Properties

Label 363.3.h.j.323.1
Level $363$
Weight $3$
Character 363.323
Analytic conductor $9.891$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [363,3,Mod(245,363)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("363.245"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(363, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 8])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 363.h (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,-10,8,0,33,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.89103359628\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 12x^{14} + 180x^{12} - 2562x^{10} + 25179x^{8} - 96398x^{6} + 239275x^{4} - 536393x^{2} + 1771561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 323.1
Root \(-2.10855 + 2.90217i\) of defining polynomial
Character \(\chi\) \(=\) 363.323
Dual form 363.3.h.j.245.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.10855 + 2.90217i) q^{2} +(-2.00253 + 2.23380i) q^{3} +(-2.74053 - 8.43448i) q^{4} +(1.22635 + 1.68793i) q^{5} +(-2.26043 - 10.5218i) q^{6} +(-2.73883 - 8.42924i) q^{7} +(16.6100 + 5.39692i) q^{8} +(-0.979734 - 8.94651i) q^{9} -7.48447 q^{10} +(24.3290 + 10.7685i) q^{12} +(-1.33068 - 0.966792i) q^{13} +(30.2380 + 9.82492i) q^{14} +(-6.22630 - 0.640704i) q^{15} +(-21.9865 + 15.9742i) q^{16} +(7.30235 + 10.0508i) q^{17} +(28.0301 + 16.0208i) q^{18} +(-3.26497 + 10.0485i) q^{19} +(10.8759 - 14.9695i) q^{20} +(24.3138 + 10.7618i) q^{21} +20.3378i q^{23} +(-45.3177 + 26.2959i) q^{24} +(6.38026 - 19.6364i) q^{25} +(5.61158 - 1.82331i) q^{26} +(21.9467 + 15.7271i) q^{27} +(-63.5904 + 46.2012i) q^{28} +(11.0405 - 3.58727i) q^{29} +(14.9879 - 16.7188i) q^{30} +(18.9215 + 13.7473i) q^{31} -27.6317i q^{32} -44.5665 q^{34} +(10.8692 - 14.9601i) q^{35} +(-72.7742 + 32.7817i) q^{36} +(2.23911 + 6.89128i) q^{37} +(-22.2782 - 30.6633i) q^{38} +(4.82434 - 1.03643i) q^{39} +(11.2601 + 34.6550i) q^{40} +(-36.9741 - 12.0136i) q^{41} +(-82.4995 + 47.8710i) q^{42} +15.8444 q^{43} +(13.8996 - 12.6253i) q^{45} +(-59.0236 - 42.8832i) q^{46} +(43.0910 + 14.0011i) q^{47} +(8.34565 - 81.1023i) q^{48} +(-23.9091 + 17.3709i) q^{49} +(43.5351 + 59.9209i) q^{50} +(-37.0747 - 3.81509i) q^{51} +(-4.50764 + 13.8731i) q^{52} +(23.6972 - 32.6164i) q^{53} +(-91.9184 + 30.5315i) q^{54} -154.791i q^{56} +(-15.9082 - 27.4158i) q^{57} +(-12.8685 + 39.6053i) q^{58} +(-107.642 + 34.9750i) q^{59} +(11.6594 + 54.2715i) q^{60} +(62.7118 - 45.5628i) q^{61} +(-79.7937 + 25.9266i) q^{62} +(-72.7290 + 32.7614i) q^{63} +(-7.75446 - 5.63395i) q^{64} -3.43171i q^{65} +62.9082 q^{67} +(64.7612 - 89.1361i) q^{68} +(-45.4306 - 40.7270i) q^{69} +(20.4987 + 63.0884i) q^{70} +(6.00278 + 8.26212i) q^{71} +(32.0102 - 153.889i) q^{72} +(23.0595 + 70.9699i) q^{73} +(-24.7209 - 8.03232i) q^{74} +(31.0872 + 53.5748i) q^{75} +93.7020 q^{76} +(-7.16445 + 16.1864i) q^{78} +(69.8281 + 50.7331i) q^{79} +(-53.9264 - 17.5218i) q^{80} +(-79.0802 + 17.5304i) q^{81} +(112.827 - 81.9736i) q^{82} +(6.94074 + 9.55311i) q^{83} +(24.1377 - 234.568i) q^{84} +(-8.00981 + 24.6517i) q^{85} +(-33.4086 + 45.9830i) q^{86} +(-14.0957 + 31.8459i) q^{87} +74.5782i q^{89} +(7.33279 + 66.9599i) q^{90} +(-4.50483 + 13.8645i) q^{91} +(171.539 - 55.7363i) q^{92} +(-68.5996 + 14.7375i) q^{93} +(-131.493 + 95.5353i) q^{94} +(-20.9652 + 6.81201i) q^{95} +(61.7236 + 55.3333i) q^{96} +(62.4301 + 45.3581i) q^{97} -106.016i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 10 q^{3} + 8 q^{4} + 33 q^{6} - 6 q^{7} - 28 q^{9} + 12 q^{10} + 106 q^{12} + 42 q^{13} + 82 q^{15} - 88 q^{16} + 43 q^{18} + 134 q^{19} + 12 q^{21} - 41 q^{24} + 134 q^{25} + 80 q^{27} - 264 q^{28}+ \cdots + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(244\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.10855 + 2.90217i −1.05427 + 1.45108i −0.169229 + 0.985577i \(0.554128\pi\)
−0.885045 + 0.465506i \(0.845872\pi\)
\(3\) −2.00253 + 2.23380i −0.667511 + 0.744600i
\(4\) −2.74053 8.43448i −0.685132 2.10862i
\(5\) 1.22635 + 1.68793i 0.245270 + 0.337586i 0.913848 0.406057i \(-0.133097\pi\)
−0.668578 + 0.743642i \(0.733097\pi\)
\(6\) −2.26043 10.5218i −0.376738 1.75363i
\(7\) −2.73883 8.42924i −0.391261 1.20418i −0.931836 0.362881i \(-0.881793\pi\)
0.540575 0.841296i \(-0.318207\pi\)
\(8\) 16.6100 + 5.39692i 2.07625 + 0.674615i
\(9\) −0.979734 8.94651i −0.108859 0.994057i
\(10\) −7.48447 −0.748447
\(11\) 0 0
\(12\) 24.3290 + 10.7685i 2.02741 + 0.897377i
\(13\) −1.33068 0.966792i −0.102360 0.0743686i 0.535428 0.844581i \(-0.320150\pi\)
−0.637788 + 0.770212i \(0.720150\pi\)
\(14\) 30.2380 + 9.82492i 2.15986 + 0.701780i
\(15\) −6.22630 0.640704i −0.415087 0.0427136i
\(16\) −21.9865 + 15.9742i −1.37416 + 0.998385i
\(17\) 7.30235 + 10.0508i 0.429550 + 0.591225i 0.967850 0.251529i \(-0.0809333\pi\)
−0.538300 + 0.842753i \(0.680933\pi\)
\(18\) 28.0301 + 16.0208i 1.55723 + 0.890044i
\(19\) −3.26497 + 10.0485i −0.171841 + 0.528871i −0.999475 0.0323966i \(-0.989686\pi\)
0.827635 + 0.561267i \(0.189686\pi\)
\(20\) 10.8759 14.9695i 0.543797 0.748473i
\(21\) 24.3138 + 10.7618i 1.15780 + 0.512468i
\(22\) 0 0
\(23\) 20.3378i 0.884251i 0.896953 + 0.442126i \(0.145775\pi\)
−0.896953 + 0.442126i \(0.854225\pi\)
\(24\) −45.3177 + 26.2959i −1.88824 + 1.09566i
\(25\) 6.38026 19.6364i 0.255210 0.785457i
\(26\) 5.61158 1.82331i 0.215830 0.0701275i
\(27\) 21.9467 + 15.7271i 0.812840 + 0.582487i
\(28\) −63.5904 + 46.2012i −2.27109 + 1.65004i
\(29\) 11.0405 3.58727i 0.380707 0.123699i −0.112411 0.993662i \(-0.535857\pi\)
0.493118 + 0.869963i \(0.335857\pi\)
\(30\) 14.9879 16.7188i 0.499596 0.557294i
\(31\) 18.9215 + 13.7473i 0.610371 + 0.443460i 0.849545 0.527516i \(-0.176877\pi\)
−0.239174 + 0.970977i \(0.576877\pi\)
\(32\) 27.6317i 0.863489i
\(33\) 0 0
\(34\) −44.5665 −1.31078
\(35\) 10.8692 14.9601i 0.310548 0.427433i
\(36\) −72.7742 + 32.7817i −2.02151 + 0.910604i
\(37\) 2.23911 + 6.89128i 0.0605166 + 0.186251i 0.976745 0.214407i \(-0.0687817\pi\)
−0.916228 + 0.400657i \(0.868782\pi\)
\(38\) −22.2782 30.6633i −0.586269 0.806929i
\(39\) 4.82434 1.03643i 0.123701 0.0265752i
\(40\) 11.2601 + 34.6550i 0.281502 + 0.866375i
\(41\) −36.9741 12.0136i −0.901806 0.293015i −0.178824 0.983881i \(-0.557229\pi\)
−0.722982 + 0.690866i \(0.757229\pi\)
\(42\) −82.4995 + 47.8710i −1.96427 + 1.13978i
\(43\) 15.8444 0.368474 0.184237 0.982882i \(-0.441019\pi\)
0.184237 + 0.982882i \(0.441019\pi\)
\(44\) 0 0
\(45\) 13.8996 12.6253i 0.308879 0.280562i
\(46\) −59.0236 42.8832i −1.28312 0.932243i
\(47\) 43.0910 + 14.0011i 0.916831 + 0.297896i 0.729166 0.684337i \(-0.239908\pi\)
0.187665 + 0.982233i \(0.439908\pi\)
\(48\) 8.34565 81.1023i 0.173868 1.68963i
\(49\) −23.9091 + 17.3709i −0.487940 + 0.354509i
\(50\) 43.5351 + 59.9209i 0.870702 + 1.19842i
\(51\) −37.0747 3.81509i −0.726955 0.0748057i
\(52\) −4.50764 + 13.8731i −0.0866853 + 0.266790i
\(53\) 23.6972 32.6164i 0.447116 0.615403i −0.524658 0.851313i \(-0.675807\pi\)
0.971775 + 0.235910i \(0.0758070\pi\)
\(54\) −91.9184 + 30.5315i −1.70219 + 0.565398i
\(55\) 0 0
\(56\) 154.791i 2.76412i
\(57\) −15.9082 27.4158i −0.279092 0.480979i
\(58\) −12.8685 + 39.6053i −0.221871 + 0.682850i
\(59\) −107.642 + 34.9750i −1.82444 + 0.592797i −0.824816 + 0.565402i \(0.808721\pi\)
−0.999625 + 0.0273946i \(0.991279\pi\)
\(60\) 11.6594 + 54.2715i 0.194323 + 0.904525i
\(61\) 62.7118 45.5628i 1.02806 0.746931i 0.0601426 0.998190i \(-0.480844\pi\)
0.967920 + 0.251259i \(0.0808445\pi\)
\(62\) −79.7937 + 25.9266i −1.28700 + 0.418170i
\(63\) −72.7290 + 32.7614i −1.15443 + 0.520022i
\(64\) −7.75446 5.63395i −0.121163 0.0880304i
\(65\) 3.43171i 0.0527956i
\(66\) 0 0
\(67\) 62.9082 0.938929 0.469464 0.882951i \(-0.344447\pi\)
0.469464 + 0.882951i \(0.344447\pi\)
\(68\) 64.7612 89.1361i 0.952370 1.31082i
\(69\) −45.4306 40.7270i −0.658414 0.590247i
\(70\) 20.4987 + 63.0884i 0.292838 + 0.901262i
\(71\) 6.00278 + 8.26212i 0.0845462 + 0.116368i 0.849195 0.528079i \(-0.177088\pi\)
−0.764649 + 0.644447i \(0.777088\pi\)
\(72\) 32.0102 153.889i 0.444586 2.13735i
\(73\) 23.0595 + 70.9699i 0.315884 + 0.972191i 0.975389 + 0.220491i \(0.0707659\pi\)
−0.659505 + 0.751700i \(0.729234\pi\)
\(74\) −24.7209 8.03232i −0.334067 0.108545i
\(75\) 31.0872 + 53.5748i 0.414496 + 0.714331i
\(76\) 93.7020 1.23292
\(77\) 0 0
\(78\) −7.16445 + 16.1864i −0.0918519 + 0.207518i
\(79\) 69.8281 + 50.7331i 0.883900 + 0.642191i 0.934280 0.356539i \(-0.116043\pi\)
−0.0503802 + 0.998730i \(0.516043\pi\)
\(80\) −53.9264 17.5218i −0.674081 0.219022i
\(81\) −79.0802 + 17.5304i −0.976299 + 0.216425i
\(82\) 112.827 81.9736i 1.37594 0.999678i
\(83\) 6.94074 + 9.55311i 0.0836234 + 0.115098i 0.848779 0.528747i \(-0.177338\pi\)
−0.765156 + 0.643845i \(0.777338\pi\)
\(84\) 24.1377 234.568i 0.287353 2.79247i
\(85\) −8.00981 + 24.6517i −0.0942331 + 0.290020i
\(86\) −33.4086 + 45.9830i −0.388472 + 0.534686i
\(87\) −14.0957 + 31.8459i −0.162019 + 0.366045i
\(88\) 0 0
\(89\) 74.5782i 0.837957i 0.907996 + 0.418979i \(0.137612\pi\)
−0.907996 + 0.418979i \(0.862388\pi\)
\(90\) 7.33279 + 66.9599i 0.0814755 + 0.743999i
\(91\) −4.50483 + 13.8645i −0.0495037 + 0.152357i
\(92\) 171.539 55.7363i 1.86455 0.605829i
\(93\) −68.5996 + 14.7375i −0.737630 + 0.158468i
\(94\) −131.493 + 95.5353i −1.39886 + 1.01633i
\(95\) −20.9652 + 6.81201i −0.220687 + 0.0717054i
\(96\) 61.7236 + 55.3333i 0.642955 + 0.576388i
\(97\) 62.4301 + 45.3581i 0.643609 + 0.467609i 0.861088 0.508456i \(-0.169783\pi\)
−0.217479 + 0.976065i \(0.569783\pi\)
\(98\) 106.016i 1.08179i
\(99\) 0 0
\(100\) −183.108 −1.83108
\(101\) −7.52095 + 10.3517i −0.0744649 + 0.102492i −0.844625 0.535359i \(-0.820176\pi\)
0.770160 + 0.637851i \(0.220176\pi\)
\(102\) 89.2458 99.5527i 0.874959 0.976007i
\(103\) 21.8055 + 67.1104i 0.211704 + 0.651558i 0.999371 + 0.0354567i \(0.0112886\pi\)
−0.787667 + 0.616101i \(0.788711\pi\)
\(104\) −16.8848 23.2400i −0.162354 0.223461i
\(105\) 11.6521 + 54.2378i 0.110972 + 0.516550i
\(106\) 44.6915 + 137.546i 0.421618 + 1.29761i
\(107\) 175.204 + 56.9272i 1.63742 + 0.532029i 0.975959 0.217952i \(-0.0699376\pi\)
0.661459 + 0.749981i \(0.269938\pi\)
\(108\) 72.5048 228.210i 0.671341 2.11305i
\(109\) 58.5394 0.537058 0.268529 0.963272i \(-0.413462\pi\)
0.268529 + 0.963272i \(0.413462\pi\)
\(110\) 0 0
\(111\) −19.8777 8.79828i −0.179078 0.0792638i
\(112\) 194.867 + 141.579i 1.73989 + 1.26410i
\(113\) 144.558 + 46.9698i 1.27927 + 0.415662i 0.868325 0.495996i \(-0.165197\pi\)
0.410950 + 0.911658i \(0.365197\pi\)
\(114\) 113.109 + 11.6392i 0.992180 + 0.102098i
\(115\) −34.3287 + 24.9413i −0.298510 + 0.216881i
\(116\) −60.5136 83.2899i −0.521669 0.718016i
\(117\) −7.34571 + 12.8521i −0.0627839 + 0.109847i
\(118\) 125.465 386.141i 1.06326 3.27238i
\(119\) 64.7209 89.0807i 0.543873 0.748577i
\(120\) −99.9611 44.2449i −0.833009 0.368708i
\(121\) 0 0
\(122\) 278.071i 2.27927i
\(123\) 100.878 58.5351i 0.820144 0.475895i
\(124\) 64.0962 197.268i 0.516905 1.59087i
\(125\) 90.5763 29.4300i 0.724610 0.235440i
\(126\) 58.2736 280.150i 0.462489 2.22342i
\(127\) −11.5481 + 8.39020i −0.0909301 + 0.0660646i −0.632321 0.774706i \(-0.717898\pi\)
0.541391 + 0.840771i \(0.317898\pi\)
\(128\) 137.818 44.7799i 1.07671 0.349843i
\(129\) −31.7289 + 35.3932i −0.245960 + 0.274366i
\(130\) 9.95940 + 7.23592i 0.0766107 + 0.0556610i
\(131\) 153.686i 1.17318i 0.809885 + 0.586589i \(0.199529\pi\)
−0.809885 + 0.586589i \(0.800471\pi\)
\(132\) 0 0
\(133\) 93.6438 0.704088
\(134\) −132.645 + 182.570i −0.989888 + 1.36246i
\(135\) 0.368057 + 56.3314i 0.00272635 + 0.417270i
\(136\) 67.0486 + 206.354i 0.493004 + 1.51731i
\(137\) 47.3996 + 65.2400i 0.345983 + 0.476205i 0.946177 0.323650i \(-0.104910\pi\)
−0.600194 + 0.799854i \(0.704910\pi\)
\(138\) 213.989 45.9721i 1.55065 0.333131i
\(139\) −65.4935 201.568i −0.471176 1.45013i −0.851046 0.525091i \(-0.824031\pi\)
0.379870 0.925040i \(-0.375969\pi\)
\(140\) −155.968 50.6772i −1.11406 0.361980i
\(141\) −117.567 + 68.2191i −0.833808 + 0.483824i
\(142\) −36.6352 −0.257994
\(143\) 0 0
\(144\) 164.454 + 181.052i 1.14204 + 1.25731i
\(145\) 19.5946 + 14.2363i 0.135135 + 0.0981814i
\(146\) −254.589 82.7209i −1.74376 0.566581i
\(147\) 9.07540 88.1940i 0.0617374 0.599959i
\(148\) 51.9881 37.7715i 0.351271 0.255213i
\(149\) −133.033 183.104i −0.892840 1.22889i −0.972696 0.232083i \(-0.925446\pi\)
0.0798559 0.996806i \(-0.474554\pi\)
\(150\) −221.032 22.7448i −1.47355 0.151632i
\(151\) −84.2779 + 259.381i −0.558132 + 1.71775i 0.129395 + 0.991593i \(0.458696\pi\)
−0.687527 + 0.726159i \(0.741304\pi\)
\(152\) −108.462 + 149.286i −0.713568 + 0.982142i
\(153\) 82.7654 75.1777i 0.540951 0.491357i
\(154\) 0 0
\(155\) 48.7971i 0.314820i
\(156\) −21.9630 37.8504i −0.140789 0.242631i
\(157\) 1.87243 5.76274i 0.0119263 0.0367054i −0.944916 0.327312i \(-0.893857\pi\)
0.956843 + 0.290607i \(0.0938571\pi\)
\(158\) −294.472 + 95.6797i −1.86375 + 0.605568i
\(159\) 25.4041 + 118.250i 0.159774 + 0.743711i
\(160\) 46.6403 33.8861i 0.291502 0.211788i
\(161\) 171.432 55.7016i 1.06479 0.345973i
\(162\) 115.868 266.468i 0.715236 1.64486i
\(163\) −131.002 95.1782i −0.803691 0.583915i 0.108304 0.994118i \(-0.465458\pi\)
−0.911994 + 0.410202i \(0.865458\pi\)
\(164\) 344.781i 2.10232i
\(165\) 0 0
\(166\) −42.3596 −0.255178
\(167\) −93.5806 + 128.803i −0.560363 + 0.771274i −0.991373 0.131074i \(-0.958158\pi\)
0.431010 + 0.902347i \(0.358158\pi\)
\(168\) 345.772 + 309.974i 2.05817 + 1.84508i
\(169\) −51.3879 158.156i −0.304070 0.935832i
\(170\) −54.6542 75.2250i −0.321495 0.442500i
\(171\) 93.0983 + 19.3652i 0.544434 + 0.113247i
\(172\) −43.4220 133.639i −0.252453 0.776972i
\(173\) 36.5394 + 11.8724i 0.211210 + 0.0686264i 0.412711 0.910862i \(-0.364582\pi\)
−0.201501 + 0.979488i \(0.564582\pi\)
\(174\) −62.7007 108.057i −0.360349 0.621015i
\(175\) −182.995 −1.04568
\(176\) 0 0
\(177\) 137.429 310.489i 0.776437 1.75418i
\(178\) −216.438 157.252i −1.21595 0.883436i
\(179\) −129.490 42.0738i −0.723407 0.235049i −0.0759072 0.997115i \(-0.524185\pi\)
−0.647500 + 0.762066i \(0.724185\pi\)
\(180\) −144.580 82.6357i −0.803222 0.459087i
\(181\) 105.447 76.6119i 0.582581 0.423270i −0.257072 0.966392i \(-0.582758\pi\)
0.839654 + 0.543122i \(0.182758\pi\)
\(182\) −30.7383 42.3076i −0.168892 0.232460i
\(183\) −23.8042 + 231.327i −0.130077 + 1.26408i
\(184\) −109.761 + 337.811i −0.596529 + 1.83593i
\(185\) −8.88605 + 12.2306i −0.0480327 + 0.0661114i
\(186\) 101.875 230.162i 0.547713 1.23743i
\(187\) 0 0
\(188\) 401.821i 2.13735i
\(189\) 72.4597 228.068i 0.383385 1.20671i
\(190\) 24.4366 75.2080i 0.128613 0.395832i
\(191\) 300.134 97.5195i 1.57138 0.510574i 0.611565 0.791194i \(-0.290540\pi\)
0.959819 + 0.280621i \(0.0905403\pi\)
\(192\) 28.1137 6.03977i 0.146425 0.0314571i
\(193\) 118.448 86.0576i 0.613721 0.445894i −0.237002 0.971509i \(-0.576165\pi\)
0.850723 + 0.525615i \(0.176165\pi\)
\(194\) −263.273 + 85.5427i −1.35708 + 0.440942i
\(195\) 7.66576 + 6.87211i 0.0393116 + 0.0352416i
\(196\) 212.038 + 154.055i 1.08183 + 0.785995i
\(197\) 229.459i 1.16476i −0.812915 0.582382i \(-0.802121\pi\)
0.812915 0.582382i \(-0.197879\pi\)
\(198\) 0 0
\(199\) −389.358 −1.95657 −0.978287 0.207253i \(-0.933548\pi\)
−0.978287 + 0.207253i \(0.933548\pi\)
\(200\) 211.952 291.727i 1.05976 1.45864i
\(201\) −125.976 + 140.524i −0.626745 + 0.699127i
\(202\) −14.1841 43.6541i −0.0702182 0.216109i
\(203\) −60.4760 83.2381i −0.297911 0.410040i
\(204\) 69.4260 + 323.161i 0.340324 + 1.58412i
\(205\) −25.0651 77.1425i −0.122269 0.376305i
\(206\) −240.744 78.2223i −1.16866 0.379720i
\(207\) 181.952 19.9256i 0.878996 0.0962590i
\(208\) 44.7006 0.214907
\(209\) 0 0
\(210\) −181.976 80.5465i −0.866553 0.383555i
\(211\) 165.031 + 119.902i 0.782137 + 0.568256i 0.905620 0.424091i \(-0.139406\pi\)
−0.123483 + 0.992347i \(0.539406\pi\)
\(212\) −340.045 110.487i −1.60399 0.521167i
\(213\) −30.4767 3.13614i −0.143083 0.0147236i
\(214\) −534.637 + 388.437i −2.49831 + 1.81513i
\(215\) 19.4308 + 26.7442i 0.0903757 + 0.124391i
\(216\) 279.656 + 379.672i 1.29471 + 1.75774i
\(217\) 64.0564 197.145i 0.295191 0.908503i
\(218\) −123.433 + 169.891i −0.566207 + 0.779316i
\(219\) −204.710 90.6091i −0.934750 0.413740i
\(220\) 0 0
\(221\) 20.4342i 0.0924626i
\(222\) 67.4470 39.1367i 0.303816 0.176291i
\(223\) −5.10490 + 15.7113i −0.0228919 + 0.0704542i −0.961850 0.273578i \(-0.911793\pi\)
0.938958 + 0.344032i \(0.111793\pi\)
\(224\) −232.914 + 75.6783i −1.03979 + 0.337850i
\(225\) −181.929 37.8426i −0.808571 0.168189i
\(226\) −441.122 + 320.494i −1.95187 + 1.41811i
\(227\) 107.335 34.8751i 0.472840 0.153635i −0.0628969 0.998020i \(-0.520034\pi\)
0.535737 + 0.844385i \(0.320034\pi\)
\(228\) −187.641 + 209.312i −0.822988 + 0.918034i
\(229\) 298.218 + 216.668i 1.30226 + 0.946150i 0.999975 0.00706607i \(-0.00224922\pi\)
0.302289 + 0.953216i \(0.402249\pi\)
\(230\) 152.217i 0.661815i
\(231\) 0 0
\(232\) 202.743 0.873892
\(233\) −102.592 + 141.206i −0.440310 + 0.606034i −0.970281 0.241981i \(-0.922203\pi\)
0.529971 + 0.848016i \(0.322203\pi\)
\(234\) −21.8102 48.4177i −0.0932058 0.206913i
\(235\) 29.2119 + 89.9049i 0.124306 + 0.382574i
\(236\) 589.992 + 812.054i 2.49997 + 3.44091i
\(237\) −253.161 + 54.3875i −1.06819 + 0.229483i
\(238\) 122.060 + 375.662i 0.512856 + 1.57841i
\(239\) 328.450 + 106.720i 1.37427 + 0.446527i 0.900781 0.434273i \(-0.142995\pi\)
0.473488 + 0.880800i \(0.342995\pi\)
\(240\) 147.130 85.3731i 0.613040 0.355721i
\(241\) 261.447 1.08484 0.542421 0.840107i \(-0.317508\pi\)
0.542421 + 0.840107i \(0.317508\pi\)
\(242\) 0 0
\(243\) 119.201 211.755i 0.490540 0.871419i
\(244\) −556.162 404.076i −2.27935 1.65605i
\(245\) −58.6418 19.0539i −0.239354 0.0777710i
\(246\) −42.8269 + 416.188i −0.174093 + 1.69182i
\(247\) 14.0595 10.2148i 0.0569209 0.0413555i
\(248\) 240.093 + 330.460i 0.968118 + 1.33250i
\(249\) −35.2388 3.62617i −0.141521 0.0145629i
\(250\) −105.574 + 324.922i −0.422294 + 1.29969i
\(251\) −116.584 + 160.465i −0.464480 + 0.639302i −0.975430 0.220309i \(-0.929294\pi\)
0.510950 + 0.859610i \(0.329294\pi\)
\(252\) 475.641 + 523.648i 1.88746 + 2.07797i
\(253\) 0 0
\(254\) 51.2057i 0.201597i
\(255\) −39.0270 67.2581i −0.153047 0.263757i
\(256\) −148.790 + 457.929i −0.581211 + 1.78878i
\(257\) 1.77390 0.576376i 0.00690234 0.00224271i −0.305564 0.952172i \(-0.598845\pi\)
0.312466 + 0.949929i \(0.398845\pi\)
\(258\) −35.8151 166.711i −0.138818 0.646165i
\(259\) 51.9557 37.7481i 0.200601 0.145745i
\(260\) −28.9447 + 9.40471i −0.111326 + 0.0361719i
\(261\) −42.9104 95.2594i −0.164408 0.364978i
\(262\) −446.023 324.055i −1.70238 1.23685i
\(263\) 27.0901i 0.103004i 0.998673 + 0.0515020i \(0.0164009\pi\)
−0.998673 + 0.0515020i \(0.983599\pi\)
\(264\) 0 0
\(265\) 84.1151 0.317416
\(266\) −197.452 + 271.770i −0.742302 + 1.02169i
\(267\) −166.593 149.345i −0.623943 0.559345i
\(268\) −172.402 530.599i −0.643291 1.97985i
\(269\) −83.9639 115.566i −0.312133 0.429615i 0.623912 0.781495i \(-0.285542\pi\)
−0.936045 + 0.351880i \(0.885542\pi\)
\(270\) −164.259 117.709i −0.608368 0.435960i
\(271\) 32.5479 + 100.172i 0.120103 + 0.369639i 0.992977 0.118306i \(-0.0377465\pi\)
−0.872874 + 0.487945i \(0.837746\pi\)
\(272\) −321.107 104.334i −1.18054 0.383580i
\(273\) −21.9494 37.8269i −0.0804006 0.138560i
\(274\) −289.282 −1.05577
\(275\) 0 0
\(276\) −219.008 + 494.797i −0.793507 + 1.79274i
\(277\) 198.144 + 143.960i 0.715322 + 0.519712i 0.884886 0.465807i \(-0.154236\pi\)
−0.169564 + 0.985519i \(0.554236\pi\)
\(278\) 723.081 + 234.943i 2.60101 + 0.845119i
\(279\) 104.452 182.750i 0.374380 0.655018i
\(280\) 261.276 189.828i 0.933128 0.677957i
\(281\) −38.2716 52.6763i −0.136198 0.187460i 0.735470 0.677557i \(-0.236961\pi\)
−0.871668 + 0.490097i \(0.836961\pi\)
\(282\) 49.9122 485.042i 0.176994 1.72001i
\(283\) 48.6936 149.864i 0.172062 0.529553i −0.827425 0.561576i \(-0.810195\pi\)
0.999487 + 0.0320232i \(0.0101950\pi\)
\(284\) 53.2359 73.2729i 0.187450 0.258003i
\(285\) 26.7668 60.4734i 0.0939187 0.212187i
\(286\) 0 0
\(287\) 344.566i 1.20058i
\(288\) −247.207 + 27.0717i −0.858358 + 0.0939989i
\(289\) 41.6112 128.066i 0.143984 0.443136i
\(290\) −82.6322 + 26.8488i −0.284939 + 0.0925822i
\(291\) −226.339 + 48.6253i −0.777798 + 0.167097i
\(292\) 535.399 388.991i 1.83356 1.33216i
\(293\) −175.003 + 56.8620i −0.597280 + 0.194068i −0.592027 0.805918i \(-0.701672\pi\)
−0.00525314 + 0.999986i \(0.501672\pi\)
\(294\) 236.818 + 212.299i 0.805502 + 0.722107i
\(295\) −191.042 138.800i −0.647601 0.470509i
\(296\) 126.549i 0.427529i
\(297\) 0 0
\(298\) 811.906 2.72452
\(299\) 19.6624 27.0630i 0.0657605 0.0905116i
\(300\) 366.680 409.028i 1.22227 1.36343i
\(301\) −43.3950 133.556i −0.144169 0.443708i
\(302\) −575.062 791.505i −1.90418 2.62088i
\(303\) −8.06270 37.5299i −0.0266096 0.123861i
\(304\) −88.7316 273.088i −0.291880 0.898315i
\(305\) 153.813 + 49.9770i 0.504306 + 0.163859i
\(306\) 43.6633 + 398.715i 0.142691 + 1.30299i
\(307\) −386.672 −1.25952 −0.629759 0.776790i \(-0.716846\pi\)
−0.629759 + 0.776790i \(0.716846\pi\)
\(308\) 0 0
\(309\) −193.578 85.6816i −0.626465 0.277287i
\(310\) −141.617 102.891i −0.456830 0.331907i
\(311\) 87.7273 + 28.5043i 0.282081 + 0.0916538i 0.446641 0.894713i \(-0.352620\pi\)
−0.164559 + 0.986367i \(0.552620\pi\)
\(312\) 85.7259 + 8.82143i 0.274762 + 0.0282738i
\(313\) 60.1890 43.7299i 0.192297 0.139712i −0.487471 0.873139i \(-0.662080\pi\)
0.679768 + 0.733427i \(0.262080\pi\)
\(314\) 12.7763 + 17.5851i 0.0406889 + 0.0560035i
\(315\) −144.490 82.5843i −0.458699 0.262173i
\(316\) 236.541 728.000i 0.748549 2.30380i
\(317\) 307.870 423.746i 0.971198 1.33674i 0.0297582 0.999557i \(-0.490526\pi\)
0.941440 0.337182i \(-0.109474\pi\)
\(318\) −396.747 175.609i −1.24763 0.552229i
\(319\) 0 0
\(320\) 19.9982i 0.0624943i
\(321\) −478.015 + 277.372i −1.48914 + 0.864087i
\(322\) −199.817 + 614.974i −0.620550 + 1.90986i
\(323\) −124.838 + 40.5623i −0.386495 + 0.125580i
\(324\) 364.582 + 618.958i 1.12525 + 1.91037i
\(325\) −27.4744 + 19.9613i −0.0845366 + 0.0614194i
\(326\) 552.446 179.501i 1.69462 0.550615i
\(327\) −117.227 + 130.765i −0.358492 + 0.399894i
\(328\) −549.303 399.092i −1.67470 1.21674i
\(329\) 401.571i 1.22058i
\(330\) 0 0
\(331\) 251.706 0.760441 0.380221 0.924896i \(-0.375848\pi\)
0.380221 + 0.924896i \(0.375848\pi\)
\(332\) 61.5542 84.7221i 0.185404 0.255187i
\(333\) 59.4592 26.7839i 0.178556 0.0804321i
\(334\) −176.488 543.173i −0.528406 1.62627i
\(335\) 77.1476 + 106.185i 0.230291 + 0.316969i
\(336\) −706.488 + 151.778i −2.10264 + 0.451719i
\(337\) 15.3428 + 47.2202i 0.0455275 + 0.140119i 0.971236 0.238118i \(-0.0765304\pi\)
−0.925709 + 0.378237i \(0.876530\pi\)
\(338\) 567.348 + 184.342i 1.67854 + 0.545392i
\(339\) −394.403 + 228.855i −1.16343 + 0.675090i
\(340\) 229.875 0.676104
\(341\) 0 0
\(342\) −252.503 + 229.354i −0.738313 + 0.670626i
\(343\) −139.440 101.309i −0.406531 0.295362i
\(344\) 263.175 + 85.5108i 0.765044 + 0.248578i
\(345\) 13.0305 126.629i 0.0377695 0.367041i
\(346\) −111.501 + 81.0099i −0.322256 + 0.234133i
\(347\) −270.251 371.969i −0.778822 1.07196i −0.995411 0.0956933i \(-0.969493\pi\)
0.216589 0.976263i \(-0.430507\pi\)
\(348\) 307.233 + 31.6152i 0.882855 + 0.0908482i
\(349\) 121.675 374.478i 0.348640 1.07300i −0.610967 0.791656i \(-0.709219\pi\)
0.959606 0.281346i \(-0.0907808\pi\)
\(350\) 385.853 531.081i 1.10244 1.51737i
\(351\) −13.9990 42.1456i −0.0398833 0.120073i
\(352\) 0 0
\(353\) 16.9433i 0.0479980i −0.999712 0.0239990i \(-0.992360\pi\)
0.999712 0.0239990i \(-0.00763985\pi\)
\(354\) 611.315 + 1053.52i 1.72688 + 2.97606i
\(355\) −6.58434 + 20.2645i −0.0185474 + 0.0570832i
\(356\) 629.029 204.384i 1.76693 0.574112i
\(357\) 69.3828 + 322.960i 0.194350 + 0.904651i
\(358\) 395.141 287.086i 1.10374 0.801917i
\(359\) −72.1739 + 23.4507i −0.201041 + 0.0653223i −0.407807 0.913068i \(-0.633706\pi\)
0.206765 + 0.978391i \(0.433706\pi\)
\(360\) 299.010 134.691i 0.830582 0.374143i
\(361\) 201.742 + 146.574i 0.558842 + 0.406022i
\(362\) 467.565i 1.29162i
\(363\) 0 0
\(364\) 129.285 0.355179
\(365\) −91.5131 + 125.957i −0.250721 + 0.345087i
\(366\) −621.156 556.847i −1.69715 1.52144i
\(367\) 191.376 + 588.996i 0.521462 + 1.60489i 0.771209 + 0.636583i \(0.219653\pi\)
−0.249747 + 0.968311i \(0.580347\pi\)
\(368\) −324.879 447.157i −0.882823 1.21510i
\(369\) −71.2551 + 342.559i −0.193103 + 0.928345i
\(370\) −16.7586 51.5776i −0.0452935 0.139399i
\(371\) −339.833 110.419i −0.915993 0.297624i
\(372\) 312.302 + 538.213i 0.839523 + 1.44681i
\(373\) 365.674 0.980359 0.490179 0.871622i \(-0.336931\pi\)
0.490179 + 0.871622i \(0.336931\pi\)
\(374\) 0 0
\(375\) −115.641 + 261.264i −0.308376 + 0.696704i
\(376\) 640.180 + 465.118i 1.70261 + 1.23702i
\(377\) −18.1595 5.90037i −0.0481683 0.0156508i
\(378\) 509.106 + 691.182i 1.34684 + 1.82852i
\(379\) 331.603 240.924i 0.874943 0.635683i −0.0569658 0.998376i \(-0.518143\pi\)
0.931909 + 0.362693i \(0.118143\pi\)
\(380\) 114.912 + 158.162i 0.302399 + 0.416217i
\(381\) 4.38344 42.5979i 0.0115051 0.111805i
\(382\) −349.829 + 1076.66i −0.915784 + 2.81849i
\(383\) 31.1300 42.8468i 0.0812795 0.111872i −0.766441 0.642314i \(-0.777974\pi\)
0.847721 + 0.530443i \(0.177974\pi\)
\(384\) −175.956 + 397.532i −0.458219 + 1.03524i
\(385\) 0 0
\(386\) 525.213i 1.36065i
\(387\) −15.5233 141.752i −0.0401118 0.366284i
\(388\) 211.481 650.871i 0.545053 1.67750i
\(389\) −86.2286 + 28.0174i −0.221667 + 0.0720241i −0.417745 0.908564i \(-0.637179\pi\)
0.196078 + 0.980588i \(0.437179\pi\)
\(390\) −36.1076 + 7.75714i −0.0925836 + 0.0198901i
\(391\) −204.411 + 148.514i −0.522791 + 0.379830i
\(392\) −490.879 + 159.496i −1.25224 + 0.406878i
\(393\) −343.304 307.762i −0.873548 0.783108i
\(394\) 665.927 + 483.824i 1.69017 + 1.22798i
\(395\) 180.081i 0.455902i
\(396\) 0 0
\(397\) −335.768 −0.845763 −0.422882 0.906185i \(-0.638981\pi\)
−0.422882 + 0.906185i \(0.638981\pi\)
\(398\) 820.981 1129.98i 2.06277 2.83915i
\(399\) −187.525 + 209.182i −0.469986 + 0.524264i
\(400\) 173.395 + 533.656i 0.433489 + 1.33414i
\(401\) 11.1216 + 15.3075i 0.0277346 + 0.0381734i 0.822659 0.568535i \(-0.192490\pi\)
−0.794925 + 0.606708i \(0.792490\pi\)
\(402\) −142.200 661.905i −0.353730 1.64653i
\(403\) −11.8876 36.5863i −0.0294978 0.0907849i
\(404\) 107.923 + 35.0662i 0.267135 + 0.0867975i
\(405\) −126.570 111.983i −0.312519 0.276502i
\(406\) 369.087 0.909082
\(407\) 0 0
\(408\) −595.221 263.458i −1.45888 0.645730i
\(409\) −96.4856 70.1009i −0.235906 0.171396i 0.463551 0.886070i \(-0.346575\pi\)
−0.699457 + 0.714674i \(0.746575\pi\)
\(410\) 276.731 + 89.9154i 0.674954 + 0.219306i
\(411\) −240.653 24.7638i −0.585529 0.0602526i
\(412\) 506.283 367.836i 1.22884 0.892806i
\(413\) 589.625 + 811.549i 1.42766 + 1.96501i
\(414\) −325.827 + 570.070i −0.787023 + 1.37698i
\(415\) −7.61317 + 23.4309i −0.0183450 + 0.0564601i
\(416\) −26.7141 + 36.7688i −0.0642165 + 0.0883865i
\(417\) 581.416 + 257.347i 1.39428 + 0.617140i
\(418\) 0 0
\(419\) 412.874i 0.985381i −0.870205 0.492690i \(-0.836014\pi\)
0.870205 0.492690i \(-0.163986\pi\)
\(420\) 425.535 246.920i 1.01318 0.587904i
\(421\) 186.937 575.334i 0.444032 1.36659i −0.439511 0.898237i \(-0.644848\pi\)
0.883542 0.468351i \(-0.155152\pi\)
\(422\) −695.951 + 226.128i −1.64917 + 0.535849i
\(423\) 83.0435 399.232i 0.196320 0.943811i
\(424\) 569.638 413.866i 1.34349 0.976100i
\(425\) 243.953 79.2651i 0.574007 0.186506i
\(426\) 73.3631 81.8357i 0.172214 0.192103i
\(427\) −555.816 403.824i −1.30168 0.945724i
\(428\) 1633.76i 3.81721i
\(429\) 0 0
\(430\) −118.587 −0.275783
\(431\) 260.636 358.735i 0.604724 0.832331i −0.391407 0.920218i \(-0.628011\pi\)
0.996130 + 0.0878868i \(0.0280114\pi\)
\(432\) −733.759 + 4.79422i −1.69852 + 0.0110977i
\(433\) 67.6685 + 208.262i 0.156278 + 0.480975i 0.998288 0.0584870i \(-0.0186276\pi\)
−0.842010 + 0.539462i \(0.818628\pi\)
\(434\) 437.082 + 601.592i 1.00710 + 1.38616i
\(435\) −71.0399 + 15.2618i −0.163310 + 0.0350845i
\(436\) −160.429 493.749i −0.367956 1.13245i
\(437\) −204.365 66.4022i −0.467655 0.151950i
\(438\) 694.604 403.049i 1.58585 0.920204i
\(439\) −171.641 −0.390982 −0.195491 0.980705i \(-0.562630\pi\)
−0.195491 + 0.980705i \(0.562630\pi\)
\(440\) 0 0
\(441\) 178.834 + 196.884i 0.405519 + 0.446449i
\(442\) 59.3035 + 43.0865i 0.134171 + 0.0974808i
\(443\) 563.538 + 183.105i 1.27209 + 0.413328i 0.865789 0.500409i \(-0.166817\pi\)
0.406305 + 0.913737i \(0.366817\pi\)
\(444\) −19.7336 + 191.770i −0.0444451 + 0.431914i
\(445\) −125.883 + 91.4591i −0.282882 + 0.205526i
\(446\) −34.8328 47.9432i −0.0781005 0.107496i
\(447\) 675.422 + 69.5028i 1.51101 + 0.155487i
\(448\) −26.2518 + 80.7946i −0.0585977 + 0.180345i
\(449\) −256.349 + 352.835i −0.570934 + 0.785823i −0.992665 0.120898i \(-0.961423\pi\)
0.421731 + 0.906721i \(0.361423\pi\)
\(450\) 493.430 448.194i 1.09651 0.995986i
\(451\) 0 0
\(452\) 1347.99i 2.98229i
\(453\) −410.636 707.678i −0.906480 1.56220i
\(454\) −125.107 + 385.039i −0.275566 + 0.848103i
\(455\) −28.9267 + 9.39886i −0.0635752 + 0.0206568i
\(456\) −116.275 541.232i −0.254989 1.18691i
\(457\) 192.984 140.211i 0.422285 0.306808i −0.356272 0.934382i \(-0.615952\pi\)
0.778556 + 0.627575i \(0.215952\pi\)
\(458\) −1257.62 + 408.624i −2.74589 + 0.892192i
\(459\) 2.19161 + 335.427i 0.00477474 + 0.730778i
\(460\) 304.446 + 221.193i 0.661838 + 0.480854i
\(461\) 711.175i 1.54268i 0.636424 + 0.771339i \(0.280413\pi\)
−0.636424 + 0.771339i \(0.719587\pi\)
\(462\) 0 0
\(463\) −461.487 −0.996732 −0.498366 0.866967i \(-0.666066\pi\)
−0.498366 + 0.866967i \(0.666066\pi\)
\(464\) −185.439 + 255.234i −0.399652 + 0.550074i
\(465\) −109.003 97.7178i −0.234415 0.210146i
\(466\) −193.483 595.479i −0.415199 1.27785i
\(467\) 28.4397 + 39.1438i 0.0608986 + 0.0838198i 0.838380 0.545086i \(-0.183503\pi\)
−0.777481 + 0.628906i \(0.783503\pi\)
\(468\) 128.532 + 26.7357i 0.274641 + 0.0571276i
\(469\) −172.295 530.269i −0.367366 1.13064i
\(470\) −322.514 104.791i −0.686199 0.222960i
\(471\) 9.12322 + 15.7227i 0.0193699 + 0.0333815i
\(472\) −1976.69 −4.18790
\(473\) 0 0
\(474\) 375.960 849.393i 0.793164 1.79197i
\(475\) 176.486 + 128.225i 0.371550 + 0.269947i
\(476\) −928.719 301.759i −1.95109 0.633948i
\(477\) −315.020 180.052i −0.660419 0.377467i
\(478\) −1002.27 + 728.193i −2.09680 + 1.52342i
\(479\) 100.761 + 138.685i 0.210357 + 0.289531i 0.901138 0.433533i \(-0.142733\pi\)
−0.690781 + 0.723064i \(0.742733\pi\)
\(480\) −17.7037 + 172.043i −0.0368827 + 0.358423i
\(481\) 3.68291 11.3348i 0.00765677 0.0235651i
\(482\) −551.274 + 758.763i −1.14372 + 1.57420i
\(483\) −218.872 + 494.489i −0.453150 + 1.02379i
\(484\) 0 0
\(485\) 161.002i 0.331964i
\(486\) 363.206 + 792.437i 0.747338 + 1.63053i
\(487\) −153.117 + 471.247i −0.314409 + 0.967653i 0.661587 + 0.749868i \(0.269883\pi\)
−0.975997 + 0.217785i \(0.930117\pi\)
\(488\) 1287.54 418.348i 2.63841 0.857270i
\(489\) 474.944 102.034i 0.971256 0.208659i
\(490\) 178.947 130.012i 0.365197 0.265331i
\(491\) −314.085 + 102.052i −0.639684 + 0.207846i −0.610860 0.791738i \(-0.709176\pi\)
−0.0288242 + 0.999584i \(0.509176\pi\)
\(492\) −770.172 690.434i −1.56539 1.40332i
\(493\) 116.677 + 84.7705i 0.236666 + 0.171948i
\(494\) 62.3413i 0.126197i
\(495\) 0 0
\(496\) −635.619 −1.28149
\(497\) 53.2028 73.2274i 0.107048 0.147339i
\(498\) 84.8264 94.6229i 0.170334 0.190006i
\(499\) 33.9303 + 104.427i 0.0679966 + 0.209272i 0.979281 0.202505i \(-0.0649083\pi\)
−0.911285 + 0.411777i \(0.864908\pi\)
\(500\) −496.454 683.310i −0.992908 1.36662i
\(501\) −100.321 466.972i −0.200242 0.932080i
\(502\) −219.872 676.695i −0.437991 1.34800i
\(503\) −543.721 176.666i −1.08096 0.351224i −0.286210 0.958167i \(-0.592396\pi\)
−0.794745 + 0.606943i \(0.792396\pi\)
\(504\) −1384.84 + 151.654i −2.74770 + 0.300901i
\(505\) −26.6963 −0.0528639
\(506\) 0 0
\(507\) 456.194 + 201.921i 0.899791 + 0.398267i
\(508\) 102.415 + 74.4089i 0.201604 + 0.146474i
\(509\) −514.449 167.155i −1.01071 0.328398i −0.243570 0.969883i \(-0.578319\pi\)
−0.767136 + 0.641485i \(0.778319\pi\)
\(510\) 277.484 + 28.5539i 0.544087 + 0.0559881i
\(511\) 535.067 388.749i 1.04710 0.760760i
\(512\) −674.549 928.437i −1.31748 1.81335i
\(513\) −229.690 + 169.184i −0.447739 + 0.329793i
\(514\) −2.06762 + 6.36348i −0.00402260 + 0.0123803i
\(515\) −86.5364 + 119.107i −0.168032 + 0.231276i
\(516\) 385.477 + 170.620i 0.747049 + 0.330660i
\(517\) 0 0
\(518\) 230.378i 0.444745i
\(519\) −99.6917 + 57.8469i −0.192084 + 0.111458i
\(520\) 18.5207 57.0007i 0.0356167 0.109617i
\(521\) −321.351 + 104.413i −0.616796 + 0.200409i −0.600717 0.799462i \(-0.705118\pi\)
−0.0160786 + 0.999871i \(0.505118\pi\)
\(522\) 366.937 + 76.3259i 0.702945 + 0.146218i
\(523\) 248.719 180.705i 0.475562 0.345516i −0.324043 0.946042i \(-0.605042\pi\)
0.799605 + 0.600526i \(0.205042\pi\)
\(524\) 1296.26 421.182i 2.47379 0.803782i
\(525\) 366.452 408.773i 0.698004 0.778616i
\(526\) −78.6199 57.1207i −0.149467 0.108594i
\(527\) 290.564i 0.551355i
\(528\) 0 0
\(529\) 115.375 0.218100
\(530\) −177.361 + 244.116i −0.334643 + 0.460596i
\(531\) 418.365 + 928.754i 0.787881 + 1.74907i
\(532\) −256.634 789.837i −0.482394 1.48466i
\(533\) 37.5858 + 51.7324i 0.0705175 + 0.0970590i
\(534\) 784.693 168.579i 1.46946 0.315691i
\(535\) 118.772 + 365.544i 0.222005 + 0.683260i
\(536\) 1044.91 + 339.511i 1.94945 + 0.633415i
\(537\) 353.292 205.000i 0.657899 0.381751i
\(538\) 512.434 0.952480
\(539\) 0 0
\(540\) 474.118 157.482i 0.877996 0.291634i
\(541\) −66.9072 48.6109i −0.123673 0.0898538i 0.524229 0.851577i \(-0.324354\pi\)
−0.647902 + 0.761723i \(0.724354\pi\)
\(542\) −359.345 116.758i −0.662998 0.215421i
\(543\) −40.0257 + 388.966i −0.0737121 + 0.716327i
\(544\) 277.721 201.776i 0.510516 0.370912i
\(545\) 71.7898 + 98.8103i 0.131724 + 0.181303i
\(546\) 156.061 + 16.0591i 0.285826 + 0.0294123i
\(547\) 122.586 377.280i 0.224105 0.689725i −0.774276 0.632848i \(-0.781886\pi\)
0.998381 0.0568769i \(-0.0181142\pi\)
\(548\) 420.366 578.584i 0.767091 1.05581i
\(549\) −469.069 516.413i −0.854407 0.940642i
\(550\) 0 0
\(551\) 122.653i 0.222601i
\(552\) −534.801 921.661i −0.968843 1.66968i
\(553\) 236.394 727.547i 0.427476 1.31564i
\(554\) −835.593 + 271.500i −1.50829 + 0.490073i
\(555\) −9.52613 44.3418i −0.0171642 0.0798952i
\(556\) −1520.64 + 1104.81i −2.73496 + 1.98706i
\(557\) −364.339 + 118.381i −0.654109 + 0.212533i −0.617225 0.786787i \(-0.711743\pi\)
−0.0368842 + 0.999320i \(0.511743\pi\)
\(558\) 310.129 + 688.475i 0.555787 + 1.23383i
\(559\) −21.0837 15.3182i −0.0377168 0.0274029i
\(560\) 502.548i 0.897407i
\(561\) 0 0
\(562\) 233.573 0.415610
\(563\) −85.1328 + 117.175i −0.151213 + 0.208127i −0.877903 0.478839i \(-0.841058\pi\)
0.726690 + 0.686966i \(0.241058\pi\)
\(564\) 897.589 + 804.660i 1.59147 + 1.42670i
\(565\) 97.9974 + 301.605i 0.173447 + 0.533814i
\(566\) 332.256 + 457.311i 0.587025 + 0.807971i
\(567\) 364.355 + 618.573i 0.642601 + 1.09096i
\(568\) 55.1163 + 169.630i 0.0970357 + 0.298645i
\(569\) −877.968 285.269i −1.54300 0.501352i −0.590800 0.806818i \(-0.701188\pi\)
−0.952203 + 0.305466i \(0.901188\pi\)
\(570\) 119.065 + 205.193i 0.208886 + 0.359987i
\(571\) −421.725 −0.738573 −0.369287 0.929316i \(-0.620398\pi\)
−0.369287 + 0.929316i \(0.620398\pi\)
\(572\) 0 0
\(573\) −383.189 + 865.726i −0.668742 + 1.51087i
\(574\) −999.989 726.534i −1.74214 1.26574i
\(575\) 399.361 + 129.760i 0.694541 + 0.225670i
\(576\) −42.8069 + 74.8952i −0.0743175 + 0.130026i
\(577\) −372.478 + 270.621i −0.645542 + 0.469014i −0.861750 0.507334i \(-0.830631\pi\)
0.216208 + 0.976347i \(0.430631\pi\)
\(578\) 283.930 + 390.796i 0.491229 + 0.676118i
\(579\) −44.9605 + 436.923i −0.0776521 + 0.754616i
\(580\) 66.3763 204.285i 0.114442 0.352216i
\(581\) 61.5160 84.6694i 0.105879 0.145731i
\(582\) 336.128 759.403i 0.577539 1.30482i
\(583\) 0 0
\(584\) 1303.26i 2.23161i
\(585\) −30.7019 + 3.36217i −0.0524818 + 0.00574729i
\(586\) 203.979 627.784i 0.348088 1.07130i
\(587\) −40.3860 + 13.1222i −0.0688007 + 0.0223547i −0.343215 0.939257i \(-0.611516\pi\)
0.274414 + 0.961612i \(0.411516\pi\)
\(588\) −768.742 + 165.152i −1.30738 + 0.280870i
\(589\) −199.918 + 145.249i −0.339420 + 0.246603i
\(590\) 805.643 261.769i 1.36550 0.443677i
\(591\) 512.565 + 459.498i 0.867284 + 0.777492i
\(592\) −159.313 115.748i −0.269109 0.195519i
\(593\) 106.267i 0.179203i −0.995978 0.0896015i \(-0.971441\pi\)
0.995978 0.0896015i \(-0.0285593\pi\)
\(594\) 0 0
\(595\) 229.732 0.386105
\(596\) −1179.81 + 1623.87i −1.97955 + 2.72461i
\(597\) 779.702 869.749i 1.30603 1.45687i
\(598\) 37.0822 + 114.127i 0.0620103 + 0.190848i
\(599\) −427.915 588.974i −0.714382 0.983263i −0.999692 0.0248274i \(-0.992096\pi\)
0.285309 0.958435i \(-0.407904\pi\)
\(600\) 227.220 + 1057.65i 0.378699 + 1.76275i
\(601\) 36.6474 + 112.789i 0.0609774 + 0.187669i 0.976905 0.213675i \(-0.0685432\pi\)
−0.915927 + 0.401344i \(0.868543\pi\)
\(602\) 479.102 + 155.670i 0.795851 + 0.258588i
\(603\) −61.6334 562.809i −0.102211 0.933349i
\(604\) 2418.71 4.00448
\(605\) 0 0
\(606\) 125.919 + 55.7343i 0.207787 + 0.0919708i
\(607\) 576.993 + 419.210i 0.950565 + 0.690626i 0.950941 0.309374i \(-0.100119\pi\)
−0.000375194 1.00000i \(0.500119\pi\)
\(608\) 277.658 + 90.2165i 0.456674 + 0.148382i
\(609\) 307.042 + 31.5955i 0.504175 + 0.0518810i
\(610\) −469.365 + 341.013i −0.769450 + 0.559038i
\(611\) −43.8040 60.2910i −0.0716923 0.0986760i
\(612\) −860.906 492.057i −1.40671 0.804015i
\(613\) −212.439 + 653.818i −0.346555 + 1.06659i 0.614190 + 0.789158i \(0.289483\pi\)
−0.960746 + 0.277430i \(0.910517\pi\)
\(614\) 815.316 1122.19i 1.32788 1.82767i
\(615\) 222.515 + 98.4898i 0.361812 + 0.160146i
\(616\) 0 0
\(617\) 762.156i 1.23526i 0.786468 + 0.617631i \(0.211907\pi\)
−0.786468 + 0.617631i \(0.788093\pi\)
\(618\) 656.830 381.131i 1.06283 0.616716i
\(619\) −163.995 + 504.724i −0.264935 + 0.815386i 0.726773 + 0.686877i \(0.241019\pi\)
−0.991708 + 0.128509i \(0.958981\pi\)
\(620\) 411.578 133.730i 0.663836 0.215693i
\(621\) −319.855 + 446.347i −0.515065 + 0.718755i
\(622\) −267.702 + 194.497i −0.430388 + 0.312695i
\(623\) 628.637 204.257i 1.00905 0.327860i
\(624\) −89.5144 + 99.8523i −0.143453 + 0.160020i
\(625\) −256.839 186.605i −0.410943 0.298568i
\(626\) 266.885i 0.426334i
\(627\) 0 0
\(628\) −53.7372 −0.0855688
\(629\) −52.9123 + 72.8275i −0.0841212 + 0.115783i
\(630\) 544.338 245.201i 0.864028 0.389208i
\(631\) 209.034 + 643.341i 0.331274 + 1.01956i 0.968528 + 0.248904i \(0.0800703\pi\)
−0.637254 + 0.770654i \(0.719930\pi\)
\(632\) 886.043 + 1219.53i 1.40197 + 1.92964i
\(633\) −598.317 + 128.539i −0.945208 + 0.203063i
\(634\) 580.624 + 1786.98i 0.915811 + 2.81858i
\(635\) −28.3241 9.20306i −0.0446049 0.0144930i
\(636\) 927.757 538.338i 1.45874 0.846444i
\(637\) 48.6093 0.0763097
\(638\) 0 0
\(639\) 68.0360 61.7987i 0.106473 0.0967115i
\(640\) 244.599 + 177.712i 0.382186 + 0.277674i
\(641\) −747.420 242.852i −1.16602 0.378864i −0.338865 0.940835i \(-0.610043\pi\)
−0.827157 + 0.561971i \(0.810043\pi\)
\(642\) 202.938 1972.13i 0.316102 3.07185i
\(643\) 687.427 499.445i 1.06909 0.776741i 0.0933438 0.995634i \(-0.470244\pi\)
0.975749 + 0.218893i \(0.0702444\pi\)
\(644\) −939.629 1293.29i −1.45905 2.00821i
\(645\) −98.6519 10.1516i −0.152949 0.0157388i
\(646\) 145.508 447.828i 0.225245 0.693233i
\(647\) −687.343 + 946.046i −1.06235 + 1.46220i −0.184769 + 0.982782i \(0.559154\pi\)
−0.877584 + 0.479422i \(0.840846\pi\)
\(648\) −1408.13 135.609i −2.17305 0.209274i
\(649\) 0 0
\(650\) 121.825i 0.187423i
\(651\) 312.108 + 537.879i 0.479429 + 0.826234i
\(652\) −443.765 + 1365.77i −0.680622 + 2.09474i
\(653\) −509.322 + 165.489i −0.779972 + 0.253428i −0.671828 0.740707i \(-0.734491\pi\)
−0.108144 + 0.994135i \(0.534491\pi\)
\(654\) −132.324 615.937i −0.202330 0.941800i
\(655\) −259.411 + 188.473i −0.396048 + 0.287746i
\(656\) 1004.84 326.492i 1.53177 0.497701i
\(657\) 612.341 275.834i 0.932027 0.419839i
\(658\) 1165.43 + 846.732i 1.77117 + 1.28683i
\(659\) 138.756i 0.210555i 0.994443 + 0.105278i \(0.0335731\pi\)
−0.994443 + 0.105278i \(0.966427\pi\)
\(660\) 0 0
\(661\) 27.1690 0.0411029 0.0205515 0.999789i \(-0.493458\pi\)
0.0205515 + 0.999789i \(0.493458\pi\)
\(662\) −530.734 + 730.493i −0.801713 + 1.10346i
\(663\) 45.6460 + 40.9202i 0.0688477 + 0.0617197i
\(664\) 63.7284 + 196.136i 0.0959765 + 0.295385i
\(665\) 114.840 + 158.064i 0.172692 + 0.237690i
\(666\) −47.6413 + 229.036i −0.0715335 + 0.343897i
\(667\) 72.9572 + 224.539i 0.109381 + 0.336640i
\(668\) 1342.84 + 436.317i 2.01025 + 0.653169i
\(669\) −24.8731 42.8657i −0.0371796 0.0640742i
\(670\) −470.835 −0.702738
\(671\) 0 0
\(672\) 297.367 671.831i 0.442511 0.999749i
\(673\) −531.916 386.460i −0.790366 0.574234i 0.117706 0.993048i \(-0.462446\pi\)
−0.908072 + 0.418814i \(0.862446\pi\)
\(674\) −169.392 55.0388i −0.251323 0.0816599i
\(675\) 448.851 330.611i 0.664964 0.489794i
\(676\) −1193.13 + 866.860i −1.76499 + 1.28234i
\(677\) −359.292 494.523i −0.530712 0.730463i 0.456526 0.889710i \(-0.349093\pi\)
−0.987239 + 0.159247i \(0.949093\pi\)
\(678\) 167.441 1627.18i 0.246963 2.39996i
\(679\) 211.349 650.466i 0.311265 0.957976i
\(680\) −266.086 + 366.236i −0.391303 + 0.538583i
\(681\) −137.037 + 309.603i −0.201229 + 0.454630i
\(682\) 0 0
\(683\) 990.520i 1.45025i −0.688618 0.725124i \(-0.741782\pi\)
0.688618 0.725124i \(-0.258218\pi\)
\(684\) −91.8031 838.307i −0.134215 1.22559i
\(685\) −51.9918 + 160.014i −0.0759005 + 0.233598i
\(686\) 588.032 191.063i 0.857189 0.278518i
\(687\) −1081.19 + 232.275i −1.57378 + 0.338101i
\(688\) −348.363 + 253.100i −0.506341 + 0.367879i
\(689\) −63.0665 + 20.4915i −0.0915333 + 0.0297410i
\(690\) 340.024 + 304.820i 0.492788 + 0.441768i
\(691\) −463.629 336.846i −0.670954 0.487477i 0.199390 0.979920i \(-0.436104\pi\)
−0.870344 + 0.492443i \(0.836104\pi\)
\(692\) 340.727i 0.492380i
\(693\) 0 0
\(694\) 1649.35 2.37659
\(695\) 259.915 357.742i 0.373978 0.514737i
\(696\) −405.999 + 452.887i −0.583332 + 0.650700i
\(697\) −149.251 459.347i −0.214133 0.659035i
\(698\) 830.239 + 1142.73i 1.18945 + 1.63714i
\(699\) −109.982 511.940i −0.157342 0.732389i
\(700\) 501.502 + 1543.46i 0.716431 + 2.20495i
\(701\) 778.940 + 253.093i 1.11118 + 0.361046i 0.806397 0.591375i \(-0.201415\pi\)
0.304787 + 0.952420i \(0.401415\pi\)
\(702\) 151.831 + 48.2385i 0.216284 + 0.0687158i
\(703\) −76.5580 −0.108902
\(704\) 0 0
\(705\) −259.327 114.784i −0.367840 0.162814i
\(706\) 49.1722 + 35.7257i 0.0696490 + 0.0506030i
\(707\) 107.856 + 35.0444i 0.152554 + 0.0495677i
\(708\) −2995.45 308.240i −4.23086 0.435367i
\(709\) −145.495 + 105.708i −0.205212 + 0.149095i −0.685645 0.727936i \(-0.740480\pi\)
0.480433 + 0.877032i \(0.340480\pi\)
\(710\) −44.9276 61.8376i −0.0632783 0.0870952i
\(711\) 385.471 674.423i 0.542154 0.948556i
\(712\) −402.492 + 1238.74i −0.565298 + 1.73981i
\(713\) −279.589 + 384.821i −0.392130 + 0.539721i
\(714\) −1083.58 479.617i −1.51762 0.671732i
\(715\) 0 0
\(716\) 1207.48i 1.68643i
\(717\) −896.123 + 519.983i −1.24982 + 0.725220i
\(718\) 84.1241 258.907i 0.117165 0.360595i
\(719\) 633.724 205.910i 0.881397 0.286383i 0.166860 0.985981i \(-0.446637\pi\)
0.714537 + 0.699597i \(0.246637\pi\)
\(720\) −103.925 + 499.620i −0.144340 + 0.693917i
\(721\) 505.968 367.607i 0.701759 0.509858i
\(722\) −850.765 + 276.430i −1.17834 + 0.382867i
\(723\) −523.556 + 584.021i −0.724144 + 0.807774i
\(724\) −935.163 679.436i −1.29166 0.938447i
\(725\) 239.684i 0.330598i
\(726\) 0 0
\(727\) 162.429 0.223424 0.111712 0.993741i \(-0.464367\pi\)
0.111712 + 0.993741i \(0.464367\pi\)
\(728\) −149.651 + 205.976i −0.205564 + 0.282935i
\(729\) 234.314 + 690.317i 0.321418 + 0.946937i
\(730\) −172.588 531.172i −0.236422 0.727633i
\(731\) 115.701 + 159.249i 0.158278 + 0.217851i
\(732\) 2016.36 433.182i 2.75459 0.591778i
\(733\) −361.513 1112.62i −0.493196 1.51790i −0.819749 0.572723i \(-0.805887\pi\)
0.326552 0.945179i \(-0.394113\pi\)
\(734\) −2112.89 686.520i −2.87860 0.935313i
\(735\) 159.995 92.8382i 0.217680 0.126310i
\(736\) 561.967 0.763542
\(737\) 0 0
\(738\) −843.919 929.096i −1.14352 1.25894i
\(739\) −196.087 142.465i −0.265341 0.192781i 0.447157 0.894455i \(-0.352436\pi\)
−0.712498 + 0.701674i \(0.752436\pi\)
\(740\) 127.511 + 41.4309i 0.172313 + 0.0559877i
\(741\) −5.33669 + 51.8615i −0.00720202 + 0.0699886i
\(742\) 1037.01 753.430i 1.39759 1.01540i
\(743\) 484.132 + 666.351i 0.651591 + 0.896838i 0.999167 0.0408136i \(-0.0129950\pi\)
−0.347576 + 0.937652i \(0.612995\pi\)
\(744\) −1218.98 125.436i −1.63841 0.168597i
\(745\) 145.922 449.101i 0.195868 0.602820i
\(746\) −771.041 + 1061.25i −1.03357 + 1.42258i
\(747\) 78.6669 71.4549i 0.105310 0.0956559i
\(748\) 0 0
\(749\) 1632.75i 2.17990i
\(750\) −514.397 886.497i −0.685862 1.18200i
\(751\) −1.89680 + 5.83775i −0.00252570 + 0.00777330i −0.952311 0.305128i \(-0.901301\pi\)
0.949786 + 0.312901i \(0.101301\pi\)
\(752\) −1171.08 + 380.507i −1.55729 + 0.505993i
\(753\) −124.982 581.762i −0.165979 0.772592i
\(754\) 55.4139 40.2606i 0.0734933 0.0533960i
\(755\) −541.170 + 175.837i −0.716782 + 0.232896i
\(756\) −2122.21 + 13.8660i −2.80716 + 0.0183413i
\(757\) 891.755 + 647.898i 1.17801 + 0.855876i 0.991946 0.126661i \(-0.0404261\pi\)
0.186066 + 0.982537i \(0.440426\pi\)
\(758\) 1470.37i 1.93980i
\(759\) 0 0
\(760\) −384.996 −0.506574
\(761\) 705.506 971.046i 0.927078 1.27601i −0.0339108 0.999425i \(-0.510796\pi\)
0.960989 0.276588i \(-0.0892038\pi\)
\(762\) 114.383 + 102.541i 0.150109 + 0.134568i
\(763\) −160.329 493.442i −0.210130 0.646713i
\(764\) −1645.05 2264.22i −2.15321 2.96364i
\(765\) 228.394 + 47.5078i 0.298554 + 0.0621017i
\(766\) 58.7094 + 180.689i 0.0766442 + 0.235887i
\(767\) 177.050 + 57.5270i 0.230834 + 0.0750027i
\(768\) −724.965 1249.38i −0.943965 1.62680i
\(769\) 1038.16 1.35001 0.675007 0.737811i \(-0.264141\pi\)
0.675007 + 0.737811i \(0.264141\pi\)
\(770\) 0 0
\(771\) −2.26479 + 5.11676i −0.00293747 + 0.00663652i
\(772\) −1050.46 763.205i −1.36070 0.988608i
\(773\) −557.520 181.149i −0.721242 0.234346i −0.0746805 0.997208i \(-0.523794\pi\)
−0.646562 + 0.762862i \(0.723794\pi\)
\(774\) 444.119 + 253.839i 0.573797 + 0.327958i
\(775\) 390.671 283.839i 0.504092 0.366244i
\(776\) 792.170 + 1090.33i 1.02084 + 1.40506i
\(777\) −19.7214 + 191.650i −0.0253814 + 0.246654i
\(778\) 100.506 309.326i 0.129185 0.397591i
\(779\) 241.438 332.311i 0.309934 0.426587i
\(780\) 36.9545 83.4899i 0.0473775 0.107038i
\(781\) 0 0
\(782\) 906.383i 1.15906i
\(783\) 298.720 + 94.9067i 0.381507 + 0.121209i
\(784\) 248.191 763.854i 0.316570 0.974303i
\(785\) 12.0233 3.90662i 0.0153164 0.00497659i
\(786\) 1617.05 347.397i 2.05731 0.441981i
\(787\) 302.139 219.517i 0.383912 0.278928i −0.379044 0.925379i \(-0.623747\pi\)
0.762956 + 0.646450i \(0.223747\pi\)
\(788\) −1935.36 + 628.838i −2.45605 + 0.798018i
\(789\) −60.5138 54.2487i −0.0766969 0.0687563i
\(790\) −522.626 379.710i −0.661552 0.480646i
\(791\) 1347.16i 1.70311i
\(792\) 0 0
\(793\) −127.499 −0.160780
\(794\) 707.983 974.454i 0.891666 1.22727i
\(795\) −168.443 + 187.896i −0.211878 + 0.236348i
\(796\) 1067.05 + 3284.04i 1.34051 + 4.12567i
\(797\) 491.864 + 676.992i 0.617144 + 0.849426i 0.997141 0.0755619i \(-0.0240751\pi\)
−0.379997 + 0.924988i \(0.624075\pi\)
\(798\) −211.675 985.297i −0.265257 1.23471i
\(799\) 173.943 + 535.341i 0.217701 + 0.670014i
\(800\) −542.587 176.297i −0.678234 0.220372i
\(801\) 667.215 73.0668i 0.832977 0.0912195i
\(802\) −67.8754 −0.0846326
\(803\) 0 0
\(804\) 1530.49 + 677.429i 1.90360 + 0.842573i
\(805\) 304.256 + 221.055i 0.377958 + 0.274603i
\(806\) 131.245 + 42.6441i 0.162835 + 0.0529083i
\(807\) 426.292 + 43.8667i 0.528243 + 0.0543577i
\(808\) −180.790 + 131.352i −0.223750 + 0.162564i
\(809\) −304.962 419.745i −0.376962 0.518844i 0.577814 0.816168i \(-0.303906\pi\)
−0.954777 + 0.297324i \(0.903906\pi\)
\(810\) 591.874 131.206i 0.730708 0.161983i
\(811\) −241.858 + 744.364i −0.298222 + 0.917834i 0.683897 + 0.729578i \(0.260284\pi\)
−0.982120 + 0.188256i \(0.939716\pi\)
\(812\) −536.334 + 738.200i −0.660510 + 0.909113i
\(813\) −288.943 127.892i −0.355403 0.157309i
\(814\) 0 0
\(815\) 337.843i 0.414531i
\(816\) 876.087 508.356i 1.07364 0.622986i
\(817\) −51.7314 + 159.213i −0.0633187 + 0.194875i
\(818\) 406.889 132.206i 0.497419 0.161621i
\(819\) 128.452 + 26.7191i 0.156840 + 0.0326240i
\(820\) −581.965 + 422.822i −0.709714 + 0.515637i
\(821\) −524.622 + 170.460i −0.639004 + 0.207625i −0.610560 0.791970i \(-0.709055\pi\)
−0.0284445 + 0.999595i \(0.509055\pi\)
\(822\) 579.296 646.198i 0.704740 0.786129i
\(823\) 37.3544 + 27.1396i 0.0453881 + 0.0329764i 0.610248 0.792210i \(-0.291070\pi\)
−0.564860 + 0.825187i \(0.691070\pi\)
\(824\) 1232.39i 1.49562i
\(825\) 0 0
\(826\) −3598.50 −4.35654
\(827\) −350.444 + 482.345i −0.423753 + 0.583247i −0.966505 0.256646i \(-0.917382\pi\)
0.542752 + 0.839893i \(0.317382\pi\)
\(828\) −666.708 1480.07i −0.805203 1.78752i
\(829\) −428.629 1319.18i −0.517043 1.59129i −0.779534 0.626360i \(-0.784544\pi\)
0.262491 0.964935i \(-0.415456\pi\)
\(830\) −51.9477 71.4999i −0.0625876 0.0861445i
\(831\) −718.368 + 154.330i −0.864462 + 0.185716i
\(832\) 4.87182 + 14.9939i 0.00585555 + 0.0180215i
\(833\) −349.184 113.457i −0.419189 0.136203i
\(834\) −1972.81 + 1144.74i −2.36548 + 1.37259i
\(835\) −332.172 −0.397811
\(836\) 0 0
\(837\) 199.059 + 599.288i 0.237824 + 0.715995i
\(838\) 1198.23 + 870.565i 1.42987 + 1.03886i
\(839\) −1583.51 514.515i −1.88738 0.613247i −0.982076 0.188486i \(-0.939642\pi\)
−0.905305 0.424761i \(-0.860358\pi\)
\(840\) −99.1751 + 963.775i −0.118066 + 1.14735i
\(841\) −571.359 + 415.117i −0.679381 + 0.493599i
\(842\) 1275.55 + 1755.64i 1.51490 + 2.08509i
\(843\) 194.308 + 19.9949i 0.230496 + 0.0237187i
\(844\) 559.039 1720.55i 0.662369 2.03856i
\(845\) 203.936 280.693i 0.241344 0.332181i
\(846\) 983.537 + 1082.81i 1.16257 + 1.27991i
\(847\) 0 0
\(848\) 1095.66i 1.29206i
\(849\) 237.255 + 408.878i 0.279452 + 0.481600i
\(850\) −284.346 + 875.127i −0.334525 + 1.02956i
\(851\) −140.153 + 45.5386i −0.164693 + 0.0535119i
\(852\) 57.0706 + 265.650i 0.0669843 + 0.311796i
\(853\) −657.366 + 477.604i −0.770652 + 0.559911i −0.902159 0.431404i \(-0.858018\pi\)
0.131507 + 0.991315i \(0.458018\pi\)
\(854\) 2343.93 761.589i 2.74465 0.891791i
\(855\) 81.4841 + 180.892i 0.0953031 + 0.211569i
\(856\) 2602.90 + 1891.12i 3.04078 + 2.20925i
\(857\) 551.421i 0.643431i −0.946836 0.321716i \(-0.895740\pi\)
0.946836 0.321716i \(-0.104260\pi\)
\(858\) 0 0
\(859\) −1196.04 −1.39236 −0.696180 0.717868i \(-0.745118\pi\)
−0.696180 + 0.717868i \(0.745118\pi\)
\(860\) 172.323 237.182i 0.200375 0.275793i
\(861\) −769.693 690.005i −0.893952 0.801400i
\(862\) 491.544 + 1512.82i 0.570237 + 1.75501i
\(863\) 421.079 + 579.565i 0.487924 + 0.671570i 0.980003 0.198980i \(-0.0637630\pi\)
−0.492079 + 0.870550i \(0.663763\pi\)
\(864\) 434.567 606.423i 0.502971 0.701879i
\(865\) 24.7704 + 76.2355i 0.0286363 + 0.0881335i
\(866\) −747.094 242.745i −0.862695 0.280307i
\(867\) 202.747 + 349.408i 0.233848 + 0.403008i
\(868\) −1838.37 −2.11793
\(869\) 0 0
\(870\) 105.499 238.350i 0.121263 0.273965i
\(871\) −83.7104 60.8192i −0.0961084 0.0698269i
\(872\) 972.339 + 315.932i 1.11507 + 0.362308i
\(873\) 344.632 602.970i 0.394767 0.690688i
\(874\) 623.624 453.089i 0.713528 0.518409i
\(875\) −496.145 682.885i −0.567023 0.780440i
\(876\) −203.227 + 1974.94i −0.231994 + 2.25450i
\(877\) −306.432 + 943.101i −0.349410 + 1.07537i 0.609771 + 0.792578i \(0.291261\pi\)
−0.959181 + 0.282794i \(0.908739\pi\)
\(878\) 361.913 498.131i 0.412202 0.567348i
\(879\) 223.431 504.790i 0.254188 0.574278i
\(880\) 0 0
\(881\) 1256.55i 1.42628i −0.701021 0.713140i \(-0.747272\pi\)
0.701021 0.713140i \(-0.252728\pi\)
\(882\) −948.469 + 103.867i −1.07536 + 0.117763i
\(883\) 86.0075 264.704i 0.0974037 0.299778i −0.890469 0.455044i \(-0.849624\pi\)
0.987873 + 0.155266i \(0.0496235\pi\)
\(884\) −172.352 + 56.0006i −0.194968 + 0.0633491i
\(885\) 692.620 148.798i 0.782622 0.168134i
\(886\) −1719.65 + 1249.40i −1.94091 + 1.41015i
\(887\) 1116.54 362.787i 1.25879 0.409005i 0.397725 0.917505i \(-0.369800\pi\)
0.861062 + 0.508500i \(0.169800\pi\)
\(888\) −282.684 253.418i −0.318338 0.285380i
\(889\) 102.351 + 74.3626i 0.115131 + 0.0836475i
\(890\) 558.178i 0.627166i
\(891\) 0 0
\(892\) 146.507 0.164245
\(893\) −281.382 + 387.289i −0.315097 + 0.433694i
\(894\) −1625.87 + 1813.64i −1.81864 + 2.02868i
\(895\) −87.7825 270.167i −0.0980810 0.301862i
\(896\) −754.921 1039.06i −0.842546 1.15966i
\(897\) 21.0787 + 98.1164i 0.0234991 + 0.109383i
\(898\) −483.460 1487.94i −0.538374 1.65695i
\(899\) 258.218 + 83.9001i 0.287228 + 0.0933260i
\(900\) 179.398 + 1638.18i 0.199331 + 1.82020i
\(901\) 500.866 0.555900
\(902\) 0 0
\(903\) 385.237 + 170.514i 0.426619 + 0.188831i
\(904\) 2147.62 + 1560.34i 2.37568 + 1.72604i
\(905\) 258.631 + 84.0342i 0.285780 + 0.0928555i
\(906\) 2919.64 + 300.439i 3.22256 + 0.331611i
\(907\) −117.806 + 85.5912i −0.129885 + 0.0943673i −0.650831 0.759223i \(-0.725579\pi\)
0.520946 + 0.853590i \(0.325579\pi\)
\(908\) −588.308 809.736i −0.647916 0.891780i
\(909\) 99.9802 + 57.1444i 0.109989 + 0.0628651i
\(910\) 33.7163 103.768i 0.0370509 0.114031i
\(911\) 632.867 871.067i 0.694695 0.956166i −0.305297 0.952257i \(-0.598756\pi\)
0.999992 0.00390866i \(-0.00124417\pi\)
\(912\) 787.712 + 348.658i 0.863719 + 0.382301i
\(913\) 0 0
\(914\) 855.714i 0.936230i
\(915\) −419.655 + 243.508i −0.458639 + 0.266129i
\(916\) 1010.21 3109.11i 1.10285 3.39422i
\(917\) 1295.46 420.920i 1.41271 0.459018i
\(918\) −978.087 700.904i −1.06545 0.763512i
\(919\) 255.740 185.806i 0.278280 0.202183i −0.439887 0.898053i \(-0.644981\pi\)
0.718167 + 0.695871i \(0.244981\pi\)
\(920\) −704.806 + 229.005i −0.766093 + 0.248919i
\(921\) 774.323 863.749i 0.840742 0.937838i
\(922\) −2063.95 1499.55i −2.23855 1.62640i
\(923\) 16.7976i 0.0181990i
\(924\) 0 0
\(925\) 149.606 0.161737
\(926\) 973.067 1339.31i 1.05083 1.44634i
\(927\) 579.041 260.834i 0.624639 0.281374i
\(928\) −99.1224 305.067i −0.106813 0.328736i
\(929\) −657.526 905.007i −0.707778 0.974173i −0.999842 0.0177741i \(-0.994342\pi\)
0.292064 0.956399i \(-0.405658\pi\)
\(930\) 513.431 110.302i 0.552077 0.118605i
\(931\) −96.4904 296.967i −0.103642 0.318976i
\(932\) 1472.16 + 478.333i 1.57957 + 0.513233i
\(933\) −239.350 + 138.885i −0.256538 + 0.148858i
\(934\) −173.568 −0.185833
\(935\) 0 0
\(936\) −191.374 + 173.829i −0.204459 + 0.185715i
\(937\) 850.451 + 617.889i 0.907632 + 0.659433i 0.940415 0.340029i \(-0.110437\pi\)
−0.0327830 + 0.999462i \(0.510437\pi\)
\(938\) 1902.22 + 618.068i 2.02795 + 0.658922i
\(939\) −22.8466 + 222.021i −0.0243307 + 0.236444i
\(940\) 678.245 492.774i 0.721538 0.524228i
\(941\) 188.418 + 259.335i 0.200231 + 0.275595i 0.897311 0.441399i \(-0.145518\pi\)
−0.697080 + 0.716994i \(0.745518\pi\)
\(942\) −64.8666 6.67496i −0.0688605 0.00708594i
\(943\) 244.330 751.970i 0.259099 0.797423i
\(944\) 1807.98 2488.47i 1.91523 2.63609i
\(945\) 473.823 157.384i 0.501400 0.166544i
\(946\) 0 0
\(947\) 689.980i 0.728596i 0.931283 + 0.364298i \(0.118691\pi\)
−0.931283 + 0.364298i \(0.881309\pi\)
\(948\) 1152.52 + 1986.23i 1.21574 + 2.09518i
\(949\) 37.9284 116.732i 0.0399667 0.123005i
\(950\) −744.259 + 241.824i −0.783430 + 0.254552i
\(951\) 330.046 + 1536.28i 0.347052 + 1.61544i
\(952\) 1555.78 1130.34i 1.63422 1.18733i
\(953\) −1276.39 + 414.726i −1.33934 + 0.435179i −0.889094 0.457724i \(-0.848665\pi\)
−0.450249 + 0.892903i \(0.648665\pi\)
\(954\) 1186.77 534.592i 1.24400 0.560369i
\(955\) 532.676 + 387.012i 0.557776 + 0.405248i
\(956\) 3062.78i 3.20374i
\(957\) 0 0
\(958\) −614.947 −0.641907
\(959\) 420.104 578.224i 0.438065 0.602945i
\(960\) 44.6719 + 40.0470i 0.0465333 + 0.0417156i
\(961\) −127.930 393.727i −0.133122 0.409706i
\(962\) 25.1299 + 34.5884i 0.0261226 + 0.0359547i
\(963\) 337.646 1623.24i 0.350619 1.68560i
\(964\) −716.504 2205.17i −0.743261 2.28752i
\(965\) 290.518 + 94.3950i 0.301055 + 0.0978187i
\(966\) −973.589 1677.86i −1.00786 1.73691i
\(967\) −1283.30 −1.32709 −0.663546 0.748135i \(-0.730949\pi\)
−0.663546 + 0.748135i \(0.730949\pi\)
\(968\) 0 0
\(969\) 159.384 360.091i 0.164483 0.371611i
\(970\) −467.256 339.481i −0.481707 0.349981i
\(971\) 809.179 + 262.918i 0.833346 + 0.270770i 0.694454 0.719537i \(-0.255646\pi\)
0.138892 + 0.990308i \(0.455646\pi\)
\(972\) −2112.72 425.081i −2.17358 0.437326i
\(973\) −1519.69 + 1104.12i −1.56186 + 1.13476i
\(974\) −1044.78 1438.02i −1.07267 1.47640i
\(975\) 10.4287 101.346i 0.0106961 0.103944i
\(976\) −650.988 + 2003.54i −0.666996 + 2.05280i
\(977\) 712.767 981.039i 0.729546 1.00413i −0.269606 0.962971i \(-0.586893\pi\)
0.999152 0.0411637i \(-0.0131065\pi\)
\(978\) −705.322 + 1593.51i −0.721188 + 1.62936i
\(979\) 0 0
\(980\) 546.831i 0.557991i
\(981\) −57.3530 523.723i −0.0584639 0.533867i
\(982\) 366.090 1126.71i 0.372801 1.14736i
\(983\) −432.404 + 140.496i −0.439882 + 0.142926i −0.520581 0.853812i \(-0.674285\pi\)
0.0806993 + 0.996738i \(0.474285\pi\)
\(984\) 1991.49 427.839i 2.02387 0.434796i
\(985\) 387.310 281.397i 0.393208 0.285682i
\(986\) −492.036 + 159.872i −0.499022 + 0.162142i
\(987\) 897.030 + 804.159i 0.908845 + 0.814751i
\(988\) −124.687 90.5904i −0.126201 0.0916907i
\(989\) 322.239i 0.325823i
\(990\) 0 0
\(991\) 697.554 0.703889 0.351945 0.936021i \(-0.385521\pi\)
0.351945 + 0.936021i \(0.385521\pi\)
\(992\) 379.860 522.832i 0.382923 0.527049i
\(993\) −504.049 + 562.261i −0.507602 + 0.566225i
\(994\) 100.337 + 308.807i 0.100943 + 0.310671i
\(995\) −477.490 657.209i −0.479890 0.660512i
\(996\) 65.9881 + 307.159i 0.0662531 + 0.308392i
\(997\) −202.089 621.967i −0.202697 0.623839i −0.999800 0.0199948i \(-0.993635\pi\)
0.797103 0.603844i \(-0.206365\pi\)
\(998\) −374.607 121.717i −0.375358 0.121961i
\(999\) −59.2391 + 186.456i −0.0592984 + 0.186642i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.3.h.j.323.1 16
3.2 odd 2 inner 363.3.h.j.323.4 16
11.2 odd 10 363.3.h.o.269.1 16
11.3 even 5 inner 363.3.h.j.245.4 16
11.4 even 5 363.3.h.n.251.1 16
11.5 even 5 363.3.b.l.122.1 8
11.6 odd 10 363.3.b.m.122.8 8
11.7 odd 10 363.3.h.o.251.4 16
11.8 odd 10 33.3.h.b.14.1 16
11.9 even 5 363.3.h.n.269.4 16
11.10 odd 2 33.3.h.b.26.4 yes 16
33.2 even 10 363.3.h.o.269.4 16
33.5 odd 10 363.3.b.l.122.8 8
33.8 even 10 33.3.h.b.14.4 yes 16
33.14 odd 10 inner 363.3.h.j.245.1 16
33.17 even 10 363.3.b.m.122.1 8
33.20 odd 10 363.3.h.n.269.1 16
33.26 odd 10 363.3.h.n.251.4 16
33.29 even 10 363.3.h.o.251.1 16
33.32 even 2 33.3.h.b.26.1 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.3.h.b.14.1 16 11.8 odd 10
33.3.h.b.14.4 yes 16 33.8 even 10
33.3.h.b.26.1 yes 16 33.32 even 2
33.3.h.b.26.4 yes 16 11.10 odd 2
363.3.b.l.122.1 8 11.5 even 5
363.3.b.l.122.8 8 33.5 odd 10
363.3.b.m.122.1 8 33.17 even 10
363.3.b.m.122.8 8 11.6 odd 10
363.3.h.j.245.1 16 33.14 odd 10 inner
363.3.h.j.245.4 16 11.3 even 5 inner
363.3.h.j.323.1 16 1.1 even 1 trivial
363.3.h.j.323.4 16 3.2 odd 2 inner
363.3.h.n.251.1 16 11.4 even 5
363.3.h.n.251.4 16 33.26 odd 10
363.3.h.n.269.1 16 33.20 odd 10
363.3.h.n.269.4 16 11.9 even 5
363.3.h.o.251.1 16 33.29 even 10
363.3.h.o.251.4 16 11.7 odd 10
363.3.h.o.269.1 16 11.2 odd 10
363.3.h.o.269.4 16 33.2 even 10