.53757e7 0.0963056
\(281\) −6.17644e8 −1.66061 −0.830303 0.557313i \(-0.811832\pi\)
−0.830303 + 0.557313i \(0.811832\pi\)
\(282\) 8.03739e6 0.0213424
\(283\) −4.76817e8 −1.25055 −0.625273 0.780406i \(-0.715012\pi\)
−0.625273 + 0.780406i \(0.715012\pi\)
\(284\) −1.28343e8 −0.332473
\(285\) −5.94209e7 −0.152049
\(286\) 0 0
\(287\) 3.20998e8 0.801523
\(288\) −7.68681e7 −0.189615
\(289\) −3.58632e8 −0.873990
\(290\) −2.07929e7 −0.0500636
\(291\) −2.22768e8 −0.529941
\(292\) 3.36534e8 0.791022
\(293\) −1.02390e8 −0.237805 −0.118902 0.992906i \(-0.537938\pi\)
−0.118902 + 0.992906i \(0.537938\pi\)
\(294\) −1.12263e7 −0.0257644
\(295\) 2.91486e7 0.0661060
\(296\) −1.85718e8 −0.416229
\(297\) 0 0
\(298\) −1.67920e8 −0.367574
\(299\) 246697. 0.000533721 0
\(300\) −2.39087e8 −0.511249
\(301\) −2.55854e8 −0.540766
\(302\) 1.89522e8 0.395945
\(303\) 5.36273e8 1.10748
\(304\) −4.08375e8 −0.833684
\(305\) 1.96612e6 0.00396791
\(306\) −1.18737e7 −0.0236898
\(307\) −8.82787e8 −1.74129 −0.870646 0.491910i \(-0.836299\pi\)
−0.870646 + 0.491910i \(0.836299\pi\)
\(308\) 0 0
\(309\) 3.36641e7 0.0649101
\(310\) −1.80792e7 −0.0344678
\(311\) −3.83982e8 −0.723852 −0.361926 0.932207i \(-0.617881\pi\)
−0.361926 + 0.932207i \(0.617881\pi\)
\(312\) 54673.8 0.000101915 0
\(313\) −6.24076e8 −1.15036 −0.575178 0.818028i \(-0.695067\pi\)
−0.575178 + 0.818028i \(0.695067\pi\)
\(314\) −1.06762e8 −0.194610
\(315\) 4.53836e7 0.0818111
\(316\) −9.93213e7 −0.177067
\(317\) 7.79021e8 1.37354 0.686771 0.726874i \(-0.259028\pi\)
0.686771 + 0.726874i \(0.259028\pi\)
\(318\) −1.26025e8 −0.219767
\(319\) 0 0
\(320\) 1.25251e8 0.213676
\(321\) 4.31858e8 0.728742
\(322\) −1.25444e8 −0.209389
\(323\) −2.03357e8 −0.335777
\(324\) −6.52978e7 −0.106657
\(325\) 256821. 0.000414992 0
\(326\) 1.02939e8 0.164558
\(327\) −3.44961e8 −0.545573
\(328\) −2.28009e8 −0.356775
\(329\) −1.05135e8 −0.162766
\(330\) 0 0
\(331\) 2.14211e8 0.324671 0.162335 0.986736i \(-0.448097\pi\)
0.162335 + 0.986736i \(0.448097\pi\)
\(332\) 5.70799e8 0.856052
\(333\) −2.38258e8 −0.353585
\(334\) 1.66231e8 0.244118
\(335\) −5.25705e7 −0.0763986
\(336\) 3.11903e8 0.448571
\(337\) 2.46893e8 0.351402 0.175701 0.984444i \(-0.443781\pi\)
0.175701 + 0.984444i \(0.443781\pi\)
\(338\) 1.42131e8 0.200207
\(339\) −5.27553e8 −0.735473
\(340\) 6.87552e7 0.0948701
\(341\) 0 0
\(342\) 4.66982e7 0.0631260
\(343\) 8.05672e8 1.07803
\(344\) 1.81736e8 0.240706
\(345\) −1.45457e8 −0.190707
\(346\) 2.40513e8 0.312157
\(347\) −4.19266e8 −0.538687 −0.269343 0.963044i \(-0.586807\pi\)
−0.269343 + 0.963044i \(0.586807\pi\)
\(348\) −3.91335e8 −0.497761
\(349\) 2.24540e8 0.282752 0.141376 0.989956i \(-0.454847\pi\)
0.141376 + 0.989956i \(0.454847\pi\)
\(350\) −1.30592e8 −0.162809
\(351\) 70141.2 8.65762e−5 0
\(352\) 0 0
\(353\) 1.83753e7 0.0222343 0.0111172 0.999938i \(-0.496461\pi\)
0.0111172 + 0.999938i \(0.496461\pi\)
\(354\) −2.29075e7 −0.0274452
\(355\) −8.12860e7 −0.0964309
\(356\) 5.24735e8 0.616403
\(357\) 1.55317e8 0.180668
\(358\) −4.19084e7 −0.0482737
\(359\) −5.15913e8 −0.588499 −0.294250 0.955729i \(-0.595070\pi\)
−0.294250 + 0.955729i \(0.595070\pi\)
\(360\) −3.22366e7 −0.0364159
\(361\) −9.40854e7 −0.105256
\(362\) −2.98343e8 −0.330549
\(363\) 0 0
\(364\) −350275. −0.000380675 0
\(365\) 2.13144e8 0.229429
\(366\) −1.54515e6 −0.00164736
\(367\) −6.45634e8 −0.681797 −0.340899 0.940100i \(-0.610731\pi\)
−0.340899 + 0.940100i \(0.610731\pi\)
\(368\) −9.99662e8 −1.04565
\(369\) −2.92514e8 −0.303078
\(370\) −5.76096e7 −0.0591274
\(371\) 1.64851e9 1.67603
\(372\) −3.40262e8 −0.342699
\(373\) −9.47464e8 −0.945326 −0.472663 0.881243i \(-0.656707\pi\)
−0.472663 + 0.881243i \(0.656707\pi\)
\(374\) 0 0
\(375\) −3.15577e8 −0.309027
\(376\) 7.46791e7 0.0724505
\(377\) 420362. 0.000404044 0
\(378\) −3.56664e7 −0.0339655
\(379\) −1.44544e9 −1.36384 −0.681919 0.731427i \(-0.738854\pi\)
−0.681919 + 0.731427i \(0.738854\pi\)
\(380\) −2.70408e8 −0.252800
\(381\) 5.07932e8 0.470509
\(382\) 1.71544e8 0.157454
\(383\) 1.80823e9 1.64459 0.822294 0.569064i \(-0.192694\pi\)
0.822294 + 0.569064i \(0.192694\pi\)
\(384\) −4.62845e8 −0.417134
\(385\) 0 0
\(386\) −5.09489e7 −0.0450899
\(387\) 2.33151e8 0.204479
\(388\) −1.01375e9 −0.881093
\(389\) 1.85934e9 1.60153 0.800765 0.598979i \(-0.204427\pi\)
0.800765 + 0.598979i \(0.204427\pi\)
\(390\) 16959.8 1.44775e−5 0
\(391\) −4.97799e8 −0.421149
\(392\) −1.04308e8 −0.0874617
\(393\) −1.83408e8 −0.152421
\(394\) −4.56868e8 −0.376317
\(395\) −6.29053e7 −0.0513568
\(396\) 0 0
\(397\) −1.90505e9 −1.52806 −0.764030 0.645181i \(-0.776782\pi\)
−0.764030 + 0.645181i \(0.776782\pi\)
\(398\) −1.96975e8 −0.156610
\(399\) −6.10849e8 −0.481425
\(400\) −1.04069e9 −0.813039
\(401\) −1.97671e9 −1.53087 −0.765435 0.643513i \(-0.777476\pi\)
−0.765435 + 0.643513i \(0.777476\pi\)
\(402\) 4.13145e7 0.0317184
\(403\) 365500. 0.000278176 0
\(404\) 2.44043e9 1.84133
\(405\) −4.13565e7 −0.0309351
\(406\) −2.13752e8 −0.158514
\(407\) 0 0
\(408\) −1.10324e8 −0.0804191
\(409\) 5.98142e8 0.432287 0.216144 0.976362i \(-0.430652\pi\)
0.216144 + 0.976362i \(0.430652\pi\)
\(410\) −7.07284e7 −0.0506816
\(411\) 6.26894e7 0.0445397
\(412\) 1.53196e8 0.107921
\(413\) 2.99649e8 0.209309
\(414\) 1.14313e8 0.0791759
\(415\) 3.61517e8 0.248291
\(416\) 375751. 0.000255902 0
\(417\) −6.72239e8 −0.453992
\(418\) 0 0
\(419\) −9.31473e8 −0.618616 −0.309308 0.950962i \(-0.600097\pi\)
−0.309308 + 0.950962i \(0.600097\pi\)
\(420\) 2.06528e8 0.136021
\(421\) −1.57225e9 −1.02692 −0.513459 0.858114i \(-0.671636\pi\)
−0.513459 + 0.858114i \(0.671636\pi\)
\(422\) 4.53042e8 0.293457
\(423\) 9.58062e7 0.0615463
\(424\) −1.17096e9 −0.746036
\(425\) −5.18230e8 −0.327462
\(426\) 6.38816e7 0.0400352
\(427\) 2.02118e7 0.0125634
\(428\) 1.96526e9 1.21162
\(429\) 0 0
\(430\) 5.63746e7 0.0341935
\(431\) −2.71393e9 −1.63278 −0.816391 0.577499i \(-0.804029\pi\)
−0.816391 + 0.577499i \(0.804029\pi\)
\(432\) −2.84226e8 −0.169617
\(433\) 3.30747e8 0.195789 0.0978944 0.995197i \(-0.468789\pi\)
0.0978944 + 0.995197i \(0.468789\pi\)
\(434\) −1.85855e8 −0.109134
\(435\) −2.47853e8 −0.144371
\(436\) −1.56982e9 −0.907084
\(437\) 1.95780e9 1.12223
\(438\) −1.67507e8 −0.0952521
\(439\) −1.52144e9 −0.858281 −0.429140 0.903238i \(-0.641183\pi\)
−0.429140 + 0.903238i \(0.641183\pi\)
\(440\) 0 0
\(441\) −1.33818e8 −0.0742982
\(442\) 58041.8 3.19715e−5 0
\(443\) 1.26944e8 0.0693744 0.0346872 0.999398i \(-0.488957\pi\)
0.0346872 + 0.999398i \(0.488957\pi\)
\(444\) −1.08425e9 −0.587879
\(445\) 3.32342e8 0.178782
\(446\) −5.15112e8 −0.274935
\(447\) −2.00162e9 −1.06000
\(448\) 1.28758e9 0.676553
\(449\) 3.33352e9 1.73796 0.868982 0.494844i \(-0.164775\pi\)
0.868982 + 0.494844i \(0.164775\pi\)
\(450\) 1.19004e8 0.0615628
\(451\) 0 0
\(452\) −2.40074e9 −1.22282
\(453\) 2.25911e9 1.14181
\(454\) −1.90855e8 −0.0957212
\(455\) −221847. −0.000110411 0
\(456\) 4.33894e8 0.214292
\(457\) 9.91262e8 0.485827 0.242913 0.970048i \(-0.421897\pi\)
0.242913 + 0.970048i \(0.421897\pi\)
\(458\) 2.98123e8 0.145000
\(459\) −1.41535e8 −0.0683156
\(460\) −6.61932e8 −0.317074
\(461\) −2.44787e9 −1.16368 −0.581842 0.813302i \(-0.697668\pi\)
−0.581842 + 0.813302i \(0.697668\pi\)
\(462\) 0 0
\(463\) 2.06525e9 0.967027 0.483514 0.875337i \(-0.339360\pi\)
0.483514 + 0.875337i \(0.339360\pi\)
\(464\) −1.70339e9 −0.791590
\(465\) −2.15505e8 −0.0993968
\(466\) 2.63350e8 0.120554
\(467\) −2.10797e9 −0.957756 −0.478878 0.877881i \(-0.658956\pi\)
−0.478878 + 0.877881i \(0.658956\pi\)
\(468\) 319193. 0.000143944 0
\(469\) −5.40426e8 −0.241898
\(470\) 2.31654e7 0.0102919
\(471\) −1.27261e9 −0.561207
\(472\) −2.12844e8 −0.0931677
\(473\) 0 0
\(474\) 4.94365e7 0.0213218
\(475\) 2.03815e9 0.872587
\(476\) 7.06805e8 0.300383
\(477\) −1.50222e9 −0.633754
\(478\) −2.29940e8 −0.0962981
\(479\) −6.05048e8 −0.251545 −0.125772 0.992059i \(-0.540141\pi\)
−0.125772 + 0.992059i \(0.540141\pi\)
\(480\) −2.21550e8 −0.0914380
\(481\) 1.16467e6 0.000477194 0
\(482\) −6.09535e8 −0.247933
\(483\) −1.49530e9 −0.603828
\(484\) 0 0
\(485\) −6.42063e8 −0.255553
\(486\) 3.25016e7 0.0128433
\(487\) −9.16610e8 −0.359611 −0.179806 0.983702i \(-0.557547\pi\)
−0.179806 + 0.983702i \(0.557547\pi\)
\(488\) −1.43567e7 −0.00559224
\(489\) 1.22704e9 0.474546
\(490\) −3.23564e7 −0.0124244
\(491\) 3.56549e9 1.35936 0.679680 0.733509i \(-0.262119\pi\)
0.679680 + 0.733509i \(0.262119\pi\)
\(492\) −1.33115e9 −0.503906
\(493\) −8.48231e8 −0.318823
\(494\) −228273. −8.51942e−5 0
\(495\) 0 0
\(496\) −1.48108e9 −0.544994
\(497\) −8.35622e8 −0.305325
\(498\) −2.84112e8 −0.103083
\(499\) −1.99010e9 −0.717007 −0.358504 0.933528i \(-0.616713\pi\)
−0.358504 + 0.933528i \(0.616713\pi\)
\(500\) −1.43610e9 −0.513795
\(501\) 1.98148e9 0.703977
\(502\) −2.94183e8 −0.103790
\(503\) 1.49394e9 0.523413 0.261706 0.965148i \(-0.415715\pi\)
0.261706 + 0.965148i \(0.415715\pi\)
\(504\) −3.31393e8 −0.115302
\(505\) 1.54565e9 0.534062
\(506\) 0 0
\(507\) 1.69421e9 0.577350
\(508\) 2.31145e9 0.782280
\(509\) 2.30865e7 0.00775973 0.00387986 0.999992i \(-0.498765\pi\)
0.00387986 + 0.999992i \(0.498765\pi\)
\(510\) −3.42224e7 −0.0114239
\(511\) 2.19113e9 0.726432
\(512\) −2.57292e9 −0.847191
\(513\) 5.56645e8 0.182040
\(514\) −8.26965e8 −0.268606
\(515\) 9.70269e7 0.0313016
\(516\) 1.06100e9 0.339972
\(517\) 0 0
\(518\) −5.92228e8 −0.187213
\(519\) 2.86693e9 0.900185
\(520\) 157581. 4.91464e−5 0
\(521\) 5.37086e9 1.66384 0.831921 0.554894i \(-0.187241\pi\)
0.831921 + 0.554894i \(0.187241\pi\)
\(522\) 1.94784e8 0.0599387
\(523\) 5.89444e9 1.80172 0.900859 0.434112i \(-0.142938\pi\)
0.900859 + 0.434112i \(0.142938\pi\)
\(524\) −8.34637e8 −0.253419
\(525\) −1.55667e9 −0.469503
\(526\) −3.98422e8 −0.119369
\(527\) −7.37528e8 −0.219503
\(528\) 0 0
\(529\) 1.38768e9 0.407563
\(530\) −3.63230e8 −0.105978
\(531\) −2.73059e8 −0.0791455
\(532\) −2.77980e9 −0.800429
\(533\) 1.42989e6 0.000409031 0
\(534\) −2.61183e8 −0.0742251
\(535\) 1.24470e9 0.351421
\(536\) 3.83872e8 0.107674
\(537\) −4.99551e8 −0.139210
\(538\) −6.71813e8 −0.185999
\(539\) 0 0
\(540\) −1.88202e8 −0.0514334
\(541\) 6.69416e9 1.81763 0.908815 0.417199i \(-0.136988\pi\)
0.908815 + 0.417199i \(0.136988\pi\)
\(542\) −2.81830e8 −0.0760308
\(543\) −3.55627e9 −0.953224
\(544\) −7.58213e8 −0.201927
\(545\) −9.94249e8 −0.263092
\(546\) 174347. 4.58395e−5 0
\(547\) −6.03028e9 −1.57537 −0.787684 0.616079i \(-0.788720\pi\)
−0.787684 + 0.616079i \(0.788720\pi\)
\(548\) 2.85282e8 0.0740529
\(549\) −1.84183e7 −0.00475058
\(550\) 0 0
\(551\) 3.33601e9 0.849566
\(552\) 1.06213e9 0.268777
\(553\) −6.46669e8 −0.162609
\(554\) 1.44886e8 0.0362029
\(555\) −6.86710e8 −0.170509
\(556\) −3.05917e9 −0.754818
\(557\) 3.54097e9 0.868218 0.434109 0.900860i \(-0.357063\pi\)
0.434109 + 0.900860i \(0.357063\pi\)
\(558\) 1.69363e8 0.0412666
\(559\) −1.13970e6 −0.000275962 0
\(560\) 8.98967e8 0.216315
\(561\) 0 0
\(562\) 1.39902e9 0.332466
\(563\) −7.36921e9 −1.74037 −0.870185 0.492725i \(-0.836001\pi\)
−0.870185 + 0.492725i \(0.836001\pi\)
\(564\) 4.35987e8 0.102328
\(565\) −1.52052e9 −0.354667
\(566\) 1.08003e9 0.250369
\(567\) −4.25146e8 −0.0979484
\(568\) 5.93553e8 0.135907
\(569\) 2.18893e9 0.498126 0.249063 0.968487i \(-0.419877\pi\)
0.249063 + 0.968487i \(0.419877\pi\)
\(570\) 1.34594e8 0.0304413
\(571\) −4.60805e9 −1.03584 −0.517918 0.855430i \(-0.673293\pi\)
−0.517918 + 0.855430i \(0.673293\pi\)
\(572\) 0 0
\(573\) 2.04481e9 0.454059
\(574\) −7.27090e8 −0.160471
\(575\) 4.98920e9 1.09444
\(576\) −1.17333e9 −0.255824
\(577\) 5.22645e9 1.13264 0.566319 0.824186i \(-0.308367\pi\)
0.566319 + 0.824186i \(0.308367\pi\)
\(578\) 8.12334e8 0.174979
\(579\) −6.07313e8 −0.130028
\(580\) −1.12791e9 −0.240035
\(581\) 3.71640e9 0.786152
\(582\) 5.04589e8 0.106098
\(583\) 0 0
\(584\) −1.55639e9 −0.323350
\(585\) 202161. 4.17497e−5 0
\(586\) 2.31922e8 0.0476103
\(587\) 9.51178e9 1.94101 0.970506 0.241075i \(-0.0775000\pi\)
0.970506 + 0.241075i \(0.0775000\pi\)
\(588\) −6.08967e8 −0.123530
\(589\) 2.90063e9 0.584910
\(590\) −6.60242e7 −0.0132349
\(591\) −5.44590e9 −1.08521
\(592\) −4.71946e9 −0.934903
\(593\) 4.83658e9 0.952460 0.476230 0.879321i \(-0.342003\pi\)
0.476230 + 0.879321i \(0.342003\pi\)
\(594\) 0 0
\(595\) 4.47656e8 0.0871235
\(596\) −9.10879e9 −1.76238
\(597\) −2.34795e9 −0.451627
\(598\) −558790. −0.000106855 0
\(599\) 5.91584e9 1.12466 0.562332 0.826912i \(-0.309904\pi\)
0.562332 + 0.826912i \(0.309904\pi\)
\(600\) 1.10572e9 0.208986
\(601\) −9.30263e8 −0.174802 −0.0874008 0.996173i \(-0.527856\pi\)
−0.0874008 + 0.996173i \(0.527856\pi\)
\(602\) 5.79532e8 0.108265
\(603\) 4.92471e8 0.0914682
\(604\) 1.02806e10 1.89840
\(605\) 0 0
\(606\) −1.21471e9 −0.221726
\(607\) −6.20128e9 −1.12544 −0.562718 0.826649i \(-0.690244\pi\)
−0.562718 + 0.826649i \(0.690244\pi\)
\(608\) 2.98198e9 0.538075
\(609\) −2.54793e9 −0.457117
\(610\) −4.45345e6 −0.000794405 0
\(611\) −468326. −8.30623e−5 0
\(612\) −6.44086e8 −0.113583
\(613\) −7.83969e9 −1.37464 −0.687318 0.726357i \(-0.741212\pi\)
−0.687318 + 0.726357i \(0.741212\pi\)
\(614\) 1.99959e9 0.348620
\(615\) −8.43087e8 −0.146154
\(616\) 0 0
\(617\) 6.98558e9 1.19730 0.598652 0.801009i \(-0.295703\pi\)
0.598652 + 0.801009i \(0.295703\pi\)
\(618\) −7.62522e7 −0.0129955
\(619\) 3.68405e9 0.624321 0.312161 0.950029i \(-0.398947\pi\)
0.312161 + 0.950029i \(0.398947\pi\)
\(620\) −9.80704e8 −0.165260
\(621\) 1.36261e9 0.228324
\(622\) 8.69754e8 0.144921
\(623\) 3.41648e9 0.566071
\(624\) 1.38937e6 0.000228914 0
\(625\) 4.72084e9 0.773463
\(626\) 1.41359e9 0.230310
\(627\) 0 0
\(628\) −5.79130e9 −0.933077
\(629\) −2.35014e9 −0.376545
\(630\) −1.02798e8 −0.0163792
\(631\) 7.28179e9 1.15381 0.576906 0.816810i \(-0.304260\pi\)
0.576906 + 0.816810i \(0.304260\pi\)
\(632\) 4.59337e8 0.0723806
\(633\) 5.40029e9 0.846260
\(634\) −1.76455e9 −0.274993
\(635\) 1.46396e9 0.226894
\(636\) −6.83620e9 −1.05370
\(637\) 654136. 0.000100272 0
\(638\) 0 0
\(639\) 7.61473e8 0.115452
\(640\) −1.33401e9 −0.201155
\(641\) 6.73350e9 1.00981 0.504903 0.863176i \(-0.331528\pi\)
0.504903 + 0.863176i \(0.331528\pi\)
\(642\) −9.78197e8 −0.145900
\(643\) −2.62177e9 −0.388917 −0.194458 0.980911i \(-0.562295\pi\)
−0.194458 + 0.980911i \(0.562295\pi\)
\(644\) −6.80469e9 −1.00394
\(645\) 6.71988e8 0.0986058
\(646\) 4.60623e8 0.0672251
\(647\) 8.24161e9 1.19632 0.598159 0.801377i \(-0.295899\pi\)
0.598159 + 0.801377i \(0.295899\pi\)
\(648\) 3.01987e8 0.0435989
\(649\) 0 0
\(650\) −581724. −8.30845e−5 0
\(651\) −2.21540e9 −0.314716
\(652\) 5.58392e9 0.788992
\(653\) 4.66174e9 0.655167 0.327583 0.944822i \(-0.393766\pi\)
0.327583 + 0.944822i \(0.393766\pi\)
\(654\) 7.81368e8 0.109228
\(655\) −5.28619e8 −0.0735019
\(656\) −5.79418e9 −0.801361
\(657\) −1.99670e9 −0.274684
\(658\) 2.38141e8 0.0325870
\(659\) 7.22025e9 0.982773 0.491386 0.870942i \(-0.336490\pi\)
0.491386 + 0.870942i \(0.336490\pi\)
\(660\) 0 0
\(661\) 5.14171e9 0.692473 0.346236 0.938147i \(-0.387460\pi\)
0.346236 + 0.938147i \(0.387460\pi\)
\(662\) −4.85206e8 −0.0650015
\(663\) 691861. 9.21980e−5 0
\(664\) −2.63981e9 −0.349933
\(665\) −1.76059e9 −0.232158
\(666\) 5.39676e8 0.0707903
\(667\) 8.16624e9 1.06557
\(668\) 9.01718e9 1.17045
\(669\) −6.14017e9 −0.792846
\(670\) 1.19077e8 0.0152956
\(671\) 0 0
\(672\) −2.27754e9 −0.289516
\(673\) −2.15401e9 −0.272392 −0.136196 0.990682i \(-0.543488\pi\)
−0.136196 + 0.990682i \(0.543488\pi\)
\(674\) −5.59235e8 −0.0703534
\(675\) 1.41854e9 0.177532
\(676\) 7.70987e9 0.959917
\(677\) −1.44000e10 −1.78362 −0.891812 0.452406i \(-0.850566\pi\)
−0.891812 + 0.452406i \(0.850566\pi\)
\(678\) 1.19495e9 0.147247
\(679\) −6.60043e9 −0.809148
\(680\) −3.17976e8 −0.0387805
\(681\) −2.27500e9 −0.276037
\(682\) 0 0
\(683\) 5.24344e9 0.629715 0.314857 0.949139i \(-0.398043\pi\)
0.314857 + 0.949139i \(0.398043\pi\)
\(684\) 2.53313e9 0.302665
\(685\) 1.80684e8 0.0214784
\(686\) −1.82492e9 −0.215829
\(687\) 3.55365e9 0.418144
\(688\) 4.61829e9 0.540657
\(689\) 7.34327e6 0.000855308 0
\(690\) 3.29472e8 0.0381810
\(691\) −1.15792e10 −1.33507 −0.667537 0.744577i \(-0.732651\pi\)
−0.667537 + 0.744577i \(0.732651\pi\)
\(692\) 1.30466e10 1.49667
\(693\) 0 0
\(694\) 9.49674e8 0.107849
\(695\) −1.93753e9 −0.218928
\(696\) 1.80983e9 0.203472
\(697\) −2.88531e9 −0.322759
\(698\) −5.08604e8 −0.0566091
\(699\) 3.13915e9 0.347650
\(700\) −7.08396e9 −0.780608
\(701\) −2.05637e9 −0.225469 −0.112735 0.993625i \(-0.535961\pi\)
−0.112735 + 0.993625i \(0.535961\pi\)
\(702\) −158876. −1.73332e−5 0
\(703\) 9.24289e9 1.00338
\(704\) 0 0
\(705\) 2.76133e8 0.0296795
\(706\) −4.16218e7 −0.00445148
\(707\) 1.58893e10 1.69098
\(708\) −1.24262e9 −0.131589
\(709\) 6.02846e9 0.635250 0.317625 0.948216i \(-0.397115\pi\)
0.317625 + 0.948216i \(0.397115\pi\)
\(710\) 1.84120e8 0.0193062
\(711\) 5.89286e8 0.0614869
\(712\) −2.42677e9 −0.251970
\(713\) 7.10047e9 0.733624
\(714\) −3.51808e8 −0.0361711
\(715\) 0 0
\(716\) −2.27332e9 −0.231454
\(717\) −2.74090e9 −0.277701
\(718\) 1.16859e9 0.117822
\(719\) 9.77890e8 0.0981158 0.0490579 0.998796i \(-0.484378\pi\)
0.0490579 + 0.998796i \(0.484378\pi\)
\(720\) −8.19197e8 −0.0817946
\(721\) 9.97439e8 0.0991090
\(722\) 2.13112e8 0.0210731
\(723\) −7.26569e9 −0.714978
\(724\) −1.61836e10 −1.58485
\(725\) 8.50139e9 0.828528
\(726\) 0 0
\(727\) −7.88188e9 −0.760780 −0.380390 0.924826i \(-0.624210\pi\)
−0.380390 + 0.924826i \(0.624210\pi\)
\(728\) 1.61994e6 0.000155610 0
\(729\) 3.87420e8 0.0370370
\(730\) −4.82791e8 −0.0459334
\(731\) 2.29976e9 0.217757
\(732\) −8.38166e7 −0.00789843
\(733\) 9.93763e9 0.932006 0.466003 0.884783i \(-0.345694\pi\)
0.466003 + 0.884783i \(0.345694\pi\)
\(734\) 1.46242e9 0.136501
\(735\) −3.85690e8 −0.0358289
\(736\) 7.29961e9 0.674881
\(737\) 0 0
\(738\) 6.62571e8 0.0606786
\(739\) 8.69246e9 0.792295 0.396148 0.918187i \(-0.370347\pi\)
0.396148 + 0.918187i \(0.370347\pi\)
\(740\) −3.12502e9 −0.283493
\(741\) −2.72103e6 −0.000245680 0
\(742\) −3.73401e9 −0.335554
\(743\) 7.30730e9 0.653576 0.326788 0.945098i \(-0.394034\pi\)
0.326788 + 0.945098i \(0.394034\pi\)
\(744\) 1.57363e9 0.140087
\(745\) −5.76907e9 −0.511162
\(746\) 2.14609e9 0.189261
\(747\) −3.38663e9 −0.297266
\(748\) 0 0
\(749\) 1.27956e10 1.11269
\(750\) 7.14810e8 0.0618695
\(751\) −8.72580e9 −0.751737 −0.375868 0.926673i \(-0.622656\pi\)
−0.375868 + 0.926673i \(0.622656\pi\)
\(752\) 1.89775e9 0.162733
\(753\) −3.50668e9 −0.299305
\(754\) −952157. −8.08926e−5 0
\(755\) 6.51122e9 0.550615
\(756\) −1.93472e9 −0.162851
\(757\) −1.41514e9 −0.118567 −0.0592836 0.998241i \(-0.518882\pi\)
−0.0592836 + 0.998241i \(0.518882\pi\)
\(758\) 3.27405e9 0.273051
\(759\) 0 0
\(760\) 1.25057e9 0.103338
\(761\) 1.70403e9 0.140162 0.0700809 0.997541i \(-0.477674\pi\)
0.0700809 + 0.997541i \(0.477674\pi\)
\(762\) −1.15051e9 −0.0941995
\(763\) −1.02209e10 −0.833017
\(764\) 9.30536e9 0.754929
\(765\) −4.07933e8 −0.0329438
\(766\) −4.09579e9 −0.329259
\(767\) 1.33479e6 0.000106814 0
\(768\) −4.51406e9 −0.359586
\(769\) −2.42942e10 −1.92646 −0.963231 0.268676i \(-0.913414\pi\)
−0.963231 + 0.268676i \(0.913414\pi\)
\(770\) 0 0
\(771\) −9.85747e9 −0.774596
\(772\) −2.76371e9 −0.216188
\(773\) 5.99115e9 0.466533 0.233266 0.972413i \(-0.425059\pi\)
0.233266 + 0.972413i \(0.425059\pi\)
\(774\) −5.28107e8 −0.0409382
\(775\) 7.39188e9 0.570425
\(776\) 4.68837e9 0.360169
\(777\) −7.05939e9 −0.539876
\(778\) −4.21157e9 −0.320638
\(779\) 1.13477e10 0.860054
\(780\) 919980. 6.94140e−5 0
\(781\) 0 0
\(782\) 1.12756e9 0.0843172
\(783\) 2.32184e9 0.172849
\(784\) −2.65069e9 −0.196450
\(785\) −3.66793e9 −0.270631
\(786\) 4.15435e8 0.0305158
\(787\) 6.36260e9 0.465289 0.232645 0.972562i \(-0.425262\pi\)
0.232645 + 0.972562i \(0.425262\pi\)
\(788\) −2.47827e10 −1.80430
\(789\) −4.74921e9 −0.344233
\(790\) 1.42486e8 0.0102820
\(791\) −1.56309e10 −1.12297
\(792\) 0 0
\(793\) 90033.6 6.41133e−6 0
\(794\) 4.31512e9 0.305929
\(795\) −4.32972e9 −0.305615
\(796\) −1.06849e10 −0.750886
\(797\) 1.01302e10 0.708782 0.354391 0.935097i \(-0.384688\pi\)
0.354391 + 0.935097i \(0.384688\pi\)
\(798\) 1.38363e9 0.0963849
\(799\) 9.45016e8 0.0655428
\(800\) 7.59920e9 0.524750
\(801\) −3.11332e9 −0.214047
\(802\) 4.47743e9 0.306492
\(803\) 0 0
\(804\) 2.24110e9 0.152077
\(805\) −4.30976e9 −0.291184
\(806\) −827891. −5.56930e−5 0
\(807\) −8.00805e9 −0.536376
\(808\) −1.12864e10 −0.752689
\(809\) −6.02620e9 −0.400151 −0.200075 0.979781i \(-0.564119\pi\)
−0.200075 + 0.979781i \(0.564119\pi\)
\(810\) 9.36762e7 0.00619343
\(811\) −6.27695e9 −0.413214 −0.206607 0.978424i \(-0.566242\pi\)
−0.206607 + 0.978424i \(0.566242\pi\)
\(812\) −1.15949e10 −0.760014
\(813\) −3.35943e9 −0.219254
\(814\) 0 0
\(815\) 3.53658e9 0.228840
\(816\) −2.80355e9 −0.180631
\(817\) −9.04474e9 −0.580255
\(818\) −1.35484e9 −0.0865472
\(819\) 2.07823e6 0.000132190 0
\(820\) −3.83665e9 −0.242998
\(821\) 1.09386e10 0.689860 0.344930 0.938628i \(-0.387903\pi\)
0.344930 + 0.938628i \(0.387903\pi\)
\(822\) −1.41997e8 −0.00891719
\(823\) 2.37581e10 1.48564 0.742819 0.669493i \(-0.233488\pi\)
0.742819 + 0.669493i \(0.233488\pi\)
\(824\) −7.08494e8 −0.0441155
\(825\) 0 0
\(826\) −6.78731e8 −0.0419052
\(827\) −4.55312e9 −0.279924 −0.139962 0.990157i \(-0.544698\pi\)
−0.139962 + 0.990157i \(0.544698\pi\)
\(828\) 6.20087e9 0.379618
\(829\) 8.33322e9 0.508009 0.254005 0.967203i \(-0.418252\pi\)
0.254005 + 0.967203i \(0.418252\pi\)
\(830\) −8.18868e8 −0.0497096
\(831\) 1.72705e9 0.104400
\(832\) 5.73553e6 0.000345257 0
\(833\) −1.31996e9 −0.0791228
\(834\) 1.52268e9 0.0908925
\(835\) 5.71104e9 0.339479
\(836\) 0 0
\(837\) 2.01882e9 0.119003
\(838\) 2.10987e9 0.123852
\(839\) −2.45148e10 −1.43305 −0.716524 0.697562i \(-0.754268\pi\)
−0.716524 + 0.697562i \(0.754268\pi\)
\(840\) −9.55143e8 −0.0556021
\(841\) −3.33492e9 −0.193330
\(842\) 3.56130e9 0.205597
\(843\) 1.66764e10 0.958751
\(844\) 2.45752e10 1.40701
\(845\) 4.88306e9 0.278416
\(846\) −2.17010e8 −0.0123220
\(847\) 0 0
\(848\) −2.97563e10 −1.67569
\(849\) 1.28741e10 0.722003
\(850\) 1.17384e9 0.0655604
\(851\) 2.26257e10 1.25849
\(852\) 3.46525e9 0.191953
\(853\) 7.97219e9 0.439801 0.219900 0.975522i \(-0.429427\pi\)
0.219900 + 0.975522i \(0.429427\pi\)
\(854\) −4.57816e7 −0.00251529
\(855\) 1.60437e9 0.0877853
\(856\) −9.08888e9 −0.495282
\(857\) −2.96733e10 −1.61040 −0.805199 0.593004i \(-0.797942\pi\)
−0.805199 + 0.593004i \(0.797942\pi\)
\(858\) 0 0
\(859\) 2.21657e10 1.19318 0.596589 0.802547i \(-0.296522\pi\)
0.596589 + 0.802547i \(0.296522\pi\)
\(860\) 3.05803e9 0.163944
\(861\) −8.66695e9 −0.462760
\(862\) 6.14730e9 0.326895
\(863\) −2.95417e10 −1.56458 −0.782289 0.622916i \(-0.785948\pi\)
−0.782289 + 0.622916i \(0.785948\pi\)
\(864\) 2.07544e9 0.109474
\(865\) 8.26309e9 0.434096
\(866\) −7.49171e8 −0.0391984
\(867\) 9.68307e9 0.504599
\(868\) −1.00817e10 −0.523255
\(869\) 0 0
\(870\) 5.61408e8 0.0289042
\(871\) −2.40733e6 −0.000123445 0
\(872\) 7.26005e9 0.370793
\(873\) 6.01473e9 0.305961
\(874\) −4.43459e9 −0.224680
\(875\) −9.35028e9 −0.471842
\(876\) −9.08641e9 −0.456697
\(877\) 7.93157e9 0.397064 0.198532 0.980094i \(-0.436383\pi\)
0.198532 + 0.980094i \(0.436383\pi\)
\(878\) 3.44620e9 0.171834
\(879\) 2.76453e9 0.137297
\(880\) 0 0
\(881\) −6.17779e9 −0.304381 −0.152190 0.988351i \(-0.548633\pi\)
−0.152190 + 0.988351i \(0.548633\pi\)
\(882\) 3.03109e8 0.0148751
\(883\) −1.01620e10 −0.496725 −0.248362 0.968667i \(-0.579892\pi\)
−0.248362 + 0.968667i \(0.579892\pi\)
\(884\) 3.14846e6 0.000153291 0
\(885\) −7.87013e8 −0.0381663
\(886\) −2.87539e8 −0.0138893
\(887\) 3.06982e10 1.47700 0.738500 0.674254i \(-0.235535\pi\)
0.738500 + 0.674254i \(0.235535\pi\)
\(888\) 5.01438e9 0.240310
\(889\) 1.50496e10 0.718404
\(890\) −7.52783e8 −0.0357936
\(891\) 0 0
\(892\) −2.79422e10 −1.31820
\(893\) −3.71666e9 −0.174652
\(894\) 4.53384e9 0.212219
\(895\) −1.43981e9 −0.0671312
\(896\) −1.37137e10 −0.636908
\(897\) −6.66081e6 −0.000308144 0
\(898\) −7.55072e9 −0.347953
\(899\) 1.20989e10 0.555377
\(900\) 6.45536e9 0.295170
\(901\) −1.48177e10 −0.674907
\(902\) 0 0
\(903\) 6.90806e9 0.312211
\(904\) 1.11029e10 0.499857
\(905\) −1.02499e10 −0.459673
\(906\) −5.11709e9 −0.228599
\(907\) −1.56760e10 −0.697605 −0.348803 0.937196i \(-0.613412\pi\)
−0.348803 + 0.937196i \(0.613412\pi\)
\(908\) −1.03529e10 −0.458946
\(909\) −1.44794e10 −0.639406
\(910\) 502504. 2.21052e−5 0
\(911\) −5.69823e9 −0.249704 −0.124852 0.992175i \(-0.539846\pi\)
−0.124852 + 0.992175i \(0.539846\pi\)
\(912\) 1.10261e10 0.481328
\(913\) 0 0
\(914\) −2.24530e9 −0.0972662
\(915\) −5.30854e7 −0.00229087
\(916\) 1.61716e10 0.695216
\(917\) −5.43422e9 −0.232726
\(918\) 3.20590e8 0.0136773
\(919\) −2.08793e10 −0.887383 −0.443692 0.896180i \(-0.646331\pi\)
−0.443692 + 0.896180i \(0.646331\pi\)
\(920\) 3.06128e9 0.129612
\(921\) 2.38352e10 1.00534
\(922\) 5.54465e9 0.232978
\(923\) −3.72228e6 −0.000155813 0
\(924\) 0 0
\(925\) 2.35543e10 0.978529
\(926\) −4.67797e9 −0.193606
\(927\) −9.08931e8 −0.0374759
\(928\) 1.24383e10 0.510907
\(929\) −3.55975e9 −0.145668 −0.0728341 0.997344i \(-0.523204\pi\)
−0.0728341 + 0.997344i \(0.523204\pi\)
\(930\) 4.88139e8 0.0199000
\(931\) 5.19126e9 0.210838
\(932\) 1.42854e10 0.578012
\(933\) 1.03675e10 0.417916
\(934\) 4.77474e9 0.191750
\(935\) 0 0
\(936\) −1.47619e6 −5.88406e−5 0
\(937\) 2.36199e10 0.937972 0.468986 0.883206i \(-0.344619\pi\)
0.468986 + 0.883206i \(0.344619\pi\)
\(938\) 1.22411e9 0.0484297
\(939\) 1.68501e10 0.664159
\(940\) 1.25660e9 0.0493459
\(941\) 1.92156e9 0.0751780 0.0375890 0.999293i \(-0.488032\pi\)
0.0375890 + 0.999293i \(0.488032\pi\)
\(942\) 2.88258e9 0.112358
\(943\) 2.77780e10 1.07872
\(944\) −5.40881e9 −0.209266
\(945\) −1.22536e9 −0.0472337
\(946\) 0 0
\(947\) −3.92895e9 −0.150332 −0.0751661 0.997171i \(-0.523949\pi\)
−0.0751661 + 0.997171i \(0.523949\pi\)
\(948\) 2.68168e9 0.102230
\(949\) 9.76039e6 0.000370711 0
\(950\) −4.61659e9 −0.174698
\(951\) −2.10336e10 −0.793014
\(952\) −3.26881e9 −0.122789
\(953\) −5.71086e9 −0.213735 −0.106868 0.994273i \(-0.534082\pi\)
−0.106868 + 0.994273i \(0.534082\pi\)
\(954\) 3.40267e9 0.126882
\(955\) 5.89357e9 0.218961
\(956\) −1.24731e10 −0.461712
\(957\) 0 0
\(958\) 1.37049e9 0.0503612
\(959\) 1.85743e9 0.0680062
\(960\) −3.38177e9 −0.123366
\(961\) −1.69927e10 −0.617634
\(962\) −2.63808e6 −9.55378e−5 0
\(963\) −1.16602e10 −0.420739
\(964\) −3.30641e10 −1.18874
\(965\) −1.75040e9 −0.0627036
\(966\) 3.38699e9 0.120891
\(967\) −3.57036e10 −1.26975 −0.634877 0.772613i \(-0.718949\pi\)
−0.634877 + 0.772613i \(0.718949\pi\)
\(968\) 0 0
\(969\) 5.49065e9 0.193861
\(970\) 1.45433e9 0.0511637
\(971\) −4.92075e10 −1.72490 −0.862450 0.506143i \(-0.831071\pi\)
−0.862450 + 0.506143i \(0.831071\pi\)
\(972\) 1.76304e9 0.0615787
\(973\) −1.99179e10 −0.693184
\(974\) 2.07620e9 0.0719969
\(975\) −6.93418e6 −0.000239596 0
\(976\) −3.64833e8 −0.0125609
\(977\) −1.58498e10 −0.543741 −0.271871 0.962334i \(-0.587642\pi\)
−0.271871 + 0.962334i \(0.587642\pi\)
\(978\) −2.77936e9 −0.0950076
\(979\) 0 0
\(980\) −1.75517e9 −0.0595699
\(981\) 9.31395e9 0.314987
\(982\) −8.07616e9 −0.272154
\(983\) 9.11932e9 0.306214 0.153107 0.988210i \(-0.451072\pi\)
0.153107 + 0.988210i \(0.451072\pi\)
\(984\) 6.15625e9 0.205984
\(985\) −1.56962e10 −0.523320
\(986\) 1.92132e9 0.0638308
\(987\) 2.83866e9 0.0939729
\(988\) −1.23826e7 −0.000408473 0
\(989\) −2.21407e10 −0.727786
\(990\) 0 0
\(991\) −4.27508e10 −1.39536 −0.697680 0.716410i \(-0.745784\pi\)
−0.697680 + 0.716410i \(0.745784\pi\)
\(992\) 1.08149e10 0.351749
\(993\) −5.78369e9 −0.187449
\(994\) 1.89276e9 0.0611284
\(995\) −6.76729e9 −0.217788
\(996\) −1.54116e10 −0.494242
\(997\) −4.17291e10 −1.33354 −0.666770 0.745264i \(-0.732324\pi\)
−0.666770 + 0.745264i \(0.732324\pi\)
\(998\) 4.50776e9 0.143550
\(999\) 6.43298e9 0.204142
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.8.a.n.1.6 12
11.10 odd 2 inner 363.8.a.n.1.7 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
363.8.a.n.1.6 12 1.1 even 1 trivial
363.8.a.n.1.7 yes 12 11.10 odd 2 inner