Properties

Label 363.8.a.g.1.4
Level $363$
Weight $8$
Character 363.1
Self dual yes
Analytic conductor $113.396$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [363,8,Mod(1,363)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(363, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("363.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 363.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(113.395764251\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{89}, \sqrt{449})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 269x^{2} + 8100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2^{3}\cdot 3^{2}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(15.3118\) of defining polynomial
Character \(\chi\) \(=\) 363.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+15.3118 q^{2} +27.0000 q^{3} +106.451 q^{4} -150.902 q^{5} +413.419 q^{6} +450.951 q^{7} -329.950 q^{8} +729.000 q^{9} -2310.59 q^{10} +2874.18 q^{12} +1834.43 q^{13} +6904.88 q^{14} -4074.37 q^{15} -18677.9 q^{16} +3650.74 q^{17} +11162.3 q^{18} -35707.3 q^{19} -16063.8 q^{20} +12175.7 q^{21} -48865.9 q^{23} -8908.66 q^{24} -55353.4 q^{25} +28088.4 q^{26} +19683.0 q^{27} +48004.3 q^{28} -59377.9 q^{29} -62385.9 q^{30} +216739. q^{31} -243759. q^{32} +55899.4 q^{34} -68049.7 q^{35} +77603.0 q^{36} -56889.3 q^{37} -546743. q^{38} +49529.6 q^{39} +49790.3 q^{40} -155773. q^{41} +186432. q^{42} -9452.73 q^{43} -110008. q^{45} -748225. q^{46} -247316. q^{47} -504303. q^{48} -620186. q^{49} -847561. q^{50} +98569.9 q^{51} +195277. q^{52} +742117. q^{53} +301382. q^{54} -148792. q^{56} -964098. q^{57} -909182. q^{58} -1.27162e6 q^{59} -433721. q^{60} -1.38324e6 q^{61} +3.31867e6 q^{62} +328744. q^{63} -1.34161e6 q^{64} -276820. q^{65} -948760. q^{67} +388626. q^{68} -1.31938e6 q^{69} -1.04196e6 q^{70} -570590. q^{71} -240534. q^{72} +3.99621e6 q^{73} -871078. q^{74} -1.49454e6 q^{75} -3.80109e6 q^{76} +758387. q^{78} -6.79990e6 q^{79} +2.81854e6 q^{80} +531441. q^{81} -2.38517e6 q^{82} -9.23584e6 q^{83} +1.29612e6 q^{84} -550906. q^{85} -144738. q^{86} -1.60320e6 q^{87} +6.65992e6 q^{89} -1.68442e6 q^{90} +827239. q^{91} -5.20184e6 q^{92} +5.85196e6 q^{93} -3.78685e6 q^{94} +5.38832e6 q^{95} -6.58148e6 q^{96} -1.60645e7 q^{97} -9.49616e6 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 108 q^{3} + 26 q^{4} + 196 q^{5} + 2916 q^{9} + 702 q^{12} + 2032 q^{14} + 5292 q^{15} - 28734 q^{16} - 78648 q^{20} - 55532 q^{23} - 143052 q^{25} + 9204 q^{26} + 78732 q^{27} - 7816 q^{31} + 390716 q^{34}+ \cdots - 4819600 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 15.3118 1.35338 0.676692 0.736266i \(-0.263413\pi\)
0.676692 + 0.736266i \(0.263413\pi\)
\(3\) 27.0000 0.577350
\(4\) 106.451 0.831650
\(5\) −150.902 −0.539885 −0.269943 0.962876i \(-0.587005\pi\)
−0.269943 + 0.962876i \(0.587005\pi\)
\(6\) 413.419 0.781377
\(7\) 450.951 0.496920 0.248460 0.968642i \(-0.420076\pi\)
0.248460 + 0.968642i \(0.420076\pi\)
\(8\) −329.950 −0.227842
\(9\) 729.000 0.333333
\(10\) −2310.59 −0.730672
\(11\) 0 0
\(12\) 2874.18 0.480154
\(13\) 1834.43 0.231579 0.115790 0.993274i \(-0.463060\pi\)
0.115790 + 0.993274i \(0.463060\pi\)
\(14\) 6904.88 0.672524
\(15\) −4074.37 −0.311703
\(16\) −18677.9 −1.14001
\(17\) 3650.74 0.180223 0.0901114 0.995932i \(-0.471278\pi\)
0.0901114 + 0.995932i \(0.471278\pi\)
\(18\) 11162.3 0.451128
\(19\) −35707.3 −1.19432 −0.597159 0.802123i \(-0.703704\pi\)
−0.597159 + 0.802123i \(0.703704\pi\)
\(20\) −16063.8 −0.448996
\(21\) 12175.7 0.286897
\(22\) 0 0
\(23\) −48865.9 −0.837450 −0.418725 0.908113i \(-0.637523\pi\)
−0.418725 + 0.908113i \(0.637523\pi\)
\(24\) −8908.66 −0.131545
\(25\) −55353.4 −0.708524
\(26\) 28088.4 0.313416
\(27\) 19683.0 0.192450
\(28\) 48004.3 0.413264
\(29\) −59377.9 −0.452097 −0.226049 0.974116i \(-0.572581\pi\)
−0.226049 + 0.974116i \(0.572581\pi\)
\(30\) −62385.9 −0.421854
\(31\) 216739. 1.30669 0.653344 0.757061i \(-0.273366\pi\)
0.653344 + 0.757061i \(0.273366\pi\)
\(32\) −243759. −1.31503
\(33\) 0 0
\(34\) 55899.4 0.243911
\(35\) −68049.7 −0.268280
\(36\) 77603.0 0.277217
\(37\) −56889.3 −0.184640 −0.0923198 0.995729i \(-0.529428\pi\)
−0.0923198 + 0.995729i \(0.529428\pi\)
\(38\) −546743. −1.61637
\(39\) 49529.6 0.133702
\(40\) 49790.3 0.123008
\(41\) −155773. −0.352979 −0.176489 0.984303i \(-0.556474\pi\)
−0.176489 + 0.984303i \(0.556474\pi\)
\(42\) 186432. 0.388282
\(43\) −9452.73 −0.0181308 −0.00906541 0.999959i \(-0.502886\pi\)
−0.00906541 + 0.999959i \(0.502886\pi\)
\(44\) 0 0
\(45\) −110008. −0.179962
\(46\) −748225. −1.13339
\(47\) −247316. −0.347463 −0.173732 0.984793i \(-0.555583\pi\)
−0.173732 + 0.984793i \(0.555583\pi\)
\(48\) −504303. −0.658184
\(49\) −620186. −0.753070
\(50\) −847561. −0.958906
\(51\) 98569.9 0.104052
\(52\) 195277. 0.192593
\(53\) 742117. 0.684710 0.342355 0.939571i \(-0.388775\pi\)
0.342355 + 0.939571i \(0.388775\pi\)
\(54\) 301382. 0.260459
\(55\) 0 0
\(56\) −148792. −0.113219
\(57\) −964098. −0.689539
\(58\) −909182. −0.611861
\(59\) −1.27162e6 −0.806075 −0.403037 0.915183i \(-0.632046\pi\)
−0.403037 + 0.915183i \(0.632046\pi\)
\(60\) −433721. −0.259228
\(61\) −1.38324e6 −0.780267 −0.390133 0.920758i \(-0.627571\pi\)
−0.390133 + 0.920758i \(0.627571\pi\)
\(62\) 3.31867e6 1.76845
\(63\) 328744. 0.165640
\(64\) −1.34161e6 −0.639730
\(65\) −276820. −0.125026
\(66\) 0 0
\(67\) −948760. −0.385385 −0.192692 0.981259i \(-0.561722\pi\)
−0.192692 + 0.981259i \(0.561722\pi\)
\(68\) 388626. 0.149882
\(69\) −1.31938e6 −0.483502
\(70\) −1.04196e6 −0.363086
\(71\) −570590. −0.189199 −0.0945997 0.995515i \(-0.530157\pi\)
−0.0945997 + 0.995515i \(0.530157\pi\)
\(72\) −240534. −0.0759473
\(73\) 3.99621e6 1.20232 0.601158 0.799130i \(-0.294706\pi\)
0.601158 + 0.799130i \(0.294706\pi\)
\(74\) −871078. −0.249888
\(75\) −1.49454e6 −0.409067
\(76\) −3.80109e6 −0.993254
\(77\) 0 0
\(78\) 758387. 0.180951
\(79\) −6.79990e6 −1.55170 −0.775850 0.630918i \(-0.782678\pi\)
−0.775850 + 0.630918i \(0.782678\pi\)
\(80\) 2.81854e6 0.615473
\(81\) 531441. 0.111111
\(82\) −2.38517e6 −0.477716
\(83\) −9.23584e6 −1.77298 −0.886488 0.462751i \(-0.846862\pi\)
−0.886488 + 0.462751i \(0.846862\pi\)
\(84\) 1.29612e6 0.238598
\(85\) −550906. −0.0972996
\(86\) −144738. −0.0245380
\(87\) −1.60320e6 −0.261018
\(88\) 0 0
\(89\) 6.65992e6 1.00139 0.500696 0.865623i \(-0.333078\pi\)
0.500696 + 0.865623i \(0.333078\pi\)
\(90\) −1.68442e6 −0.243557
\(91\) 827239. 0.115076
\(92\) −5.20184e6 −0.696465
\(93\) 5.85196e6 0.754416
\(94\) −3.78685e6 −0.470252
\(95\) 5.38832e6 0.644794
\(96\) −6.58148e6 −0.759232
\(97\) −1.60645e7 −1.78717 −0.893583 0.448898i \(-0.851817\pi\)
−0.893583 + 0.448898i \(0.851817\pi\)
\(98\) −9.49616e6 −1.01919
\(99\) 0 0
\(100\) −5.89244e6 −0.589244
\(101\) −1.99673e7 −1.92839 −0.964197 0.265189i \(-0.914566\pi\)
−0.964197 + 0.265189i \(0.914566\pi\)
\(102\) 1.50928e6 0.140822
\(103\) −5.91653e6 −0.533502 −0.266751 0.963765i \(-0.585950\pi\)
−0.266751 + 0.963765i \(0.585950\pi\)
\(104\) −605271. −0.0527634
\(105\) −1.83734e6 −0.154891
\(106\) 1.13631e7 0.926676
\(107\) 700139. 0.0552511 0.0276256 0.999618i \(-0.491205\pi\)
0.0276256 + 0.999618i \(0.491205\pi\)
\(108\) 2.09528e6 0.160051
\(109\) −1.48121e7 −1.09553 −0.547765 0.836632i \(-0.684521\pi\)
−0.547765 + 0.836632i \(0.684521\pi\)
\(110\) 0 0
\(111\) −1.53601e6 −0.106602
\(112\) −8.42282e6 −0.566493
\(113\) 2.94311e7 1.91881 0.959404 0.282035i \(-0.0910093\pi\)
0.959404 + 0.282035i \(0.0910093\pi\)
\(114\) −1.47621e7 −0.933212
\(115\) 7.37399e6 0.452127
\(116\) −6.32085e6 −0.375987
\(117\) 1.33730e6 0.0771930
\(118\) −1.94708e7 −1.09093
\(119\) 1.64631e6 0.0895563
\(120\) 1.34434e6 0.0710190
\(121\) 0 0
\(122\) −2.11799e7 −1.05600
\(123\) −4.20587e6 −0.203792
\(124\) 2.30722e7 1.08671
\(125\) 2.01422e7 0.922407
\(126\) 5.03366e6 0.224175
\(127\) 3.04913e6 0.132088 0.0660440 0.997817i \(-0.478962\pi\)
0.0660440 + 0.997817i \(0.478962\pi\)
\(128\) 1.06586e7 0.449226
\(129\) −255224. −0.0104678
\(130\) −4.23861e6 −0.169208
\(131\) 3.04858e7 1.18481 0.592404 0.805641i \(-0.298179\pi\)
0.592404 + 0.805641i \(0.298179\pi\)
\(132\) 0 0
\(133\) −1.61023e7 −0.593480
\(134\) −1.45272e7 −0.521574
\(135\) −2.97021e6 −0.103901
\(136\) −1.20456e6 −0.0410623
\(137\) −3.86462e7 −1.28406 −0.642029 0.766680i \(-0.721907\pi\)
−0.642029 + 0.766680i \(0.721907\pi\)
\(138\) −2.02021e7 −0.654364
\(139\) 2.41409e7 0.762432 0.381216 0.924486i \(-0.375505\pi\)
0.381216 + 0.924486i \(0.375505\pi\)
\(140\) −7.24397e6 −0.223115
\(141\) −6.67752e6 −0.200608
\(142\) −8.73676e6 −0.256060
\(143\) 0 0
\(144\) −1.36162e7 −0.380003
\(145\) 8.96027e6 0.244081
\(146\) 6.11892e7 1.62720
\(147\) −1.67450e7 −0.434785
\(148\) −6.05594e6 −0.153556
\(149\) 2.43925e6 0.0604095 0.0302047 0.999544i \(-0.490384\pi\)
0.0302047 + 0.999544i \(0.490384\pi\)
\(150\) −2.28841e7 −0.553624
\(151\) 7.09883e7 1.67791 0.838953 0.544205i \(-0.183168\pi\)
0.838953 + 0.544205i \(0.183168\pi\)
\(152\) 1.17816e7 0.272116
\(153\) 2.66139e6 0.0600742
\(154\) 0 0
\(155\) −3.27065e7 −0.705461
\(156\) 5.27249e6 0.111194
\(157\) −2.24019e7 −0.461994 −0.230997 0.972954i \(-0.574199\pi\)
−0.230997 + 0.972954i \(0.574199\pi\)
\(158\) −1.04119e8 −2.10005
\(159\) 2.00372e7 0.395317
\(160\) 3.67838e7 0.709964
\(161\) −2.20362e7 −0.416146
\(162\) 8.13732e6 0.150376
\(163\) −3.27244e7 −0.591855 −0.295927 0.955210i \(-0.595629\pi\)
−0.295927 + 0.955210i \(0.595629\pi\)
\(164\) −1.65822e7 −0.293555
\(165\) 0 0
\(166\) −1.41417e8 −2.39952
\(167\) 6.41663e7 1.06610 0.533052 0.846083i \(-0.321045\pi\)
0.533052 + 0.846083i \(0.321045\pi\)
\(168\) −4.01737e6 −0.0653672
\(169\) −5.93834e7 −0.946371
\(170\) −8.43536e6 −0.131684
\(171\) −2.60306e7 −0.398106
\(172\) −1.00625e6 −0.0150785
\(173\) −1.22716e7 −0.180194 −0.0900970 0.995933i \(-0.528718\pi\)
−0.0900970 + 0.995933i \(0.528718\pi\)
\(174\) −2.45479e7 −0.353258
\(175\) −2.49617e7 −0.352080
\(176\) 0 0
\(177\) −3.43337e7 −0.465388
\(178\) 1.01975e8 1.35527
\(179\) 8.15449e7 1.06270 0.531351 0.847152i \(-0.321685\pi\)
0.531351 + 0.847152i \(0.321685\pi\)
\(180\) −1.17105e7 −0.149665
\(181\) −4.20419e7 −0.526996 −0.263498 0.964660i \(-0.584876\pi\)
−0.263498 + 0.964660i \(0.584876\pi\)
\(182\) 1.26665e7 0.155743
\(183\) −3.73475e7 −0.450487
\(184\) 1.61233e7 0.190806
\(185\) 8.58474e6 0.0996842
\(186\) 8.96041e7 1.02102
\(187\) 0 0
\(188\) −2.63271e7 −0.288968
\(189\) 8.87608e6 0.0956323
\(190\) 8.25049e7 0.872654
\(191\) −1.00554e7 −0.104420 −0.0522101 0.998636i \(-0.516627\pi\)
−0.0522101 + 0.998636i \(0.516627\pi\)
\(192\) −3.62235e7 −0.369348
\(193\) 1.55057e8 1.55253 0.776265 0.630406i \(-0.217112\pi\)
0.776265 + 0.630406i \(0.217112\pi\)
\(194\) −2.45976e8 −2.41872
\(195\) −7.47414e6 −0.0721838
\(196\) −6.60195e7 −0.626291
\(197\) 9.24245e7 0.861302 0.430651 0.902519i \(-0.358284\pi\)
0.430651 + 0.902519i \(0.358284\pi\)
\(198\) 0 0
\(199\) 3.90241e7 0.351033 0.175516 0.984477i \(-0.443841\pi\)
0.175516 + 0.984477i \(0.443841\pi\)
\(200\) 1.82639e7 0.161431
\(201\) −2.56165e7 −0.222502
\(202\) −3.05736e8 −2.60986
\(203\) −2.67765e7 −0.224656
\(204\) 1.04929e7 0.0865346
\(205\) 2.35065e7 0.190568
\(206\) −9.05927e7 −0.722034
\(207\) −3.56233e7 −0.279150
\(208\) −3.42633e7 −0.264002
\(209\) 0 0
\(210\) −2.81330e7 −0.209628
\(211\) 1.64991e8 1.20913 0.604564 0.796557i \(-0.293347\pi\)
0.604564 + 0.796557i \(0.293347\pi\)
\(212\) 7.89992e7 0.569439
\(213\) −1.54059e7 −0.109234
\(214\) 1.07204e7 0.0747761
\(215\) 1.42644e6 0.00978856
\(216\) −6.49441e6 −0.0438482
\(217\) 9.77389e7 0.649319
\(218\) −2.26800e8 −1.48267
\(219\) 1.07898e8 0.694157
\(220\) 0 0
\(221\) 6.69702e6 0.0417358
\(222\) −2.35191e7 −0.144273
\(223\) 1.21207e8 0.731916 0.365958 0.930631i \(-0.380741\pi\)
0.365958 + 0.930631i \(0.380741\pi\)
\(224\) −1.09923e8 −0.653464
\(225\) −4.03527e7 −0.236175
\(226\) 4.50643e8 2.59689
\(227\) −7.69802e7 −0.436806 −0.218403 0.975859i \(-0.570085\pi\)
−0.218403 + 0.975859i \(0.570085\pi\)
\(228\) −1.02629e8 −0.573456
\(229\) −1.19863e8 −0.659569 −0.329785 0.944056i \(-0.606976\pi\)
−0.329785 + 0.944056i \(0.606976\pi\)
\(230\) 1.12909e8 0.611901
\(231\) 0 0
\(232\) 1.95918e7 0.103007
\(233\) 1.57766e8 0.817085 0.408542 0.912739i \(-0.366037\pi\)
0.408542 + 0.912739i \(0.366037\pi\)
\(234\) 2.04765e7 0.104472
\(235\) 3.73205e7 0.187590
\(236\) −1.35366e8 −0.670372
\(237\) −1.83597e8 −0.895874
\(238\) 2.52079e7 0.121204
\(239\) 3.34956e7 0.158707 0.0793534 0.996847i \(-0.474714\pi\)
0.0793534 + 0.996847i \(0.474714\pi\)
\(240\) 7.61006e7 0.355344
\(241\) −1.98167e8 −0.911950 −0.455975 0.889993i \(-0.650709\pi\)
−0.455975 + 0.889993i \(0.650709\pi\)
\(242\) 0 0
\(243\) 1.43489e7 0.0641500
\(244\) −1.47248e8 −0.648909
\(245\) 9.35876e7 0.406571
\(246\) −6.43995e7 −0.275810
\(247\) −6.55026e7 −0.276579
\(248\) −7.15132e7 −0.297718
\(249\) −2.49368e8 −1.02363
\(250\) 3.08414e8 1.24837
\(251\) −4.41895e8 −1.76385 −0.881924 0.471391i \(-0.843752\pi\)
−0.881924 + 0.471391i \(0.843752\pi\)
\(252\) 3.49952e7 0.137755
\(253\) 0 0
\(254\) 4.66877e7 0.178766
\(255\) −1.48744e7 −0.0561759
\(256\) 3.34929e8 1.24771
\(257\) −9.51348e7 −0.349601 −0.174801 0.984604i \(-0.555928\pi\)
−0.174801 + 0.984604i \(0.555928\pi\)
\(258\) −3.90793e6 −0.0141670
\(259\) −2.56543e7 −0.0917512
\(260\) −2.94678e7 −0.103978
\(261\) −4.32865e7 −0.150699
\(262\) 4.66792e8 1.60350
\(263\) 3.85784e8 1.30767 0.653837 0.756636i \(-0.273158\pi\)
0.653837 + 0.756636i \(0.273158\pi\)
\(264\) 0 0
\(265\) −1.11987e8 −0.369665
\(266\) −2.46555e8 −0.803207
\(267\) 1.79818e8 0.578154
\(268\) −1.00997e8 −0.320505
\(269\) 6.61942e7 0.207342 0.103671 0.994612i \(-0.466941\pi\)
0.103671 + 0.994612i \(0.466941\pi\)
\(270\) −4.54793e7 −0.140618
\(271\) 3.88853e8 1.18684 0.593421 0.804893i \(-0.297777\pi\)
0.593421 + 0.804893i \(0.297777\pi\)
\(272\) −6.81881e7 −0.205455
\(273\) 2.23354e7 0.0664393
\(274\) −5.91743e8 −1.73783
\(275\) 0 0
\(276\) −1.40450e8 −0.402104
\(277\) 4.40365e8 1.24490 0.622449 0.782661i \(-0.286138\pi\)
0.622449 + 0.782661i \(0.286138\pi\)
\(278\) 3.69640e8 1.03186
\(279\) 1.58003e8 0.435563
\(280\) 2.24530e7 0.0611254
\(281\) −5.76060e8 −1.54880 −0.774401 0.632696i \(-0.781948\pi\)
−0.774401 + 0.632696i \(0.781948\pi\)
\(282\) −1.02245e8 −0.271500
\(283\) 2.16399e8 0.567547 0.283774 0.958891i \(-0.408414\pi\)
0.283774 + 0.958891i \(0.408414\pi\)
\(284\) −6.07400e7 −0.157348
\(285\) 1.45485e8 0.372272
\(286\) 0 0
\(287\) −7.02461e7 −0.175402
\(288\) −1.77700e8 −0.438343
\(289\) −3.97011e8 −0.967520
\(290\) 1.37198e8 0.330335
\(291\) −4.33740e8 −1.03182
\(292\) 4.25402e8 0.999906
\(293\) 5.49455e8 1.27613 0.638066 0.769982i \(-0.279735\pi\)
0.638066 + 0.769982i \(0.279735\pi\)
\(294\) −2.56396e8 −0.588432
\(295\) 1.91891e8 0.435188
\(296\) 1.87707e7 0.0420686
\(297\) 0 0
\(298\) 3.73494e7 0.0817573
\(299\) −8.96411e7 −0.193936
\(300\) −1.59096e8 −0.340200
\(301\) −4.26272e6 −0.00900957
\(302\) 1.08696e9 2.27085
\(303\) −5.39118e8 −1.11336
\(304\) 6.66937e8 1.36153
\(305\) 2.08734e8 0.421254
\(306\) 4.07506e7 0.0813036
\(307\) −8.42847e8 −1.66251 −0.831255 0.555891i \(-0.812377\pi\)
−0.831255 + 0.555891i \(0.812377\pi\)
\(308\) 0 0
\(309\) −1.59746e8 −0.308018
\(310\) −5.00795e8 −0.954760
\(311\) −9.24191e8 −1.74221 −0.871105 0.491097i \(-0.836596\pi\)
−0.871105 + 0.491097i \(0.836596\pi\)
\(312\) −1.63423e7 −0.0304630
\(313\) −2.52164e8 −0.464812 −0.232406 0.972619i \(-0.574660\pi\)
−0.232406 + 0.972619i \(0.574660\pi\)
\(314\) −3.43014e8 −0.625256
\(315\) −4.96082e7 −0.0894266
\(316\) −7.23857e8 −1.29047
\(317\) 2.09625e8 0.369603 0.184802 0.982776i \(-0.440836\pi\)
0.184802 + 0.982776i \(0.440836\pi\)
\(318\) 3.06805e8 0.535017
\(319\) 0 0
\(320\) 2.02453e8 0.345381
\(321\) 1.89038e7 0.0318993
\(322\) −3.37413e8 −0.563205
\(323\) −1.30358e8 −0.215243
\(324\) 5.65726e7 0.0924056
\(325\) −1.01542e8 −0.164079
\(326\) −5.01070e8 −0.801007
\(327\) −3.99927e8 −0.632505
\(328\) 5.13974e7 0.0804234
\(329\) −1.11527e8 −0.172662
\(330\) 0 0
\(331\) −7.72480e8 −1.17082 −0.585409 0.810738i \(-0.699066\pi\)
−0.585409 + 0.810738i \(0.699066\pi\)
\(332\) −9.83167e8 −1.47450
\(333\) −4.14723e7 −0.0615465
\(334\) 9.82502e8 1.44285
\(335\) 1.43170e8 0.208063
\(336\) −2.27416e8 −0.327065
\(337\) 1.26330e9 1.79806 0.899028 0.437891i \(-0.144275\pi\)
0.899028 + 0.437891i \(0.144275\pi\)
\(338\) −9.09267e8 −1.28080
\(339\) 7.94639e8 1.10782
\(340\) −5.86446e7 −0.0809192
\(341\) 0 0
\(342\) −3.98576e8 −0.538790
\(343\) −6.51052e8 −0.871136
\(344\) 3.11893e6 0.00413096
\(345\) 1.99098e8 0.261035
\(346\) −1.87901e8 −0.243872
\(347\) −1.01177e9 −1.29995 −0.649976 0.759955i \(-0.725221\pi\)
−0.649976 + 0.759955i \(0.725221\pi\)
\(348\) −1.70663e8 −0.217076
\(349\) 1.10483e9 1.39125 0.695626 0.718404i \(-0.255127\pi\)
0.695626 + 0.718404i \(0.255127\pi\)
\(350\) −3.82209e8 −0.476500
\(351\) 3.61071e7 0.0445674
\(352\) 0 0
\(353\) 5.60998e8 0.678813 0.339406 0.940640i \(-0.389774\pi\)
0.339406 + 0.940640i \(0.389774\pi\)
\(354\) −5.25712e8 −0.629848
\(355\) 8.61034e7 0.102146
\(356\) 7.08957e8 0.832808
\(357\) 4.44503e7 0.0517054
\(358\) 1.24860e9 1.43824
\(359\) −1.36456e8 −0.155655 −0.0778275 0.996967i \(-0.524798\pi\)
−0.0778275 + 0.996967i \(0.524798\pi\)
\(360\) 3.62971e7 0.0410028
\(361\) 3.81141e8 0.426393
\(362\) −6.43737e8 −0.713229
\(363\) 0 0
\(364\) 8.80606e7 0.0957033
\(365\) −6.03038e8 −0.649112
\(366\) −5.71857e8 −0.609682
\(367\) 1.82044e7 0.0192240 0.00961202 0.999954i \(-0.496940\pi\)
0.00961202 + 0.999954i \(0.496940\pi\)
\(368\) 9.12713e8 0.954700
\(369\) −1.13559e8 −0.117660
\(370\) 1.31448e8 0.134911
\(371\) 3.34659e8 0.340246
\(372\) 6.22949e8 0.627411
\(373\) −7.96286e8 −0.794489 −0.397245 0.917713i \(-0.630034\pi\)
−0.397245 + 0.917713i \(0.630034\pi\)
\(374\) 0 0
\(375\) 5.43840e8 0.532552
\(376\) 8.16019e7 0.0791667
\(377\) −1.08925e8 −0.104696
\(378\) 1.35909e8 0.129427
\(379\) 2.81423e8 0.265536 0.132768 0.991147i \(-0.457614\pi\)
0.132768 + 0.991147i \(0.457614\pi\)
\(380\) 5.73594e8 0.536243
\(381\) 8.23265e7 0.0762610
\(382\) −1.53967e8 −0.141321
\(383\) −1.16560e9 −1.06012 −0.530059 0.847961i \(-0.677830\pi\)
−0.530059 + 0.847961i \(0.677830\pi\)
\(384\) 2.87782e8 0.259361
\(385\) 0 0
\(386\) 2.37420e9 2.10117
\(387\) −6.89104e6 −0.00604361
\(388\) −1.71008e9 −1.48630
\(389\) 1.00118e9 0.862359 0.431179 0.902266i \(-0.358098\pi\)
0.431179 + 0.902266i \(0.358098\pi\)
\(390\) −1.14443e8 −0.0976925
\(391\) −1.78397e8 −0.150927
\(392\) 2.04631e8 0.171581
\(393\) 8.23116e8 0.684049
\(394\) 1.41519e9 1.16567
\(395\) 1.02612e9 0.837739
\(396\) 0 0
\(397\) 1.28665e9 1.03203 0.516015 0.856579i \(-0.327415\pi\)
0.516015 + 0.856579i \(0.327415\pi\)
\(398\) 5.97530e8 0.475082
\(399\) −4.34761e8 −0.342646
\(400\) 1.03389e9 0.807723
\(401\) −3.76915e8 −0.291903 −0.145951 0.989292i \(-0.546624\pi\)
−0.145951 + 0.989292i \(0.546624\pi\)
\(402\) −3.92235e8 −0.301131
\(403\) 3.97593e8 0.302601
\(404\) −2.12555e9 −1.60375
\(405\) −8.01958e7 −0.0599872
\(406\) −4.09997e8 −0.304046
\(407\) 0 0
\(408\) −3.25232e7 −0.0237073
\(409\) 1.53594e9 1.11005 0.555026 0.831833i \(-0.312708\pi\)
0.555026 + 0.831833i \(0.312708\pi\)
\(410\) 3.59927e8 0.257912
\(411\) −1.04345e9 −0.741352
\(412\) −6.29821e8 −0.443687
\(413\) −5.73439e8 −0.400555
\(414\) −5.45456e8 −0.377797
\(415\) 1.39371e9 0.957204
\(416\) −4.47158e8 −0.304533
\(417\) 6.51804e8 0.440191
\(418\) 0 0
\(419\) 2.50477e9 1.66348 0.831742 0.555163i \(-0.187344\pi\)
0.831742 + 0.555163i \(0.187344\pi\)
\(420\) −1.95587e8 −0.128816
\(421\) −1.42255e9 −0.929141 −0.464571 0.885536i \(-0.653791\pi\)
−0.464571 + 0.885536i \(0.653791\pi\)
\(422\) 2.52631e9 1.63641
\(423\) −1.80293e8 −0.115821
\(424\) −2.44862e8 −0.156006
\(425\) −2.02081e8 −0.127692
\(426\) −2.35893e8 −0.147836
\(427\) −6.23774e8 −0.387730
\(428\) 7.45307e7 0.0459496
\(429\) 0 0
\(430\) 2.18414e7 0.0132477
\(431\) 1.99720e9 1.20158 0.600789 0.799408i \(-0.294853\pi\)
0.600789 + 0.799408i \(0.294853\pi\)
\(432\) −3.67637e8 −0.219395
\(433\) 4.77303e8 0.282544 0.141272 0.989971i \(-0.454881\pi\)
0.141272 + 0.989971i \(0.454881\pi\)
\(434\) 1.49656e9 0.878779
\(435\) 2.41927e8 0.140920
\(436\) −1.57677e9 −0.911098
\(437\) 1.74487e9 1.00018
\(438\) 1.65211e9 0.939462
\(439\) 1.91725e9 1.08156 0.540782 0.841163i \(-0.318128\pi\)
0.540782 + 0.841163i \(0.318128\pi\)
\(440\) 0 0
\(441\) −4.52115e8 −0.251023
\(442\) 1.02543e8 0.0564846
\(443\) 2.58245e9 1.41130 0.705650 0.708561i \(-0.250655\pi\)
0.705650 + 0.708561i \(0.250655\pi\)
\(444\) −1.63510e8 −0.0886554
\(445\) −1.00500e9 −0.540636
\(446\) 1.85590e9 0.990564
\(447\) 6.58599e7 0.0348774
\(448\) −6.05002e8 −0.317895
\(449\) 1.51304e9 0.788840 0.394420 0.918930i \(-0.370945\pi\)
0.394420 + 0.918930i \(0.370945\pi\)
\(450\) −6.17872e8 −0.319635
\(451\) 0 0
\(452\) 3.13297e9 1.59578
\(453\) 1.91668e9 0.968739
\(454\) −1.17871e9 −0.591166
\(455\) −1.24832e8 −0.0621280
\(456\) 3.18104e8 0.157106
\(457\) 6.06245e8 0.297126 0.148563 0.988903i \(-0.452535\pi\)
0.148563 + 0.988903i \(0.452535\pi\)
\(458\) −1.83532e9 −0.892651
\(459\) 7.18575e7 0.0346839
\(460\) 7.84970e8 0.376011
\(461\) 9.32097e8 0.443106 0.221553 0.975148i \(-0.428887\pi\)
0.221553 + 0.975148i \(0.428887\pi\)
\(462\) 0 0
\(463\) 1.19425e9 0.559195 0.279597 0.960117i \(-0.409799\pi\)
0.279597 + 0.960117i \(0.409799\pi\)
\(464\) 1.10905e9 0.515394
\(465\) −8.83075e8 −0.407298
\(466\) 2.41568e9 1.10583
\(467\) −1.12016e9 −0.508945 −0.254473 0.967080i \(-0.581902\pi\)
−0.254473 + 0.967080i \(0.581902\pi\)
\(468\) 1.42357e8 0.0641976
\(469\) −4.27845e8 −0.191505
\(470\) 5.71445e8 0.253882
\(471\) −6.04852e8 −0.266732
\(472\) 4.19572e8 0.183658
\(473\) 0 0
\(474\) −2.81120e9 −1.21246
\(475\) 1.97652e9 0.846202
\(476\) 1.75251e8 0.0744795
\(477\) 5.41003e8 0.228237
\(478\) 5.12878e8 0.214791
\(479\) 1.19835e9 0.498207 0.249103 0.968477i \(-0.419864\pi\)
0.249103 + 0.968477i \(0.419864\pi\)
\(480\) 9.93162e8 0.409898
\(481\) −1.04359e8 −0.0427587
\(482\) −3.03429e9 −1.23422
\(483\) −5.94976e8 −0.240262
\(484\) 0 0
\(485\) 2.42417e9 0.964864
\(486\) 2.19708e8 0.0868197
\(487\) −3.74046e9 −1.46749 −0.733743 0.679427i \(-0.762228\pi\)
−0.733743 + 0.679427i \(0.762228\pi\)
\(488\) 4.56400e8 0.177777
\(489\) −8.83559e8 −0.341708
\(490\) 1.43299e9 0.550248
\(491\) −2.80782e9 −1.07050 −0.535248 0.844695i \(-0.679782\pi\)
−0.535248 + 0.844695i \(0.679782\pi\)
\(492\) −4.47720e8 −0.169484
\(493\) −2.16773e8 −0.0814782
\(494\) −1.00296e9 −0.374318
\(495\) 0 0
\(496\) −4.04823e9 −1.48963
\(497\) −2.57308e8 −0.0940171
\(498\) −3.81827e9 −1.38536
\(499\) −3.29137e9 −1.18584 −0.592918 0.805263i \(-0.702024\pi\)
−0.592918 + 0.805263i \(0.702024\pi\)
\(500\) 2.14417e9 0.767120
\(501\) 1.73249e9 0.615515
\(502\) −6.76621e9 −2.38717
\(503\) 3.30197e9 1.15687 0.578436 0.815727i \(-0.303663\pi\)
0.578436 + 0.815727i \(0.303663\pi\)
\(504\) −1.08469e8 −0.0377398
\(505\) 3.01312e9 1.04111
\(506\) 0 0
\(507\) −1.60335e9 −0.546388
\(508\) 3.24584e8 0.109851
\(509\) 1.57111e9 0.528074 0.264037 0.964513i \(-0.414946\pi\)
0.264037 + 0.964513i \(0.414946\pi\)
\(510\) −2.27755e8 −0.0760276
\(511\) 1.80210e9 0.597455
\(512\) 3.76406e9 1.23940
\(513\) −7.02827e8 −0.229846
\(514\) −1.45668e9 −0.473145
\(515\) 8.92818e8 0.288030
\(516\) −2.71689e7 −0.00870558
\(517\) 0 0
\(518\) −3.92814e8 −0.124175
\(519\) −3.31334e8 −0.104035
\(520\) 9.13368e7 0.0284862
\(521\) 2.70490e8 0.0837952 0.0418976 0.999122i \(-0.486660\pi\)
0.0418976 + 0.999122i \(0.486660\pi\)
\(522\) −6.62794e8 −0.203954
\(523\) −5.38264e9 −1.64528 −0.822639 0.568564i \(-0.807499\pi\)
−0.822639 + 0.568564i \(0.807499\pi\)
\(524\) 3.24525e9 0.985345
\(525\) −6.73966e8 −0.203273
\(526\) 5.90705e9 1.76978
\(527\) 7.91259e8 0.235495
\(528\) 0 0
\(529\) −1.01695e9 −0.298678
\(530\) −1.71473e9 −0.500299
\(531\) −9.27011e8 −0.268692
\(532\) −1.71411e9 −0.493568
\(533\) −2.85755e8 −0.0817425
\(534\) 2.75333e9 0.782464
\(535\) −1.05653e8 −0.0298293
\(536\) 3.13044e8 0.0878068
\(537\) 2.20171e9 0.613551
\(538\) 1.01355e9 0.280613
\(539\) 0 0
\(540\) −3.16183e8 −0.0864092
\(541\) −2.09946e9 −0.570054 −0.285027 0.958519i \(-0.592003\pi\)
−0.285027 + 0.958519i \(0.592003\pi\)
\(542\) 5.95404e9 1.60625
\(543\) −1.13513e9 −0.304261
\(544\) −8.89899e8 −0.236998
\(545\) 2.23518e9 0.591460
\(546\) 3.41996e8 0.0899180
\(547\) −4.24627e9 −1.10931 −0.554654 0.832081i \(-0.687149\pi\)
−0.554654 + 0.832081i \(0.687149\pi\)
\(548\) −4.11394e9 −1.06789
\(549\) −1.00838e9 −0.260089
\(550\) 0 0
\(551\) 2.12023e9 0.539947
\(552\) 4.35330e8 0.110162
\(553\) −3.06642e9 −0.771071
\(554\) 6.74278e9 1.68483
\(555\) 2.31788e8 0.0575527
\(556\) 2.56983e9 0.634077
\(557\) 4.46910e9 1.09579 0.547894 0.836548i \(-0.315430\pi\)
0.547894 + 0.836548i \(0.315430\pi\)
\(558\) 2.41931e9 0.589484
\(559\) −1.73404e7 −0.00419872
\(560\) 1.27102e9 0.305841
\(561\) 0 0
\(562\) −8.82052e9 −2.09612
\(563\) 4.40973e9 1.04144 0.520719 0.853728i \(-0.325664\pi\)
0.520719 + 0.853728i \(0.325664\pi\)
\(564\) −7.10830e8 −0.166836
\(565\) −4.44122e9 −1.03594
\(566\) 3.31345e9 0.768110
\(567\) 2.39654e8 0.0552134
\(568\) 1.88266e8 0.0431076
\(569\) −1.04105e9 −0.236906 −0.118453 0.992960i \(-0.537794\pi\)
−0.118453 + 0.992960i \(0.537794\pi\)
\(570\) 2.22763e9 0.503827
\(571\) 1.44683e9 0.325231 0.162616 0.986689i \(-0.448007\pi\)
0.162616 + 0.986689i \(0.448007\pi\)
\(572\) 0 0
\(573\) −2.71497e8 −0.0602870
\(574\) −1.07559e9 −0.237387
\(575\) 2.70490e9 0.593353
\(576\) −9.78035e8 −0.213243
\(577\) −1.29000e9 −0.279559 −0.139779 0.990183i \(-0.544639\pi\)
−0.139779 + 0.990183i \(0.544639\pi\)
\(578\) −6.07895e9 −1.30943
\(579\) 4.18653e9 0.896354
\(580\) 9.53832e8 0.202990
\(581\) −4.16492e9 −0.881028
\(582\) −6.64134e9 −1.39645
\(583\) 0 0
\(584\) −1.31855e9 −0.273938
\(585\) −2.01802e8 −0.0416754
\(586\) 8.41315e9 1.72710
\(587\) −1.99334e9 −0.406768 −0.203384 0.979099i \(-0.565194\pi\)
−0.203384 + 0.979099i \(0.565194\pi\)
\(588\) −1.78253e9 −0.361589
\(589\) −7.73918e9 −1.56060
\(590\) 2.93819e9 0.588977
\(591\) 2.49546e9 0.497273
\(592\) 1.06257e9 0.210491
\(593\) −7.62570e9 −1.50172 −0.750858 0.660463i \(-0.770360\pi\)
−0.750858 + 0.660463i \(0.770360\pi\)
\(594\) 0 0
\(595\) −2.48432e8 −0.0483501
\(596\) 2.59662e8 0.0502396
\(597\) 1.05365e9 0.202669
\(598\) −1.37257e9 −0.262470
\(599\) −2.09746e9 −0.398750 −0.199375 0.979923i \(-0.563891\pi\)
−0.199375 + 0.979923i \(0.563891\pi\)
\(600\) 4.93125e8 0.0932025
\(601\) −3.19200e9 −0.599795 −0.299897 0.953971i \(-0.596952\pi\)
−0.299897 + 0.953971i \(0.596952\pi\)
\(602\) −6.52699e7 −0.0121934
\(603\) −6.91646e8 −0.128462
\(604\) 7.55679e9 1.39543
\(605\) 0 0
\(606\) −8.25487e9 −1.50680
\(607\) −7.69068e9 −1.39574 −0.697869 0.716225i \(-0.745868\pi\)
−0.697869 + 0.716225i \(0.745868\pi\)
\(608\) 8.70396e9 1.57056
\(609\) −7.22967e8 −0.129705
\(610\) 3.19610e9 0.570119
\(611\) −4.53683e8 −0.0804652
\(612\) 2.83308e8 0.0499608
\(613\) −3.71584e9 −0.651546 −0.325773 0.945448i \(-0.605625\pi\)
−0.325773 + 0.945448i \(0.605625\pi\)
\(614\) −1.29055e10 −2.25002
\(615\) 6.34676e8 0.110025
\(616\) 0 0
\(617\) 9.16061e9 1.57010 0.785048 0.619435i \(-0.212638\pi\)
0.785048 + 0.619435i \(0.212638\pi\)
\(618\) −2.44600e9 −0.416867
\(619\) 4.17363e9 0.707289 0.353645 0.935380i \(-0.384942\pi\)
0.353645 + 0.935380i \(0.384942\pi\)
\(620\) −3.48165e9 −0.586697
\(621\) −9.61828e8 −0.161167
\(622\) −1.41510e10 −2.35788
\(623\) 3.00330e9 0.497612
\(624\) −9.25108e8 −0.152422
\(625\) 1.28498e9 0.210530
\(626\) −3.86108e9 −0.629070
\(627\) 0 0
\(628\) −2.38471e9 −0.384217
\(629\) −2.07688e8 −0.0332763
\(630\) −7.59591e8 −0.121029
\(631\) −7.34966e9 −1.16457 −0.582283 0.812986i \(-0.697841\pi\)
−0.582283 + 0.812986i \(0.697841\pi\)
\(632\) 2.24363e9 0.353542
\(633\) 4.45476e9 0.698090
\(634\) 3.20974e9 0.500215
\(635\) −4.60121e8 −0.0713123
\(636\) 2.13298e9 0.328766
\(637\) −1.13769e9 −0.174395
\(638\) 0 0
\(639\) −4.15960e8 −0.0630665
\(640\) −1.60841e9 −0.242531
\(641\) 1.91130e8 0.0286633 0.0143317 0.999897i \(-0.495438\pi\)
0.0143317 + 0.999897i \(0.495438\pi\)
\(642\) 2.89451e8 0.0431720
\(643\) −7.93068e9 −1.17645 −0.588223 0.808699i \(-0.700172\pi\)
−0.588223 + 0.808699i \(0.700172\pi\)
\(644\) −2.34578e9 −0.346088
\(645\) 3.85139e7 0.00565143
\(646\) −1.99602e9 −0.291307
\(647\) −8.81420e9 −1.27943 −0.639717 0.768611i \(-0.720948\pi\)
−0.639717 + 0.768611i \(0.720948\pi\)
\(648\) −1.75349e8 −0.0253158
\(649\) 0 0
\(650\) −1.55479e9 −0.222062
\(651\) 2.63895e9 0.374885
\(652\) −3.48355e9 −0.492216
\(653\) −3.86041e9 −0.542547 −0.271274 0.962502i \(-0.587445\pi\)
−0.271274 + 0.962502i \(0.587445\pi\)
\(654\) −6.12360e9 −0.856022
\(655\) −4.60038e9 −0.639660
\(656\) 2.90951e9 0.402399
\(657\) 2.91324e9 0.400772
\(658\) −1.70768e9 −0.233678
\(659\) −1.04947e10 −1.42846 −0.714232 0.699909i \(-0.753224\pi\)
−0.714232 + 0.699909i \(0.753224\pi\)
\(660\) 0 0
\(661\) 1.06674e10 1.43666 0.718331 0.695701i \(-0.244906\pi\)
0.718331 + 0.695701i \(0.244906\pi\)
\(662\) −1.18281e10 −1.58457
\(663\) 1.80820e8 0.0240962
\(664\) 3.04737e9 0.403958
\(665\) 2.42987e9 0.320411
\(666\) −6.35016e8 −0.0832961
\(667\) 2.90156e9 0.378609
\(668\) 6.83058e9 0.886626
\(669\) 3.27259e9 0.422572
\(670\) 2.19219e9 0.281590
\(671\) 0 0
\(672\) −2.96793e9 −0.377278
\(673\) −9.04643e9 −1.14400 −0.571998 0.820255i \(-0.693831\pi\)
−0.571998 + 0.820255i \(0.693831\pi\)
\(674\) 1.93435e10 2.43346
\(675\) −1.08952e9 −0.136356
\(676\) −6.32143e9 −0.787050
\(677\) 5.69920e9 0.705917 0.352959 0.935639i \(-0.385176\pi\)
0.352959 + 0.935639i \(0.385176\pi\)
\(678\) 1.21674e10 1.49931
\(679\) −7.24429e9 −0.888079
\(680\) 1.81771e8 0.0221689
\(681\) −2.07847e9 −0.252190
\(682\) 0 0
\(683\) 5.60667e8 0.0673337 0.0336668 0.999433i \(-0.489281\pi\)
0.0336668 + 0.999433i \(0.489281\pi\)
\(684\) −2.77099e9 −0.331085
\(685\) 5.83181e9 0.693244
\(686\) −9.96877e9 −1.17898
\(687\) −3.23630e9 −0.380802
\(688\) 1.76557e8 0.0206693
\(689\) 1.36136e9 0.158565
\(690\) 3.04854e9 0.353281
\(691\) −1.83589e9 −0.211677 −0.105838 0.994383i \(-0.533753\pi\)
−0.105838 + 0.994383i \(0.533753\pi\)
\(692\) −1.30633e9 −0.149858
\(693\) 0 0
\(694\) −1.54920e10 −1.75934
\(695\) −3.64292e9 −0.411626
\(696\) 5.28977e8 0.0594709
\(697\) −5.68687e8 −0.0636148
\(698\) 1.69169e10 1.88290
\(699\) 4.25968e9 0.471744
\(700\) −2.65721e9 −0.292807
\(701\) −9.45593e9 −1.03679 −0.518396 0.855141i \(-0.673471\pi\)
−0.518396 + 0.855141i \(0.673471\pi\)
\(702\) 5.52864e8 0.0603169
\(703\) 2.03137e9 0.220518
\(704\) 0 0
\(705\) 1.00765e9 0.108305
\(706\) 8.58989e9 0.918695
\(707\) −9.00430e9 −0.958258
\(708\) −3.65487e9 −0.387040
\(709\) −1.00459e10 −1.05859 −0.529296 0.848437i \(-0.677544\pi\)
−0.529296 + 0.848437i \(0.677544\pi\)
\(710\) 1.31840e9 0.138243
\(711\) −4.95712e9 −0.517233
\(712\) −2.19744e9 −0.228159
\(713\) −1.05912e10 −1.09429
\(714\) 6.80614e8 0.0699772
\(715\) 0 0
\(716\) 8.68056e9 0.883796
\(717\) 9.04382e8 0.0916294
\(718\) −2.08939e9 −0.210661
\(719\) −1.44553e10 −1.45036 −0.725180 0.688560i \(-0.758243\pi\)
−0.725180 + 0.688560i \(0.758243\pi\)
\(720\) 2.05472e9 0.205158
\(721\) −2.66807e9 −0.265108
\(722\) 5.83595e9 0.577074
\(723\) −5.35050e9 −0.526515
\(724\) −4.47541e9 −0.438277
\(725\) 3.28677e9 0.320322
\(726\) 0 0
\(727\) −1.44214e10 −1.39199 −0.695997 0.718045i \(-0.745037\pi\)
−0.695997 + 0.718045i \(0.745037\pi\)
\(728\) −2.72948e8 −0.0262192
\(729\) 3.87420e8 0.0370370
\(730\) −9.23360e9 −0.878499
\(731\) −3.45094e7 −0.00326759
\(732\) −3.97568e9 −0.374648
\(733\) −8.73020e8 −0.0818767 −0.0409383 0.999162i \(-0.513035\pi\)
−0.0409383 + 0.999162i \(0.513035\pi\)
\(734\) 2.78742e8 0.0260175
\(735\) 2.52686e9 0.234734
\(736\) 1.19115e10 1.10127
\(737\) 0 0
\(738\) −1.73879e9 −0.159239
\(739\) −1.31231e10 −1.19613 −0.598067 0.801446i \(-0.704064\pi\)
−0.598067 + 0.801446i \(0.704064\pi\)
\(740\) 9.13856e8 0.0829024
\(741\) −1.76857e9 −0.159683
\(742\) 5.12423e9 0.460484
\(743\) 1.12095e10 1.00260 0.501299 0.865274i \(-0.332856\pi\)
0.501299 + 0.865274i \(0.332856\pi\)
\(744\) −1.93086e9 −0.171888
\(745\) −3.68089e8 −0.0326142
\(746\) −1.21926e10 −1.07525
\(747\) −6.73293e9 −0.590992
\(748\) 0 0
\(749\) 3.15729e8 0.0274554
\(750\) 8.32717e9 0.720747
\(751\) −1.12643e10 −0.970428 −0.485214 0.874396i \(-0.661258\pi\)
−0.485214 + 0.874396i \(0.661258\pi\)
\(752\) 4.61933e9 0.396111
\(753\) −1.19312e10 −1.01836
\(754\) −1.66783e9 −0.141694
\(755\) −1.07123e10 −0.905876
\(756\) 9.44870e8 0.0795327
\(757\) 6.20629e9 0.519992 0.259996 0.965610i \(-0.416279\pi\)
0.259996 + 0.965610i \(0.416279\pi\)
\(758\) 4.30910e9 0.359372
\(759\) 0 0
\(760\) −1.77788e9 −0.146911
\(761\) 3.97591e9 0.327032 0.163516 0.986541i \(-0.447716\pi\)
0.163516 + 0.986541i \(0.447716\pi\)
\(762\) 1.26057e9 0.103210
\(763\) −6.67955e9 −0.544391
\(764\) −1.07041e9 −0.0868411
\(765\) −4.01610e8 −0.0324332
\(766\) −1.78475e10 −1.43475
\(767\) −2.33270e9 −0.186670
\(768\) 9.04307e9 0.720364
\(769\) −8.58317e9 −0.680621 −0.340310 0.940313i \(-0.610532\pi\)
−0.340310 + 0.940313i \(0.610532\pi\)
\(770\) 0 0
\(771\) −2.56864e9 −0.201843
\(772\) 1.65060e10 1.29116
\(773\) −1.50463e10 −1.17166 −0.585830 0.810434i \(-0.699231\pi\)
−0.585830 + 0.810434i \(0.699231\pi\)
\(774\) −1.05514e8 −0.00817933
\(775\) −1.19973e10 −0.925820
\(776\) 5.30047e9 0.407191
\(777\) −6.92667e8 −0.0529726
\(778\) 1.53298e10 1.16710
\(779\) 5.56224e9 0.421569
\(780\) −7.95631e8 −0.0600317
\(781\) 0 0
\(782\) −2.73158e9 −0.204263
\(783\) −1.16874e9 −0.0870061
\(784\) 1.15838e10 0.858506
\(785\) 3.38050e9 0.249424
\(786\) 1.26034e10 0.925781
\(787\) 8.51167e9 0.622448 0.311224 0.950337i \(-0.399261\pi\)
0.311224 + 0.950337i \(0.399261\pi\)
\(788\) 9.83870e9 0.716302
\(789\) 1.04162e10 0.754985
\(790\) 1.57118e10 1.13378
\(791\) 1.32720e10 0.953495
\(792\) 0 0
\(793\) −2.53746e9 −0.180693
\(794\) 1.97009e10 1.39673
\(795\) −3.02366e9 −0.213426
\(796\) 4.15417e9 0.291936
\(797\) −1.57969e10 −1.10527 −0.552634 0.833424i \(-0.686377\pi\)
−0.552634 + 0.833424i \(0.686377\pi\)
\(798\) −6.65698e9 −0.463732
\(799\) −9.02885e8 −0.0626208
\(800\) 1.34929e10 0.931729
\(801\) 4.85508e9 0.333797
\(802\) −5.77124e9 −0.395056
\(803\) 0 0
\(804\) −2.72691e9 −0.185044
\(805\) 3.32531e9 0.224671
\(806\) 6.08786e9 0.409536
\(807\) 1.78724e9 0.119709
\(808\) 6.58823e9 0.439369
\(809\) 2.52400e9 0.167598 0.0837991 0.996483i \(-0.473295\pi\)
0.0837991 + 0.996483i \(0.473295\pi\)
\(810\) −1.22794e9 −0.0811858
\(811\) −3.59559e9 −0.236699 −0.118350 0.992972i \(-0.537760\pi\)
−0.118350 + 0.992972i \(0.537760\pi\)
\(812\) −2.85040e9 −0.186835
\(813\) 1.04990e10 0.685223
\(814\) 0 0
\(815\) 4.93820e9 0.319534
\(816\) −1.84108e9 −0.118620
\(817\) 3.37532e8 0.0216540
\(818\) 2.35180e10 1.50233
\(819\) 6.03057e8 0.0383588
\(820\) 2.50230e9 0.158486
\(821\) −2.36760e10 −1.49317 −0.746583 0.665292i \(-0.768307\pi\)
−0.746583 + 0.665292i \(0.768307\pi\)
\(822\) −1.59771e10 −1.00333
\(823\) −1.17405e10 −0.734151 −0.367076 0.930191i \(-0.619641\pi\)
−0.367076 + 0.930191i \(0.619641\pi\)
\(824\) 1.95216e9 0.121554
\(825\) 0 0
\(826\) −8.78038e9 −0.542105
\(827\) 2.39590e9 0.147299 0.0736495 0.997284i \(-0.476535\pi\)
0.0736495 + 0.997284i \(0.476535\pi\)
\(828\) −3.79214e9 −0.232155
\(829\) 1.54175e10 0.939883 0.469942 0.882698i \(-0.344275\pi\)
0.469942 + 0.882698i \(0.344275\pi\)
\(830\) 2.13402e10 1.29547
\(831\) 1.18899e10 0.718742
\(832\) −2.46109e9 −0.148148
\(833\) −2.26414e9 −0.135720
\(834\) 9.98029e9 0.595747
\(835\) −9.68286e9 −0.575574
\(836\) 0 0
\(837\) 4.26608e9 0.251472
\(838\) 3.83525e10 2.25133
\(839\) 6.69748e9 0.391511 0.195756 0.980653i \(-0.437284\pi\)
0.195756 + 0.980653i \(0.437284\pi\)
\(840\) 6.06232e8 0.0352908
\(841\) −1.37241e10 −0.795608
\(842\) −2.17819e10 −1.25749
\(843\) −1.55536e10 −0.894201
\(844\) 1.75635e10 1.00557
\(845\) 8.96110e9 0.510932
\(846\) −2.76061e9 −0.156751
\(847\) 0 0
\(848\) −1.38612e10 −0.780575
\(849\) 5.84276e9 0.327674
\(850\) −3.09422e9 −0.172817
\(851\) 2.77995e9 0.154626
\(852\) −1.63998e9 −0.0908448
\(853\) 1.16105e10 0.640516 0.320258 0.947330i \(-0.396230\pi\)
0.320258 + 0.947330i \(0.396230\pi\)
\(854\) −9.55110e9 −0.524748
\(855\) 3.92809e9 0.214931
\(856\) −2.31011e8 −0.0125885
\(857\) 2.52052e10 1.36791 0.683955 0.729524i \(-0.260258\pi\)
0.683955 + 0.729524i \(0.260258\pi\)
\(858\) 0 0
\(859\) 2.78224e10 1.49768 0.748839 0.662752i \(-0.230612\pi\)
0.748839 + 0.662752i \(0.230612\pi\)
\(860\) 1.51846e8 0.00814066
\(861\) −1.89664e9 −0.101269
\(862\) 3.05808e10 1.62620
\(863\) 1.27828e10 0.677000 0.338500 0.940966i \(-0.390080\pi\)
0.338500 + 0.940966i \(0.390080\pi\)
\(864\) −4.79790e9 −0.253077
\(865\) 1.85182e9 0.0972841
\(866\) 7.30836e9 0.382391
\(867\) −1.07193e10 −0.558598
\(868\) 1.04044e10 0.540007
\(869\) 0 0
\(870\) 3.70434e9 0.190719
\(871\) −1.74043e9 −0.0892470
\(872\) 4.88726e9 0.249608
\(873\) −1.17110e10 −0.595722
\(874\) 2.67171e10 1.35363
\(875\) 9.08317e9 0.458363
\(876\) 1.14858e10 0.577296
\(877\) −3.36909e9 −0.168661 −0.0843304 0.996438i \(-0.526875\pi\)
−0.0843304 + 0.996438i \(0.526875\pi\)
\(878\) 2.93565e10 1.46377
\(879\) 1.48353e10 0.736775
\(880\) 0 0
\(881\) 2.27946e10 1.12309 0.561547 0.827445i \(-0.310206\pi\)
0.561547 + 0.827445i \(0.310206\pi\)
\(882\) −6.92270e9 −0.339731
\(883\) −2.11019e10 −1.03147 −0.515737 0.856747i \(-0.672482\pi\)
−0.515737 + 0.856747i \(0.672482\pi\)
\(884\) 7.12906e8 0.0347096
\(885\) 5.18105e9 0.251256
\(886\) 3.95420e10 1.91003
\(887\) −1.24838e10 −0.600642 −0.300321 0.953838i \(-0.597094\pi\)
−0.300321 + 0.953838i \(0.597094\pi\)
\(888\) 5.06808e8 0.0242883
\(889\) 1.37501e9 0.0656372
\(890\) −1.53883e10 −0.731689
\(891\) 0 0
\(892\) 1.29027e10 0.608698
\(893\) 8.83098e9 0.414981
\(894\) 1.00843e9 0.0472026
\(895\) −1.23053e10 −0.573737
\(896\) 4.80651e9 0.223230
\(897\) −2.42031e9 −0.111969
\(898\) 2.31674e10 1.06760
\(899\) −1.28695e10 −0.590750
\(900\) −4.29559e9 −0.196415
\(901\) 2.70927e9 0.123400
\(902\) 0 0
\(903\) −1.15093e8 −0.00520168
\(904\) −9.71079e9 −0.437185
\(905\) 6.34423e9 0.284517
\(906\) 2.93479e10 1.31108
\(907\) 1.81146e10 0.806125 0.403063 0.915172i \(-0.367946\pi\)
0.403063 + 0.915172i \(0.367946\pi\)
\(908\) −8.19464e9 −0.363270
\(909\) −1.45562e10 −0.642798
\(910\) −1.91141e9 −0.0840831
\(911\) −1.35544e10 −0.593972 −0.296986 0.954882i \(-0.595981\pi\)
−0.296986 + 0.954882i \(0.595981\pi\)
\(912\) 1.80073e10 0.786080
\(913\) 0 0
\(914\) 9.28270e9 0.402126
\(915\) 5.63583e9 0.243211
\(916\) −1.27595e10 −0.548531
\(917\) 1.37476e10 0.588755
\(918\) 1.10027e9 0.0469406
\(919\) 3.84145e10 1.63264 0.816320 0.577600i \(-0.196011\pi\)
0.816320 + 0.577600i \(0.196011\pi\)
\(920\) −2.43305e9 −0.103013
\(921\) −2.27569e10 −0.959851
\(922\) 1.42721e10 0.599694
\(923\) −1.04671e9 −0.0438146
\(924\) 0 0
\(925\) 3.14902e9 0.130822
\(926\) 1.82862e10 0.756806
\(927\) −4.31315e9 −0.177834
\(928\) 1.44739e10 0.594520
\(929\) −3.68031e10 −1.50602 −0.753008 0.658011i \(-0.771398\pi\)
−0.753008 + 0.658011i \(0.771398\pi\)
\(930\) −1.35215e10 −0.551231
\(931\) 2.21452e10 0.899405
\(932\) 1.67944e10 0.679529
\(933\) −2.49532e10 −1.00587
\(934\) −1.71517e10 −0.688799
\(935\) 0 0
\(936\) −4.41242e8 −0.0175878
\(937\) −3.96782e10 −1.57566 −0.787832 0.615890i \(-0.788796\pi\)
−0.787832 + 0.615890i \(0.788796\pi\)
\(938\) −6.55107e9 −0.259181
\(939\) −6.80843e9 −0.268360
\(940\) 3.97282e9 0.156010
\(941\) 1.04269e10 0.407936 0.203968 0.978978i \(-0.434616\pi\)
0.203968 + 0.978978i \(0.434616\pi\)
\(942\) −9.26137e9 −0.360992
\(943\) 7.61199e9 0.295602
\(944\) 2.37512e10 0.918932
\(945\) −1.33942e9 −0.0516305
\(946\) 0 0
\(947\) 2.79277e10 1.06859 0.534293 0.845299i \(-0.320578\pi\)
0.534293 + 0.845299i \(0.320578\pi\)
\(948\) −1.95442e10 −0.745054
\(949\) 7.33077e9 0.278431
\(950\) 3.02641e10 1.14524
\(951\) 5.65988e9 0.213391
\(952\) −5.43199e8 −0.0204047
\(953\) −5.16025e9 −0.193128 −0.0965640 0.995327i \(-0.530785\pi\)
−0.0965640 + 0.995327i \(0.530785\pi\)
\(954\) 8.28373e9 0.308892
\(955\) 1.51739e9 0.0563749
\(956\) 3.56565e9 0.131989
\(957\) 0 0
\(958\) 1.83489e10 0.674266
\(959\) −1.74276e10 −0.638075
\(960\) 5.46622e9 0.199406
\(961\) 1.94633e10 0.707432
\(962\) −1.59793e9 −0.0578689
\(963\) 5.10402e8 0.0184170
\(964\) −2.10951e10 −0.758424
\(965\) −2.33984e10 −0.838188
\(966\) −9.11016e9 −0.325167
\(967\) −4.71056e10 −1.67525 −0.837626 0.546244i \(-0.816057\pi\)
−0.837626 + 0.546244i \(0.816057\pi\)
\(968\) 0 0
\(969\) −3.51967e9 −0.124271
\(970\) 3.71183e10 1.30583
\(971\) −3.39042e10 −1.18847 −0.594233 0.804293i \(-0.702544\pi\)
−0.594233 + 0.804293i \(0.702544\pi\)
\(972\) 1.52746e9 0.0533504
\(973\) 1.08864e10 0.378868
\(974\) −5.72732e10 −1.98607
\(975\) −2.74163e9 −0.0947313
\(976\) 2.58360e10 0.889510
\(977\) 1.13011e10 0.387693 0.193847 0.981032i \(-0.437904\pi\)
0.193847 + 0.981032i \(0.437904\pi\)
\(978\) −1.35289e10 −0.462462
\(979\) 0 0
\(980\) 9.96251e9 0.338125
\(981\) −1.07980e10 −0.365177
\(982\) −4.29928e10 −1.44879
\(983\) 2.38598e9 0.0801179 0.0400589 0.999197i \(-0.487245\pi\)
0.0400589 + 0.999197i \(0.487245\pi\)
\(984\) 1.38773e9 0.0464325
\(985\) −1.39471e10 −0.465004
\(986\) −3.31919e9 −0.110271
\(987\) −3.01124e9 −0.0996862
\(988\) −6.97283e9 −0.230017
\(989\) 4.61916e8 0.0151837
\(990\) 0 0
\(991\) 1.52156e10 0.496629 0.248315 0.968679i \(-0.420123\pi\)
0.248315 + 0.968679i \(0.420123\pi\)
\(992\) −5.28321e10 −1.71833
\(993\) −2.08570e10 −0.675972
\(994\) −3.93986e9 −0.127241
\(995\) −5.88884e9 −0.189517
\(996\) −2.65455e10 −0.851301
\(997\) 6.01330e10 1.92167 0.960837 0.277114i \(-0.0893780\pi\)
0.960837 + 0.277114i \(0.0893780\pi\)
\(998\) −5.03968e10 −1.60489
\(999\) −1.11975e9 −0.0355339
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.8.a.g.1.4 yes 4
11.10 odd 2 inner 363.8.a.g.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
363.8.a.g.1.1 4 11.10 odd 2 inner
363.8.a.g.1.4 yes 4 1.1 even 1 trivial