Properties

Label 363.8.a.m.1.10
Level $363$
Weight $8$
Character 363.1
Self dual yes
Analytic conductor $113.396$
Analytic rank $1$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [363,8,Mod(1,363)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(363, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("363.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 363.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(113.395764251\)
Analytic rank: \(1\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 883x^{8} + 270112x^{6} - 33122976x^{4} + 1371591936x^{2} - 94618368 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{2}\cdot 11^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(18.5524\) of defining polynomial
Character \(\chi\) \(=\) 363.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+18.5524 q^{2} +27.0000 q^{3} +216.192 q^{4} -234.289 q^{5} +500.915 q^{6} -468.897 q^{7} +1636.18 q^{8} +729.000 q^{9} -4346.62 q^{10} +5837.19 q^{12} -3588.75 q^{13} -8699.17 q^{14} -6325.79 q^{15} +2682.47 q^{16} +625.901 q^{17} +13524.7 q^{18} +26359.3 q^{19} -50651.4 q^{20} -12660.2 q^{21} +78104.0 q^{23} +44176.8 q^{24} -23233.9 q^{25} -66579.9 q^{26} +19683.0 q^{27} -101372. q^{28} -149494. q^{29} -117359. q^{30} -311481. q^{31} -159665. q^{32} +11612.0 q^{34} +109857. q^{35} +157604. q^{36} -204907. q^{37} +489029. q^{38} -96896.2 q^{39} -383338. q^{40} -760746. q^{41} -234878. q^{42} +98326.7 q^{43} -170796. q^{45} +1.44902e6 q^{46} -588443. q^{47} +72426.6 q^{48} -603679. q^{49} -431044. q^{50} +16899.3 q^{51} -775859. q^{52} -458970. q^{53} +365167. q^{54} -767199. q^{56} +711701. q^{57} -2.77347e6 q^{58} -738903. q^{59} -1.36759e6 q^{60} +2.12197e6 q^{61} -5.77872e6 q^{62} -341826. q^{63} -3.30552e6 q^{64} +840803. q^{65} +3.34623e6 q^{67} +135315. q^{68} +2.10881e6 q^{69} +2.03812e6 q^{70} -2.89651e6 q^{71} +1.19277e6 q^{72} -338231. q^{73} -3.80152e6 q^{74} -627314. q^{75} +5.69867e6 q^{76} -1.79766e6 q^{78} -7.85461e6 q^{79} -628471. q^{80} +531441. q^{81} -1.41137e7 q^{82} -8.90762e6 q^{83} -2.73704e6 q^{84} -146642. q^{85} +1.82420e6 q^{86} -4.03633e6 q^{87} +7.44444e6 q^{89} -3.16869e6 q^{90} +1.68275e6 q^{91} +1.68855e7 q^{92} -8.40998e6 q^{93} -1.09170e7 q^{94} -6.17568e6 q^{95} -4.31094e6 q^{96} +80295.7 q^{97} -1.11997e7 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 270 q^{3} + 486 q^{4} - 946 q^{5} + 7290 q^{9} + 13122 q^{12} - 16948 q^{14} - 25542 q^{15} - 35374 q^{16} - 48738 q^{20} + 2108 q^{23} - 76684 q^{25} - 367002 q^{26} + 196830 q^{27} - 664572 q^{31}+ \cdots + 15434810 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 18.5524 1.63982 0.819909 0.572494i \(-0.194024\pi\)
0.819909 + 0.572494i \(0.194024\pi\)
\(3\) 27.0000 0.577350
\(4\) 216.192 1.68900
\(5\) −234.289 −0.838216 −0.419108 0.907936i \(-0.637657\pi\)
−0.419108 + 0.907936i \(0.637657\pi\)
\(6\) 500.915 0.946749
\(7\) −468.897 −0.516695 −0.258347 0.966052i \(-0.583178\pi\)
−0.258347 + 0.966052i \(0.583178\pi\)
\(8\) 1636.18 1.12984
\(9\) 729.000 0.333333
\(10\) −4346.62 −1.37452
\(11\) 0 0
\(12\) 5837.19 0.975146
\(13\) −3588.75 −0.453045 −0.226522 0.974006i \(-0.572736\pi\)
−0.226522 + 0.974006i \(0.572736\pi\)
\(14\) −8699.17 −0.847285
\(15\) −6325.79 −0.483944
\(16\) 2682.47 0.163725
\(17\) 625.901 0.0308983 0.0154492 0.999881i \(-0.495082\pi\)
0.0154492 + 0.999881i \(0.495082\pi\)
\(18\) 13524.7 0.546606
\(19\) 26359.3 0.881650 0.440825 0.897593i \(-0.354686\pi\)
0.440825 + 0.897593i \(0.354686\pi\)
\(20\) −50651.4 −1.41575
\(21\) −12660.2 −0.298314
\(22\) 0 0
\(23\) 78104.0 1.33852 0.669261 0.743027i \(-0.266611\pi\)
0.669261 + 0.743027i \(0.266611\pi\)
\(24\) 44176.8 0.652312
\(25\) −23233.9 −0.297393
\(26\) −66579.9 −0.742911
\(27\) 19683.0 0.192450
\(28\) −101372. −0.872699
\(29\) −149494. −1.13823 −0.569115 0.822258i \(-0.692714\pi\)
−0.569115 + 0.822258i \(0.692714\pi\)
\(30\) −117359. −0.793581
\(31\) −311481. −1.87787 −0.938935 0.344096i \(-0.888185\pi\)
−0.938935 + 0.344096i \(0.888185\pi\)
\(32\) −159665. −0.861358
\(33\) 0 0
\(34\) 11612.0 0.0506676
\(35\) 109857. 0.433102
\(36\) 157604. 0.563001
\(37\) −204907. −0.665045 −0.332522 0.943095i \(-0.607900\pi\)
−0.332522 + 0.943095i \(0.607900\pi\)
\(38\) 489029. 1.44575
\(39\) −96896.2 −0.261566
\(40\) −383338. −0.947048
\(41\) −760746. −1.72384 −0.861918 0.507048i \(-0.830737\pi\)
−0.861918 + 0.507048i \(0.830737\pi\)
\(42\) −234878. −0.489180
\(43\) 98326.7 0.188596 0.0942979 0.995544i \(-0.469939\pi\)
0.0942979 + 0.995544i \(0.469939\pi\)
\(44\) 0 0
\(45\) −170796. −0.279405
\(46\) 1.44902e6 2.19493
\(47\) −588443. −0.826726 −0.413363 0.910566i \(-0.635646\pi\)
−0.413363 + 0.910566i \(0.635646\pi\)
\(48\) 72426.6 0.0945265
\(49\) −603679. −0.733026
\(50\) −431044. −0.487671
\(51\) 16899.3 0.0178391
\(52\) −775859. −0.765193
\(53\) −458970. −0.423466 −0.211733 0.977328i \(-0.567911\pi\)
−0.211733 + 0.977328i \(0.567911\pi\)
\(54\) 365167. 0.315583
\(55\) 0 0
\(56\) −767199. −0.583781
\(57\) 711701. 0.509021
\(58\) −2.77347e6 −1.86649
\(59\) −738903. −0.468387 −0.234194 0.972190i \(-0.575245\pi\)
−0.234194 + 0.972190i \(0.575245\pi\)
\(60\) −1.36759e6 −0.817383
\(61\) 2.12197e6 1.19697 0.598487 0.801132i \(-0.295769\pi\)
0.598487 + 0.801132i \(0.295769\pi\)
\(62\) −5.77872e6 −3.07936
\(63\) −341826. −0.172232
\(64\) −3.30552e6 −1.57619
\(65\) 840803. 0.379750
\(66\) 0 0
\(67\) 3.34623e6 1.35924 0.679618 0.733567i \(-0.262146\pi\)
0.679618 + 0.733567i \(0.262146\pi\)
\(68\) 135315. 0.0521873
\(69\) 2.10881e6 0.772796
\(70\) 2.03812e6 0.710208
\(71\) −2.89651e6 −0.960440 −0.480220 0.877148i \(-0.659443\pi\)
−0.480220 + 0.877148i \(0.659443\pi\)
\(72\) 1.19277e6 0.376612
\(73\) −338231. −0.101762 −0.0508808 0.998705i \(-0.516203\pi\)
−0.0508808 + 0.998705i \(0.516203\pi\)
\(74\) −3.80152e6 −1.09055
\(75\) −627314. −0.171700
\(76\) 5.69867e6 1.48911
\(77\) 0 0
\(78\) −1.79766e6 −0.428920
\(79\) −7.85461e6 −1.79238 −0.896189 0.443672i \(-0.853676\pi\)
−0.896189 + 0.443672i \(0.853676\pi\)
\(80\) −628471. −0.137237
\(81\) 531441. 0.111111
\(82\) −1.41137e7 −2.82678
\(83\) −8.90762e6 −1.70997 −0.854985 0.518653i \(-0.826434\pi\)
−0.854985 + 0.518653i \(0.826434\pi\)
\(84\) −2.73704e6 −0.503853
\(85\) −146642. −0.0258995
\(86\) 1.82420e6 0.309263
\(87\) −4.03633e6 −0.657157
\(88\) 0 0
\(89\) 7.44444e6 1.11935 0.559676 0.828711i \(-0.310925\pi\)
0.559676 + 0.828711i \(0.310925\pi\)
\(90\) −3.16869e6 −0.458174
\(91\) 1.68275e6 0.234086
\(92\) 1.68855e7 2.26077
\(93\) −8.40998e6 −1.08419
\(94\) −1.09170e7 −1.35568
\(95\) −6.17568e6 −0.739013
\(96\) −4.31094e6 −0.497305
\(97\) 80295.7 0.00893287 0.00446644 0.999990i \(-0.498578\pi\)
0.00446644 + 0.999990i \(0.498578\pi\)
\(98\) −1.11997e7 −1.20203
\(99\) 0 0
\(100\) −5.02298e6 −0.502298
\(101\) 8.62184e6 0.832675 0.416337 0.909210i \(-0.363314\pi\)
0.416337 + 0.909210i \(0.363314\pi\)
\(102\) 313524. 0.0292529
\(103\) 1.90067e7 1.71386 0.856932 0.515429i \(-0.172367\pi\)
0.856932 + 0.515429i \(0.172367\pi\)
\(104\) −5.87183e6 −0.511867
\(105\) 2.96614e6 0.250052
\(106\) −8.51501e6 −0.694408
\(107\) 1.63674e7 1.29163 0.645814 0.763494i \(-0.276518\pi\)
0.645814 + 0.763494i \(0.276518\pi\)
\(108\) 4.25531e6 0.325049
\(109\) 6.35346e6 0.469913 0.234957 0.972006i \(-0.424505\pi\)
0.234957 + 0.972006i \(0.424505\pi\)
\(110\) 0 0
\(111\) −5.53249e6 −0.383964
\(112\) −1.25780e6 −0.0845957
\(113\) 3.73822e6 0.243719 0.121860 0.992547i \(-0.461114\pi\)
0.121860 + 0.992547i \(0.461114\pi\)
\(114\) 1.32038e7 0.834701
\(115\) −1.82989e7 −1.12197
\(116\) −3.23194e7 −1.92247
\(117\) −2.61620e6 −0.151015
\(118\) −1.37084e7 −0.768070
\(119\) −293483. −0.0159650
\(120\) −1.03501e7 −0.546778
\(121\) 0 0
\(122\) 3.93677e7 1.96282
\(123\) −2.05401e7 −0.995257
\(124\) −6.73397e7 −3.17172
\(125\) 2.37472e7 1.08750
\(126\) −6.34170e6 −0.282428
\(127\) −1.23971e7 −0.537042 −0.268521 0.963274i \(-0.586535\pi\)
−0.268521 + 0.963274i \(0.586535\pi\)
\(128\) −4.08883e7 −1.72331
\(129\) 2.65482e6 0.108886
\(130\) 1.55989e7 0.622720
\(131\) 1.85775e7 0.722002 0.361001 0.932565i \(-0.382435\pi\)
0.361001 + 0.932565i \(0.382435\pi\)
\(132\) 0 0
\(133\) −1.23598e7 −0.455544
\(134\) 6.20807e7 2.22890
\(135\) −4.61150e6 −0.161315
\(136\) 1.02409e6 0.0349100
\(137\) 1.02260e7 0.339770 0.169885 0.985464i \(-0.445660\pi\)
0.169885 + 0.985464i \(0.445660\pi\)
\(138\) 3.91235e7 1.26725
\(139\) 3.95243e7 1.24828 0.624140 0.781312i \(-0.285449\pi\)
0.624140 + 0.781312i \(0.285449\pi\)
\(140\) 2.37503e7 0.731510
\(141\) −1.58880e7 −0.477311
\(142\) −5.37372e7 −1.57495
\(143\) 0 0
\(144\) 1.95552e6 0.0545749
\(145\) 3.50247e7 0.954083
\(146\) −6.27501e6 −0.166870
\(147\) −1.62993e7 −0.423213
\(148\) −4.42993e7 −1.12326
\(149\) 827328. 0.0204892 0.0102446 0.999948i \(-0.496739\pi\)
0.0102446 + 0.999948i \(0.496739\pi\)
\(150\) −1.16382e7 −0.281557
\(151\) −3.45316e7 −0.816202 −0.408101 0.912937i \(-0.633809\pi\)
−0.408101 + 0.912937i \(0.633809\pi\)
\(152\) 4.31285e7 0.996121
\(153\) 456282. 0.0102994
\(154\) 0 0
\(155\) 7.29764e7 1.57406
\(156\) −2.09482e7 −0.441785
\(157\) 6.55426e6 0.135168 0.0675841 0.997714i \(-0.478471\pi\)
0.0675841 + 0.997714i \(0.478471\pi\)
\(158\) −1.45722e8 −2.93917
\(159\) −1.23922e7 −0.244488
\(160\) 3.74076e7 0.722005
\(161\) −3.66227e7 −0.691608
\(162\) 9.85952e6 0.182202
\(163\) 2.80135e7 0.506653 0.253326 0.967381i \(-0.418475\pi\)
0.253326 + 0.967381i \(0.418475\pi\)
\(164\) −1.64467e8 −2.91156
\(165\) 0 0
\(166\) −1.65258e8 −2.80404
\(167\) 5.82636e7 0.968032 0.484016 0.875059i \(-0.339178\pi\)
0.484016 + 0.875059i \(0.339178\pi\)
\(168\) −2.07144e7 −0.337046
\(169\) −4.98694e7 −0.794750
\(170\) −2.72055e6 −0.0424704
\(171\) 1.92159e7 0.293883
\(172\) 2.12575e7 0.318539
\(173\) 5.93699e7 0.871775 0.435888 0.900001i \(-0.356434\pi\)
0.435888 + 0.900001i \(0.356434\pi\)
\(174\) −7.48837e7 −1.07762
\(175\) 1.08943e7 0.153662
\(176\) 0 0
\(177\) −1.99504e7 −0.270424
\(178\) 1.38112e8 1.83553
\(179\) −6.78540e7 −0.884280 −0.442140 0.896946i \(-0.645781\pi\)
−0.442140 + 0.896946i \(0.645781\pi\)
\(180\) −3.69248e7 −0.471916
\(181\) −3.36683e7 −0.422033 −0.211017 0.977482i \(-0.567677\pi\)
−0.211017 + 0.977482i \(0.567677\pi\)
\(182\) 3.12191e7 0.383858
\(183\) 5.72932e7 0.691073
\(184\) 1.27792e8 1.51231
\(185\) 4.80074e7 0.557451
\(186\) −1.56025e8 −1.77787
\(187\) 0 0
\(188\) −1.27217e8 −1.39634
\(189\) −9.22930e6 −0.0994380
\(190\) −1.14574e8 −1.21185
\(191\) −9.16013e7 −0.951229 −0.475614 0.879654i \(-0.657774\pi\)
−0.475614 + 0.879654i \(0.657774\pi\)
\(192\) −8.92491e7 −0.910017
\(193\) 4.36787e7 0.437340 0.218670 0.975799i \(-0.429828\pi\)
0.218670 + 0.975799i \(0.429828\pi\)
\(194\) 1.48968e6 0.0146483
\(195\) 2.27017e7 0.219249
\(196\) −1.30511e8 −1.23808
\(197\) 9.17788e7 0.855285 0.427642 0.903948i \(-0.359344\pi\)
0.427642 + 0.903948i \(0.359344\pi\)
\(198\) 0 0
\(199\) −2.08686e8 −1.87718 −0.938592 0.345030i \(-0.887869\pi\)
−0.938592 + 0.345030i \(0.887869\pi\)
\(200\) −3.80147e7 −0.336006
\(201\) 9.03483e7 0.784755
\(202\) 1.59956e8 1.36543
\(203\) 7.00971e7 0.588118
\(204\) 3.65350e6 0.0301303
\(205\) 1.78234e8 1.44495
\(206\) 3.52620e8 2.81043
\(207\) 5.69378e7 0.446174
\(208\) −9.62669e6 −0.0741746
\(209\) 0 0
\(210\) 5.50291e7 0.410039
\(211\) 4.58052e7 0.335680 0.167840 0.985814i \(-0.446321\pi\)
0.167840 + 0.985814i \(0.446321\pi\)
\(212\) −9.92258e7 −0.715235
\(213\) −7.82056e7 −0.554510
\(214\) 3.03656e8 2.11804
\(215\) −2.30368e7 −0.158084
\(216\) 3.22049e7 0.217437
\(217\) 1.46052e8 0.970285
\(218\) 1.17872e8 0.770572
\(219\) −9.13225e6 −0.0587521
\(220\) 0 0
\(221\) −2.24620e6 −0.0139983
\(222\) −1.02641e8 −0.629631
\(223\) −7.05467e7 −0.426000 −0.213000 0.977052i \(-0.568323\pi\)
−0.213000 + 0.977052i \(0.568323\pi\)
\(224\) 7.48662e7 0.445059
\(225\) −1.69375e7 −0.0991311
\(226\) 6.93530e7 0.399655
\(227\) −2.18807e7 −0.124157 −0.0620785 0.998071i \(-0.519773\pi\)
−0.0620785 + 0.998071i \(0.519773\pi\)
\(228\) 1.53864e8 0.859737
\(229\) 1.88464e8 1.03706 0.518531 0.855059i \(-0.326479\pi\)
0.518531 + 0.855059i \(0.326479\pi\)
\(230\) −3.39488e8 −1.83983
\(231\) 0 0
\(232\) −2.44598e8 −1.28601
\(233\) −3.37569e8 −1.74830 −0.874151 0.485655i \(-0.838581\pi\)
−0.874151 + 0.485655i \(0.838581\pi\)
\(234\) −4.85368e7 −0.247637
\(235\) 1.37865e8 0.692976
\(236\) −1.59745e8 −0.791107
\(237\) −2.12074e8 −1.03483
\(238\) −5.44482e6 −0.0261797
\(239\) 1.48471e8 0.703477 0.351738 0.936098i \(-0.385591\pi\)
0.351738 + 0.936098i \(0.385591\pi\)
\(240\) −1.69687e7 −0.0792337
\(241\) 1.82232e8 0.838622 0.419311 0.907843i \(-0.362272\pi\)
0.419311 + 0.907843i \(0.362272\pi\)
\(242\) 0 0
\(243\) 1.43489e7 0.0641500
\(244\) 4.58753e8 2.02169
\(245\) 1.41435e8 0.614435
\(246\) −3.81069e8 −1.63204
\(247\) −9.45969e7 −0.399427
\(248\) −5.09638e8 −2.12169
\(249\) −2.40506e8 −0.987252
\(250\) 4.40568e8 1.78330
\(251\) 2.25050e8 0.898299 0.449150 0.893457i \(-0.351727\pi\)
0.449150 + 0.893457i \(0.351727\pi\)
\(252\) −7.39001e7 −0.290900
\(253\) 0 0
\(254\) −2.29997e8 −0.880651
\(255\) −3.95932e6 −0.0149531
\(256\) −3.35471e8 −1.24973
\(257\) −4.61804e8 −1.69704 −0.848520 0.529163i \(-0.822506\pi\)
−0.848520 + 0.529163i \(0.822506\pi\)
\(258\) 4.92534e7 0.178553
\(259\) 9.60803e7 0.343625
\(260\) 1.81775e8 0.641398
\(261\) −1.08981e8 −0.379410
\(262\) 3.44658e8 1.18395
\(263\) −9.62818e7 −0.326362 −0.163181 0.986596i \(-0.552175\pi\)
−0.163181 + 0.986596i \(0.552175\pi\)
\(264\) 0 0
\(265\) 1.07531e8 0.354956
\(266\) −2.29304e8 −0.747009
\(267\) 2.01000e8 0.646259
\(268\) 7.23430e8 2.29575
\(269\) −5.75588e8 −1.80293 −0.901465 0.432852i \(-0.857507\pi\)
−0.901465 + 0.432852i \(0.857507\pi\)
\(270\) −8.55545e7 −0.264527
\(271\) −4.02597e8 −1.22879 −0.614395 0.788999i \(-0.710600\pi\)
−0.614395 + 0.788999i \(0.710600\pi\)
\(272\) 1.67896e6 0.00505882
\(273\) 4.54343e7 0.135150
\(274\) 1.89718e8 0.557161
\(275\) 0 0
\(276\) 4.55908e8 1.30525
\(277\) 3.79298e8 1.07226 0.536131 0.844135i \(-0.319885\pi\)
0.536131 + 0.844135i \(0.319885\pi\)
\(278\) 7.33271e8 2.04695
\(279\) −2.27069e8 −0.625956
\(280\) 1.79746e8 0.489335
\(281\) 5.10144e8 1.37158 0.685789 0.727800i \(-0.259457\pi\)
0.685789 + 0.727800i \(0.259457\pi\)
\(282\) −2.94760e8 −0.782702
\(283\) −3.47516e8 −0.911427 −0.455714 0.890126i \(-0.650616\pi\)
−0.455714 + 0.890126i \(0.650616\pi\)
\(284\) −6.26202e8 −1.62218
\(285\) −1.66743e8 −0.426670
\(286\) 0 0
\(287\) 3.56711e8 0.890697
\(288\) −1.16396e8 −0.287119
\(289\) −4.09947e8 −0.999045
\(290\) 6.49792e8 1.56452
\(291\) 2.16798e6 0.00515740
\(292\) −7.31230e7 −0.171876
\(293\) 6.99250e6 0.0162404 0.00812019 0.999967i \(-0.497415\pi\)
0.00812019 + 0.999967i \(0.497415\pi\)
\(294\) −3.02392e8 −0.693992
\(295\) 1.73116e8 0.392610
\(296\) −3.35265e8 −0.751392
\(297\) 0 0
\(298\) 1.53489e7 0.0335986
\(299\) −2.80295e8 −0.606411
\(300\) −1.35620e8 −0.290002
\(301\) −4.61051e7 −0.0974465
\(302\) −6.40645e8 −1.33842
\(303\) 2.32790e8 0.480745
\(304\) 7.07079e7 0.144348
\(305\) −4.97153e8 −1.00332
\(306\) 8.46513e6 0.0168892
\(307\) 9.53166e8 1.88011 0.940057 0.341016i \(-0.110771\pi\)
0.940057 + 0.341016i \(0.110771\pi\)
\(308\) 0 0
\(309\) 5.13181e8 0.989500
\(310\) 1.35389e9 2.58117
\(311\) −5.15371e8 −0.971536 −0.485768 0.874088i \(-0.661460\pi\)
−0.485768 + 0.874088i \(0.661460\pi\)
\(312\) −1.58539e8 −0.295526
\(313\) 7.41904e7 0.136755 0.0683774 0.997660i \(-0.478218\pi\)
0.0683774 + 0.997660i \(0.478218\pi\)
\(314\) 1.21597e8 0.221651
\(315\) 8.00859e7 0.144367
\(316\) −1.69811e9 −3.02733
\(317\) −7.41912e8 −1.30811 −0.654056 0.756446i \(-0.726934\pi\)
−0.654056 + 0.756446i \(0.726934\pi\)
\(318\) −2.29905e8 −0.400916
\(319\) 0 0
\(320\) 7.74446e8 1.32119
\(321\) 4.41921e8 0.745722
\(322\) −6.79440e8 −1.13411
\(323\) 1.64983e7 0.0272415
\(324\) 1.14893e8 0.187667
\(325\) 8.33804e7 0.134733
\(326\) 5.19718e8 0.830818
\(327\) 1.71543e8 0.271305
\(328\) −1.24472e9 −1.94765
\(329\) 2.75919e8 0.427165
\(330\) 0 0
\(331\) −9.64868e8 −1.46241 −0.731207 0.682156i \(-0.761042\pi\)
−0.731207 + 0.682156i \(0.761042\pi\)
\(332\) −1.92576e9 −2.88814
\(333\) −1.49377e8 −0.221682
\(334\) 1.08093e9 1.58740
\(335\) −7.83985e8 −1.13933
\(336\) −3.39606e7 −0.0488414
\(337\) −1.08105e8 −0.153866 −0.0769329 0.997036i \(-0.524513\pi\)
−0.0769329 + 0.997036i \(0.524513\pi\)
\(338\) −9.25198e8 −1.30325
\(339\) 1.00932e8 0.140712
\(340\) −3.17028e7 −0.0437442
\(341\) 0 0
\(342\) 3.56502e8 0.481915
\(343\) 6.69220e8 0.895446
\(344\) 1.60880e8 0.213083
\(345\) −4.94070e8 −0.647771
\(346\) 1.10145e9 1.42955
\(347\) 8.06717e8 1.03650 0.518248 0.855230i \(-0.326584\pi\)
0.518248 + 0.855230i \(0.326584\pi\)
\(348\) −8.72623e8 −1.10994
\(349\) −1.27856e9 −1.61002 −0.805012 0.593259i \(-0.797841\pi\)
−0.805012 + 0.593259i \(0.797841\pi\)
\(350\) 2.02115e8 0.251977
\(351\) −7.06373e7 −0.0871885
\(352\) 0 0
\(353\) −5.03843e8 −0.609655 −0.304827 0.952408i \(-0.598599\pi\)
−0.304827 + 0.952408i \(0.598599\pi\)
\(354\) −3.70128e8 −0.443445
\(355\) 6.78618e8 0.805056
\(356\) 1.60943e9 1.89059
\(357\) −7.92405e6 −0.00921739
\(358\) −1.25886e9 −1.45006
\(359\) −9.78486e8 −1.11615 −0.558077 0.829789i \(-0.688461\pi\)
−0.558077 + 0.829789i \(0.688461\pi\)
\(360\) −2.79453e8 −0.315683
\(361\) −1.99059e8 −0.222693
\(362\) −6.24629e8 −0.692058
\(363\) 0 0
\(364\) 3.63798e8 0.395372
\(365\) 7.92438e7 0.0852982
\(366\) 1.06293e9 1.13323
\(367\) −5.35617e8 −0.565618 −0.282809 0.959176i \(-0.591266\pi\)
−0.282809 + 0.959176i \(0.591266\pi\)
\(368\) 2.09511e8 0.219149
\(369\) −5.54584e8 −0.574612
\(370\) 8.90653e8 0.914119
\(371\) 2.15210e8 0.218803
\(372\) −1.81817e9 −1.83120
\(373\) 1.40133e9 1.39817 0.699084 0.715039i \(-0.253591\pi\)
0.699084 + 0.715039i \(0.253591\pi\)
\(374\) 0 0
\(375\) 6.41175e8 0.627866
\(376\) −9.62798e8 −0.934066
\(377\) 5.36495e8 0.515669
\(378\) −1.71226e8 −0.163060
\(379\) −1.85262e9 −1.74803 −0.874013 0.485902i \(-0.838491\pi\)
−0.874013 + 0.485902i \(0.838491\pi\)
\(380\) −1.33513e9 −1.24819
\(381\) −3.34723e8 −0.310062
\(382\) −1.69943e9 −1.55984
\(383\) 1.83220e9 1.66639 0.833195 0.552979i \(-0.186509\pi\)
0.833195 + 0.552979i \(0.186509\pi\)
\(384\) −1.10398e9 −0.994956
\(385\) 0 0
\(386\) 8.10346e8 0.717158
\(387\) 7.16802e7 0.0628653
\(388\) 1.73593e7 0.0150876
\(389\) −6.91249e8 −0.595403 −0.297702 0.954659i \(-0.596220\pi\)
−0.297702 + 0.954659i \(0.596220\pi\)
\(390\) 4.21171e8 0.359528
\(391\) 4.88854e7 0.0413581
\(392\) −9.87726e8 −0.828200
\(393\) 5.01593e8 0.416848
\(394\) 1.70272e9 1.40251
\(395\) 1.84025e9 1.50240
\(396\) 0 0
\(397\) 1.09921e9 0.881683 0.440841 0.897585i \(-0.354680\pi\)
0.440841 + 0.897585i \(0.354680\pi\)
\(398\) −3.87162e9 −3.07824
\(399\) −3.33714e8 −0.263008
\(400\) −6.23240e7 −0.0486906
\(401\) 1.38884e9 1.07559 0.537793 0.843077i \(-0.319258\pi\)
0.537793 + 0.843077i \(0.319258\pi\)
\(402\) 1.67618e9 1.28685
\(403\) 1.11783e9 0.850759
\(404\) 1.86398e9 1.40639
\(405\) −1.24511e8 −0.0931351
\(406\) 1.30047e9 0.964405
\(407\) 0 0
\(408\) 2.76503e7 0.0201553
\(409\) −2.44277e8 −0.176543 −0.0882714 0.996096i \(-0.528134\pi\)
−0.0882714 + 0.996096i \(0.528134\pi\)
\(410\) 3.30667e9 2.36945
\(411\) 2.76103e8 0.196166
\(412\) 4.10910e9 2.89472
\(413\) 3.46469e8 0.242013
\(414\) 1.05633e9 0.731644
\(415\) 2.08695e9 1.43332
\(416\) 5.72996e8 0.390234
\(417\) 1.06716e9 0.720695
\(418\) 0 0
\(419\) 2.09745e8 0.139297 0.0696487 0.997572i \(-0.477812\pi\)
0.0696487 + 0.997572i \(0.477812\pi\)
\(420\) 6.41257e8 0.422338
\(421\) 9.19954e8 0.600868 0.300434 0.953803i \(-0.402869\pi\)
0.300434 + 0.953803i \(0.402869\pi\)
\(422\) 8.49797e8 0.550454
\(423\) −4.28975e8 −0.275575
\(424\) −7.50957e8 −0.478448
\(425\) −1.45421e7 −0.00918895
\(426\) −1.45090e9 −0.909295
\(427\) −9.94985e8 −0.618471
\(428\) 3.53851e9 2.18156
\(429\) 0 0
\(430\) −4.27389e8 −0.259229
\(431\) 2.10688e9 1.26756 0.633780 0.773513i \(-0.281502\pi\)
0.633780 + 0.773513i \(0.281502\pi\)
\(432\) 5.27990e7 0.0315088
\(433\) 1.12524e9 0.666095 0.333048 0.942910i \(-0.391923\pi\)
0.333048 + 0.942910i \(0.391923\pi\)
\(434\) 2.70962e9 1.59109
\(435\) 9.45666e8 0.550840
\(436\) 1.37357e9 0.793684
\(437\) 2.05877e9 1.18011
\(438\) −1.69425e8 −0.0963427
\(439\) 1.06709e9 0.601968 0.300984 0.953629i \(-0.402685\pi\)
0.300984 + 0.953629i \(0.402685\pi\)
\(440\) 0 0
\(441\) −4.40082e8 −0.244342
\(442\) −4.16725e7 −0.0229547
\(443\) 1.44691e9 0.790733 0.395366 0.918523i \(-0.370618\pi\)
0.395366 + 0.918523i \(0.370618\pi\)
\(444\) −1.19608e9 −0.648515
\(445\) −1.74415e9 −0.938260
\(446\) −1.30881e9 −0.698563
\(447\) 2.23379e7 0.0118295
\(448\) 1.54995e9 0.814412
\(449\) 3.55718e9 1.85457 0.927287 0.374351i \(-0.122134\pi\)
0.927287 + 0.374351i \(0.122134\pi\)
\(450\) −3.14231e8 −0.162557
\(451\) 0 0
\(452\) 8.08174e8 0.411643
\(453\) −9.32354e8 −0.471234
\(454\) −4.05940e8 −0.203595
\(455\) −3.94250e8 −0.196215
\(456\) 1.16447e9 0.575110
\(457\) 3.99312e9 1.95707 0.978533 0.206092i \(-0.0660745\pi\)
0.978533 + 0.206092i \(0.0660745\pi\)
\(458\) 3.49646e9 1.70059
\(459\) 1.23196e7 0.00594638
\(460\) −3.95607e9 −1.89501
\(461\) 6.63378e8 0.315361 0.157681 0.987490i \(-0.449598\pi\)
0.157681 + 0.987490i \(0.449598\pi\)
\(462\) 0 0
\(463\) −2.93044e9 −1.37214 −0.686072 0.727534i \(-0.740666\pi\)
−0.686072 + 0.727534i \(0.740666\pi\)
\(464\) −4.01012e8 −0.186356
\(465\) 1.97036e9 0.908784
\(466\) −6.26271e9 −2.86689
\(467\) −2.59060e8 −0.117704 −0.0588520 0.998267i \(-0.518744\pi\)
−0.0588520 + 0.998267i \(0.518744\pi\)
\(468\) −5.65601e8 −0.255064
\(469\) −1.56904e9 −0.702310
\(470\) 2.55774e9 1.13635
\(471\) 1.76965e8 0.0780394
\(472\) −1.20898e9 −0.529201
\(473\) 0 0
\(474\) −3.93449e9 −1.69693
\(475\) −6.12428e8 −0.262197
\(476\) −6.34488e7 −0.0269649
\(477\) −3.34589e8 −0.141155
\(478\) 2.75450e9 1.15357
\(479\) −4.01670e9 −1.66992 −0.834959 0.550312i \(-0.814509\pi\)
−0.834959 + 0.550312i \(0.814509\pi\)
\(480\) 1.01001e9 0.416850
\(481\) 7.35360e8 0.301295
\(482\) 3.38085e9 1.37519
\(483\) −9.88813e8 −0.399300
\(484\) 0 0
\(485\) −1.88124e7 −0.00748768
\(486\) 2.66207e8 0.105194
\(487\) −1.80670e9 −0.708817 −0.354408 0.935091i \(-0.615318\pi\)
−0.354408 + 0.935091i \(0.615318\pi\)
\(488\) 3.47192e9 1.35239
\(489\) 7.56364e8 0.292516
\(490\) 2.62396e9 1.00756
\(491\) 6.04401e8 0.230431 0.115215 0.993341i \(-0.463244\pi\)
0.115215 + 0.993341i \(0.463244\pi\)
\(492\) −4.44062e9 −1.68099
\(493\) −9.35683e7 −0.0351694
\(494\) −1.75500e9 −0.654987
\(495\) 0 0
\(496\) −8.35536e8 −0.307454
\(497\) 1.35816e9 0.496254
\(498\) −4.46196e9 −1.61891
\(499\) −2.62714e9 −0.946523 −0.473261 0.880922i \(-0.656923\pi\)
−0.473261 + 0.880922i \(0.656923\pi\)
\(500\) 5.13396e9 1.83678
\(501\) 1.57312e9 0.558893
\(502\) 4.17522e9 1.47305
\(503\) 1.77277e8 0.0621103 0.0310551 0.999518i \(-0.490113\pi\)
0.0310551 + 0.999518i \(0.490113\pi\)
\(504\) −5.59288e8 −0.194594
\(505\) −2.02000e9 −0.697961
\(506\) 0 0
\(507\) −1.34647e9 −0.458849
\(508\) −2.68017e9 −0.907065
\(509\) 5.30178e9 1.78201 0.891004 0.453995i \(-0.150002\pi\)
0.891004 + 0.453995i \(0.150002\pi\)
\(510\) −7.34550e7 −0.0245203
\(511\) 1.58596e8 0.0525797
\(512\) −9.90086e8 −0.326008
\(513\) 5.18830e8 0.169674
\(514\) −8.56759e9 −2.78284
\(515\) −4.45305e9 −1.43659
\(516\) 5.73952e8 0.183908
\(517\) 0 0
\(518\) 1.78252e9 0.563483
\(519\) 1.60299e9 0.503320
\(520\) 1.37570e9 0.429055
\(521\) −5.93733e9 −1.83933 −0.919663 0.392708i \(-0.871538\pi\)
−0.919663 + 0.392708i \(0.871538\pi\)
\(522\) −2.02186e9 −0.622163
\(523\) 4.12003e9 1.25934 0.629672 0.776861i \(-0.283189\pi\)
0.629672 + 0.776861i \(0.283189\pi\)
\(524\) 4.01632e9 1.21946
\(525\) 2.94146e8 0.0887166
\(526\) −1.78626e9 −0.535174
\(527\) −1.94956e8 −0.0580230
\(528\) 0 0
\(529\) 2.69541e9 0.791643
\(530\) 1.99497e9 0.582064
\(531\) −5.38660e8 −0.156129
\(532\) −2.67209e9 −0.769415
\(533\) 2.73012e9 0.780975
\(534\) 3.72903e9 1.05975
\(535\) −3.83471e9 −1.08266
\(536\) 5.47504e9 1.53571
\(537\) −1.83206e9 −0.510539
\(538\) −1.06786e10 −2.95648
\(539\) 0 0
\(540\) −9.96971e8 −0.272461
\(541\) −4.74225e9 −1.28764 −0.643819 0.765178i \(-0.722651\pi\)
−0.643819 + 0.765178i \(0.722651\pi\)
\(542\) −7.46914e9 −2.01499
\(543\) −9.09045e8 −0.243661
\(544\) −9.99343e7 −0.0266145
\(545\) −1.48854e9 −0.393889
\(546\) 8.42916e8 0.221621
\(547\) 9.68431e8 0.252996 0.126498 0.991967i \(-0.459626\pi\)
0.126498 + 0.991967i \(0.459626\pi\)
\(548\) 2.21079e9 0.573872
\(549\) 1.54692e9 0.398991
\(550\) 0 0
\(551\) −3.94055e9 −1.00352
\(552\) 3.45039e9 0.873134
\(553\) 3.68300e9 0.926113
\(554\) 7.03689e9 1.75831
\(555\) 1.29620e9 0.321845
\(556\) 8.54484e9 2.10835
\(557\) −5.05809e9 −1.24021 −0.620103 0.784521i \(-0.712909\pi\)
−0.620103 + 0.784521i \(0.712909\pi\)
\(558\) −4.21269e9 −1.02645
\(559\) −3.52870e8 −0.0854424
\(560\) 2.94688e8 0.0709095
\(561\) 0 0
\(562\) 9.46441e9 2.24914
\(563\) −5.54853e8 −0.131038 −0.0655192 0.997851i \(-0.520870\pi\)
−0.0655192 + 0.997851i \(0.520870\pi\)
\(564\) −3.43485e9 −0.806179
\(565\) −8.75822e8 −0.204290
\(566\) −6.44726e9 −1.49457
\(567\) −2.49191e8 −0.0574105
\(568\) −4.73920e9 −1.08514
\(569\) 9.26007e8 0.210728 0.105364 0.994434i \(-0.466399\pi\)
0.105364 + 0.994434i \(0.466399\pi\)
\(570\) −3.09349e9 −0.699660
\(571\) −1.56780e9 −0.352423 −0.176211 0.984352i \(-0.556384\pi\)
−0.176211 + 0.984352i \(0.556384\pi\)
\(572\) 0 0
\(573\) −2.47324e9 −0.549192
\(574\) 6.61786e9 1.46058
\(575\) −1.81466e9 −0.398068
\(576\) −2.40972e9 −0.525398
\(577\) −3.87215e9 −0.839145 −0.419573 0.907722i \(-0.637820\pi\)
−0.419573 + 0.907722i \(0.637820\pi\)
\(578\) −7.60551e9 −1.63825
\(579\) 1.17933e9 0.252498
\(580\) 7.57206e9 1.61145
\(581\) 4.17676e9 0.883533
\(582\) 4.02213e7 0.00845719
\(583\) 0 0
\(584\) −5.53407e8 −0.114974
\(585\) 6.12945e8 0.126583
\(586\) 1.29728e8 0.0266313
\(587\) 8.31706e9 1.69721 0.848607 0.529024i \(-0.177442\pi\)
0.848607 + 0.529024i \(0.177442\pi\)
\(588\) −3.52379e9 −0.714807
\(589\) −8.21041e9 −1.65562
\(590\) 3.21173e9 0.643809
\(591\) 2.47803e9 0.493799
\(592\) −5.49656e8 −0.108884
\(593\) 8.76659e9 1.72639 0.863196 0.504869i \(-0.168459\pi\)
0.863196 + 0.504869i \(0.168459\pi\)
\(594\) 0 0
\(595\) 6.87598e7 0.0133821
\(596\) 1.78862e8 0.0346064
\(597\) −5.63451e9 −1.08379
\(598\) −5.20016e9 −0.994403
\(599\) −3.04049e9 −0.578029 −0.289015 0.957325i \(-0.593328\pi\)
−0.289015 + 0.957325i \(0.593328\pi\)
\(600\) −1.02640e9 −0.193993
\(601\) −1.40462e9 −0.263935 −0.131968 0.991254i \(-0.542129\pi\)
−0.131968 + 0.991254i \(0.542129\pi\)
\(602\) −8.55361e8 −0.159794
\(603\) 2.43941e9 0.453078
\(604\) −7.46547e9 −1.37857
\(605\) 0 0
\(606\) 4.31881e9 0.788334
\(607\) −2.66663e9 −0.483952 −0.241976 0.970282i \(-0.577796\pi\)
−0.241976 + 0.970282i \(0.577796\pi\)
\(608\) −4.20865e9 −0.759416
\(609\) 1.89262e9 0.339550
\(610\) −9.22340e9 −1.64527
\(611\) 2.11177e9 0.374544
\(612\) 9.86446e7 0.0173958
\(613\) −6.58322e9 −1.15432 −0.577161 0.816630i \(-0.695840\pi\)
−0.577161 + 0.816630i \(0.695840\pi\)
\(614\) 1.76835e10 3.08305
\(615\) 4.81232e9 0.834241
\(616\) 0 0
\(617\) 5.06268e8 0.0867725 0.0433862 0.999058i \(-0.486185\pi\)
0.0433862 + 0.999058i \(0.486185\pi\)
\(618\) 9.52075e9 1.62260
\(619\) 3.10872e9 0.526823 0.263411 0.964684i \(-0.415152\pi\)
0.263411 + 0.964684i \(0.415152\pi\)
\(620\) 1.57769e10 2.65859
\(621\) 1.53732e9 0.257599
\(622\) −9.56139e9 −1.59314
\(623\) −3.49067e9 −0.578364
\(624\) −2.59921e8 −0.0428247
\(625\) −3.74856e9 −0.614164
\(626\) 1.37641e9 0.224253
\(627\) 0 0
\(628\) 1.41698e9 0.228299
\(629\) −1.28252e8 −0.0205488
\(630\) 1.48579e9 0.236736
\(631\) 4.92193e9 0.779889 0.389944 0.920838i \(-0.372494\pi\)
0.389944 + 0.920838i \(0.372494\pi\)
\(632\) −1.28515e10 −2.02510
\(633\) 1.23674e9 0.193805
\(634\) −1.37643e10 −2.14507
\(635\) 2.90451e9 0.450158
\(636\) −2.67910e9 −0.412941
\(637\) 2.16645e9 0.332094
\(638\) 0 0
\(639\) −2.11155e9 −0.320147
\(640\) 9.57967e9 1.44451
\(641\) −3.96263e9 −0.594265 −0.297133 0.954836i \(-0.596030\pi\)
−0.297133 + 0.954836i \(0.596030\pi\)
\(642\) 8.19870e9 1.22285
\(643\) −9.86915e9 −1.46400 −0.732000 0.681304i \(-0.761413\pi\)
−0.732000 + 0.681304i \(0.761413\pi\)
\(644\) −7.91755e9 −1.16813
\(645\) −6.21995e8 −0.0912699
\(646\) 3.06084e8 0.0446711
\(647\) −3.13058e8 −0.0454423 −0.0227211 0.999742i \(-0.507233\pi\)
−0.0227211 + 0.999742i \(0.507233\pi\)
\(648\) 8.69532e8 0.125537
\(649\) 0 0
\(650\) 1.54691e9 0.220937
\(651\) 3.94341e9 0.560195
\(652\) 6.05629e9 0.855737
\(653\) 6.18723e9 0.869561 0.434780 0.900537i \(-0.356826\pi\)
0.434780 + 0.900537i \(0.356826\pi\)
\(654\) 3.18255e9 0.444890
\(655\) −4.35250e9 −0.605194
\(656\) −2.04067e9 −0.282235
\(657\) −2.46571e8 −0.0339205
\(658\) 5.11896e9 0.700473
\(659\) −6.01078e9 −0.818148 −0.409074 0.912501i \(-0.634148\pi\)
−0.409074 + 0.912501i \(0.634148\pi\)
\(660\) 0 0
\(661\) −3.51253e9 −0.473059 −0.236529 0.971624i \(-0.576010\pi\)
−0.236529 + 0.971624i \(0.576010\pi\)
\(662\) −1.79006e10 −2.39809
\(663\) −6.06474e7 −0.00808193
\(664\) −1.45745e10 −1.93199
\(665\) 2.89576e9 0.381844
\(666\) −2.77131e9 −0.363517
\(667\) −1.16761e10 −1.52355
\(668\) 1.25961e10 1.63501
\(669\) −1.90476e9 −0.245951
\(670\) −1.45448e10 −1.86830
\(671\) 0 0
\(672\) 2.02139e9 0.256955
\(673\) −6.16678e9 −0.779840 −0.389920 0.920849i \(-0.627497\pi\)
−0.389920 + 0.920849i \(0.627497\pi\)
\(674\) −2.00561e9 −0.252312
\(675\) −4.57312e8 −0.0572334
\(676\) −1.07814e10 −1.34233
\(677\) −1.93674e9 −0.239889 −0.119944 0.992781i \(-0.538272\pi\)
−0.119944 + 0.992781i \(0.538272\pi\)
\(678\) 1.87253e9 0.230741
\(679\) −3.76504e7 −0.00461557
\(680\) −2.39932e8 −0.0292622
\(681\) −5.90780e8 −0.0716821
\(682\) 0 0
\(683\) −1.27287e10 −1.52866 −0.764331 0.644824i \(-0.776931\pi\)
−0.764331 + 0.644824i \(0.776931\pi\)
\(684\) 4.15433e9 0.496369
\(685\) −2.39584e9 −0.284801
\(686\) 1.24156e10 1.46837
\(687\) 5.08853e9 0.598748
\(688\) 2.63758e8 0.0308778
\(689\) 1.64713e9 0.191849
\(690\) −9.16618e9 −1.06223
\(691\) −4.60960e9 −0.531483 −0.265742 0.964044i \(-0.585617\pi\)
−0.265742 + 0.964044i \(0.585617\pi\)
\(692\) 1.28353e10 1.47243
\(693\) 0 0
\(694\) 1.49665e10 1.69967
\(695\) −9.26009e9 −1.04633
\(696\) −6.60416e9 −0.742480
\(697\) −4.76152e8 −0.0532636
\(698\) −2.37204e10 −2.64014
\(699\) −9.11435e9 −1.00938
\(700\) 2.35526e9 0.259535
\(701\) 5.67606e9 0.622349 0.311175 0.950353i \(-0.399278\pi\)
0.311175 + 0.950353i \(0.399278\pi\)
\(702\) −1.31049e9 −0.142973
\(703\) −5.40121e9 −0.586337
\(704\) 0 0
\(705\) 3.72237e9 0.400090
\(706\) −9.34751e9 −0.999722
\(707\) −4.04276e9 −0.430239
\(708\) −4.31311e9 −0.456746
\(709\) 1.18615e10 1.24991 0.624955 0.780661i \(-0.285117\pi\)
0.624955 + 0.780661i \(0.285117\pi\)
\(710\) 1.25900e10 1.32015
\(711\) −5.72601e9 −0.597460
\(712\) 1.21804e10 1.26469
\(713\) −2.43279e10 −2.51357
\(714\) −1.47010e8 −0.0151148
\(715\) 0 0
\(716\) −1.46695e10 −1.49355
\(717\) 4.00872e9 0.406153
\(718\) −1.81533e10 −1.83029
\(719\) −5.79741e9 −0.581678 −0.290839 0.956772i \(-0.593934\pi\)
−0.290839 + 0.956772i \(0.593934\pi\)
\(720\) −4.58155e8 −0.0457456
\(721\) −8.91219e9 −0.885545
\(722\) −3.69303e9 −0.365177
\(723\) 4.92028e9 0.484179
\(724\) −7.27883e9 −0.712815
\(725\) 3.47332e9 0.338502
\(726\) 0 0
\(727\) 1.17506e10 1.13420 0.567100 0.823649i \(-0.308065\pi\)
0.567100 + 0.823649i \(0.308065\pi\)
\(728\) 2.75328e9 0.264479
\(729\) 3.87420e8 0.0370370
\(730\) 1.47016e9 0.139874
\(731\) 6.15428e7 0.00582729
\(732\) 1.23863e10 1.16722
\(733\) −1.45394e10 −1.36358 −0.681791 0.731547i \(-0.738799\pi\)
−0.681791 + 0.731547i \(0.738799\pi\)
\(734\) −9.93699e9 −0.927510
\(735\) 3.81875e9 0.354744
\(736\) −1.24704e10 −1.15295
\(737\) 0 0
\(738\) −1.02889e10 −0.942259
\(739\) 8.28187e9 0.754871 0.377435 0.926036i \(-0.376806\pi\)
0.377435 + 0.926036i \(0.376806\pi\)
\(740\) 1.03788e10 0.941536
\(741\) −2.55412e9 −0.230609
\(742\) 3.99266e9 0.358797
\(743\) 1.23435e10 1.10402 0.552011 0.833837i \(-0.313860\pi\)
0.552011 + 0.833837i \(0.313860\pi\)
\(744\) −1.37602e10 −1.22496
\(745\) −1.93834e8 −0.0171744
\(746\) 2.59981e10 2.29274
\(747\) −6.49366e9 −0.569990
\(748\) 0 0
\(749\) −7.67465e9 −0.667378
\(750\) 1.18953e10 1.02959
\(751\) −1.14760e10 −0.988664 −0.494332 0.869273i \(-0.664587\pi\)
−0.494332 + 0.869273i \(0.664587\pi\)
\(752\) −1.57848e9 −0.135356
\(753\) 6.07635e9 0.518633
\(754\) 9.95328e9 0.845603
\(755\) 8.09036e9 0.684154
\(756\) −1.99530e9 −0.167951
\(757\) −1.85393e10 −1.55331 −0.776654 0.629928i \(-0.783084\pi\)
−0.776654 + 0.629928i \(0.783084\pi\)
\(758\) −3.43705e10 −2.86644
\(759\) 0 0
\(760\) −1.01045e10 −0.834965
\(761\) 4.22288e9 0.347346 0.173673 0.984803i \(-0.444436\pi\)
0.173673 + 0.984803i \(0.444436\pi\)
\(762\) −6.20992e9 −0.508444
\(763\) −2.97912e9 −0.242802
\(764\) −1.98035e10 −1.60663
\(765\) −1.06902e8 −0.00863315
\(766\) 3.39917e10 2.73258
\(767\) 2.65173e9 0.212200
\(768\) −9.05771e9 −0.721529
\(769\) 1.47984e10 1.17347 0.586734 0.809780i \(-0.300413\pi\)
0.586734 + 0.809780i \(0.300413\pi\)
\(770\) 0 0
\(771\) −1.24687e10 −0.979787
\(772\) 9.44300e9 0.738668
\(773\) 5.12045e9 0.398731 0.199365 0.979925i \(-0.436112\pi\)
0.199365 + 0.979925i \(0.436112\pi\)
\(774\) 1.32984e9 0.103088
\(775\) 7.23690e9 0.558466
\(776\) 1.31378e8 0.0100927
\(777\) 2.59417e9 0.198392
\(778\) −1.28243e10 −0.976352
\(779\) −2.00527e10 −1.51982
\(780\) 4.90792e9 0.370311
\(781\) 0 0
\(782\) 9.06942e8 0.0678197
\(783\) −2.94248e9 −0.219052
\(784\) −1.61935e9 −0.120015
\(785\) −1.53559e9 −0.113300
\(786\) 9.30577e9 0.683555
\(787\) −2.15704e9 −0.157742 −0.0788709 0.996885i \(-0.525131\pi\)
−0.0788709 + 0.996885i \(0.525131\pi\)
\(788\) 1.98419e10 1.44458
\(789\) −2.59961e9 −0.188425
\(790\) 3.41410e10 2.46366
\(791\) −1.75284e9 −0.125929
\(792\) 0 0
\(793\) −7.61521e9 −0.542283
\(794\) 2.03929e10 1.44580
\(795\) 2.90335e9 0.204934
\(796\) −4.51162e10 −3.17057
\(797\) 1.14528e10 0.801321 0.400661 0.916227i \(-0.368781\pi\)
0.400661 + 0.916227i \(0.368781\pi\)
\(798\) −6.19121e9 −0.431286
\(799\) −3.68307e8 −0.0255444
\(800\) 3.70963e9 0.256162
\(801\) 5.42700e9 0.373118
\(802\) 2.57662e10 1.76377
\(803\) 0 0
\(804\) 1.95326e10 1.32545
\(805\) 8.58028e9 0.579717
\(806\) 2.07384e10 1.39509
\(807\) −1.55409e10 −1.04092
\(808\) 1.41069e10 0.940786
\(809\) −1.32729e10 −0.881348 −0.440674 0.897667i \(-0.645261\pi\)
−0.440674 + 0.897667i \(0.645261\pi\)
\(810\) −2.30997e9 −0.152725
\(811\) −5.89483e9 −0.388060 −0.194030 0.980996i \(-0.562156\pi\)
−0.194030 + 0.980996i \(0.562156\pi\)
\(812\) 1.51545e10 0.993331
\(813\) −1.08701e10 −0.709442
\(814\) 0 0
\(815\) −6.56324e9 −0.424684
\(816\) 4.53319e7 0.00292071
\(817\) 2.59182e9 0.166275
\(818\) −4.53192e9 −0.289498
\(819\) 1.22673e9 0.0780287
\(820\) 3.85328e10 2.44052
\(821\) 2.07684e10 1.30979 0.654895 0.755720i \(-0.272713\pi\)
0.654895 + 0.755720i \(0.272713\pi\)
\(822\) 5.12238e9 0.321677
\(823\) −3.08800e10 −1.93098 −0.965491 0.260437i \(-0.916133\pi\)
−0.965491 + 0.260437i \(0.916133\pi\)
\(824\) 3.10984e10 1.93639
\(825\) 0 0
\(826\) 6.42784e9 0.396858
\(827\) −9.93544e9 −0.610827 −0.305413 0.952220i \(-0.598795\pi\)
−0.305413 + 0.952220i \(0.598795\pi\)
\(828\) 1.23095e10 0.753589
\(829\) −6.96802e9 −0.424784 −0.212392 0.977185i \(-0.568125\pi\)
−0.212392 + 0.977185i \(0.568125\pi\)
\(830\) 3.87180e10 2.35039
\(831\) 1.02410e10 0.619071
\(832\) 1.18627e10 0.714087
\(833\) −3.77843e8 −0.0226493
\(834\) 1.97983e10 1.18181
\(835\) −1.36505e10 −0.811420
\(836\) 0 0
\(837\) −6.13088e9 −0.361396
\(838\) 3.89128e9 0.228422
\(839\) −3.81998e9 −0.223303 −0.111652 0.993747i \(-0.535614\pi\)
−0.111652 + 0.993747i \(0.535614\pi\)
\(840\) 4.85314e9 0.282518
\(841\) 5.09849e9 0.295567
\(842\) 1.70674e10 0.985313
\(843\) 1.37739e10 0.791881
\(844\) 9.90272e9 0.566965
\(845\) 1.16838e10 0.666173
\(846\) −7.95852e9 −0.451893
\(847\) 0 0
\(848\) −1.23117e9 −0.0693319
\(849\) −9.38293e9 −0.526213
\(850\) −2.69791e8 −0.0150682
\(851\) −1.60041e10 −0.890178
\(852\) −1.69075e10 −0.936568
\(853\) −2.33127e10 −1.28609 −0.643044 0.765829i \(-0.722329\pi\)
−0.643044 + 0.765829i \(0.722329\pi\)
\(854\) −1.84594e10 −1.01418
\(855\) −4.50207e9 −0.246338
\(856\) 2.67801e10 1.45933
\(857\) −3.57453e9 −0.193993 −0.0969965 0.995285i \(-0.530924\pi\)
−0.0969965 + 0.995285i \(0.530924\pi\)
\(858\) 0 0
\(859\) −1.03216e10 −0.555612 −0.277806 0.960637i \(-0.589607\pi\)
−0.277806 + 0.960637i \(0.589607\pi\)
\(860\) −4.98038e9 −0.267004
\(861\) 9.63120e9 0.514244
\(862\) 3.90877e10 2.07857
\(863\) 1.36465e10 0.722741 0.361370 0.932422i \(-0.382309\pi\)
0.361370 + 0.932422i \(0.382309\pi\)
\(864\) −3.14268e9 −0.165768
\(865\) −1.39097e10 −0.730736
\(866\) 2.08759e10 1.09227
\(867\) −1.10686e10 −0.576799
\(868\) 3.15754e10 1.63881
\(869\) 0 0
\(870\) 1.75444e10 0.903277
\(871\) −1.20088e10 −0.615794
\(872\) 1.03954e10 0.530925
\(873\) 5.85355e7 0.00297762
\(874\) 3.81951e10 1.93516
\(875\) −1.11350e10 −0.561904
\(876\) −1.97432e9 −0.0992324
\(877\) 3.05799e10 1.53087 0.765434 0.643514i \(-0.222524\pi\)
0.765434 + 0.643514i \(0.222524\pi\)
\(878\) 1.97970e10 0.987118
\(879\) 1.88798e8 0.00937638
\(880\) 0 0
\(881\) 2.02865e10 0.999519 0.499759 0.866164i \(-0.333422\pi\)
0.499759 + 0.866164i \(0.333422\pi\)
\(882\) −8.16458e9 −0.400676
\(883\) −6.43226e9 −0.314414 −0.157207 0.987566i \(-0.550249\pi\)
−0.157207 + 0.987566i \(0.550249\pi\)
\(884\) −4.85611e8 −0.0236432
\(885\) 4.67414e9 0.226673
\(886\) 2.68438e10 1.29666
\(887\) 9.22503e9 0.443849 0.221924 0.975064i \(-0.428766\pi\)
0.221924 + 0.975064i \(0.428766\pi\)
\(888\) −9.05214e9 −0.433816
\(889\) 5.81298e9 0.277487
\(890\) −3.23581e10 −1.53857
\(891\) 0 0
\(892\) −1.52516e10 −0.719515
\(893\) −1.55109e10 −0.728883
\(894\) 4.14421e8 0.0193982
\(895\) 1.58974e10 0.741218
\(896\) 1.91724e10 0.890428
\(897\) −7.56798e9 −0.350111
\(898\) 6.59944e10 3.04116
\(899\) 4.65644e10 2.13745
\(900\) −3.66175e9 −0.167433
\(901\) −2.87270e8 −0.0130844
\(902\) 0 0
\(903\) −1.24484e9 −0.0562608
\(904\) 6.11639e9 0.275363
\(905\) 7.88811e9 0.353755
\(906\) −1.72974e10 −0.772738
\(907\) −3.68996e10 −1.64209 −0.821043 0.570866i \(-0.806607\pi\)
−0.821043 + 0.570866i \(0.806607\pi\)
\(908\) −4.73044e9 −0.209701
\(909\) 6.28532e9 0.277558
\(910\) −7.31429e9 −0.321756
\(911\) −1.20467e10 −0.527902 −0.263951 0.964536i \(-0.585026\pi\)
−0.263951 + 0.964536i \(0.585026\pi\)
\(912\) 1.90911e9 0.0833393
\(913\) 0 0
\(914\) 7.40820e10 3.20923
\(915\) −1.34231e10 −0.579269
\(916\) 4.07445e10 1.75160
\(917\) −8.71095e9 −0.373055
\(918\) 2.28559e8 0.00975098
\(919\) −3.75192e10 −1.59459 −0.797296 0.603589i \(-0.793737\pi\)
−0.797296 + 0.603589i \(0.793737\pi\)
\(920\) −2.99402e10 −1.26764
\(921\) 2.57355e10 1.08548
\(922\) 1.23073e10 0.517135
\(923\) 1.03948e10 0.435122
\(924\) 0 0
\(925\) 4.76078e9 0.197780
\(926\) −5.43668e10 −2.25006
\(927\) 1.38559e10 0.571288
\(928\) 2.38689e10 0.980424
\(929\) 2.44185e10 0.999228 0.499614 0.866248i \(-0.333475\pi\)
0.499614 + 0.866248i \(0.333475\pi\)
\(930\) 3.65550e10 1.49024
\(931\) −1.59125e10 −0.646273
\(932\) −7.29797e10 −2.95288
\(933\) −1.39150e10 −0.560917
\(934\) −4.80619e9 −0.193013
\(935\) 0 0
\(936\) −4.28057e9 −0.170622
\(937\) −3.66303e9 −0.145463 −0.0727313 0.997352i \(-0.523172\pi\)
−0.0727313 + 0.997352i \(0.523172\pi\)
\(938\) −2.91095e10 −1.15166
\(939\) 2.00314e9 0.0789555
\(940\) 2.98054e10 1.17044
\(941\) −9.93516e9 −0.388697 −0.194348 0.980933i \(-0.562259\pi\)
−0.194348 + 0.980933i \(0.562259\pi\)
\(942\) 3.28313e9 0.127970
\(943\) −5.94173e10 −2.30739
\(944\) −1.98208e9 −0.0766866
\(945\) 2.16232e9 0.0833505
\(946\) 0 0
\(947\) −6.70589e9 −0.256585 −0.128293 0.991736i \(-0.540950\pi\)
−0.128293 + 0.991736i \(0.540950\pi\)
\(948\) −4.58488e10 −1.74783
\(949\) 1.21383e9 0.0461026
\(950\) −1.13620e10 −0.429955
\(951\) −2.00316e10 −0.755239
\(952\) −4.80191e8 −0.0180378
\(953\) −1.42513e10 −0.533371 −0.266686 0.963784i \(-0.585929\pi\)
−0.266686 + 0.963784i \(0.585929\pi\)
\(954\) −6.20744e9 −0.231469
\(955\) 2.14611e10 0.797336
\(956\) 3.20983e10 1.18817
\(957\) 0 0
\(958\) −7.45195e10 −2.73836
\(959\) −4.79496e9 −0.175558
\(960\) 2.09100e10 0.762791
\(961\) 6.95077e10 2.52639
\(962\) 1.36427e10 0.494069
\(963\) 1.19319e10 0.430543
\(964\) 3.93972e10 1.41643
\(965\) −1.02334e10 −0.366586
\(966\) −1.83449e10 −0.654779
\(967\) 4.27895e10 1.52175 0.760876 0.648897i \(-0.224769\pi\)
0.760876 + 0.648897i \(0.224769\pi\)
\(968\) 0 0
\(969\) 4.45455e8 0.0157279
\(970\) −3.49015e8 −0.0122784
\(971\) 1.36249e10 0.477601 0.238801 0.971069i \(-0.423246\pi\)
0.238801 + 0.971069i \(0.423246\pi\)
\(972\) 3.10212e9 0.108350
\(973\) −1.85328e10 −0.644980
\(974\) −3.35186e10 −1.16233
\(975\) 2.25127e9 0.0777879
\(976\) 5.69211e9 0.195974
\(977\) −1.49822e10 −0.513978 −0.256989 0.966414i \(-0.582730\pi\)
−0.256989 + 0.966414i \(0.582730\pi\)
\(978\) 1.40324e10 0.479673
\(979\) 0 0
\(980\) 3.05772e10 1.03778
\(981\) 4.63167e9 0.156638
\(982\) 1.12131e10 0.377864
\(983\) −6.43998e9 −0.216246 −0.108123 0.994138i \(-0.534484\pi\)
−0.108123 + 0.994138i \(0.534484\pi\)
\(984\) −3.36073e10 −1.12448
\(985\) −2.15027e10 −0.716913
\(986\) −1.73592e9 −0.0576713
\(987\) 7.44981e9 0.246624
\(988\) −2.04511e10 −0.674633
\(989\) 7.67971e9 0.252440
\(990\) 0 0
\(991\) −4.33001e10 −1.41329 −0.706645 0.707569i \(-0.749792\pi\)
−0.706645 + 0.707569i \(0.749792\pi\)
\(992\) 4.97325e10 1.61752
\(993\) −2.60514e10 −0.844325
\(994\) 2.51972e10 0.813767
\(995\) 4.88927e10 1.57349
\(996\) −5.19955e10 −1.66747
\(997\) 5.43254e9 0.173608 0.0868041 0.996225i \(-0.472335\pi\)
0.0868041 + 0.996225i \(0.472335\pi\)
\(998\) −4.87398e10 −1.55212
\(999\) −4.03319e9 −0.127988
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.8.a.m.1.10 yes 10
11.10 odd 2 inner 363.8.a.m.1.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
363.8.a.m.1.1 10 11.10 odd 2 inner
363.8.a.m.1.10 yes 10 1.1 even 1 trivial