Properties

Label 361.10.a.f.1.2
Level $361$
Weight $10$
Character 361.1
Self dual yes
Analytic conductor $185.928$
Analytic rank $0$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [361,10,Mod(1,361)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(361, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("361.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 361 = 19^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 361.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,15] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(185.927936855\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - x^{13} - 5069 x^{12} + 6049 x^{11} + 9806858 x^{10} - 13799702 x^{9} - 9054174058 x^{8} + \cdots - 17\!\cdots\!44 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{4}\cdot 19 \)
Twist minimal: no (minimal twist has level 19)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-35.1331\) of defining polynomial
Character \(\chi\) \(=\) 361.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-34.1331 q^{2} -208.441 q^{3} +653.070 q^{4} -2506.72 q^{5} +7114.73 q^{6} +4067.64 q^{7} -4815.16 q^{8} +23764.5 q^{9} +85562.3 q^{10} -30956.0 q^{11} -136126. q^{12} -141149. q^{13} -138841. q^{14} +522504. q^{15} -170015. q^{16} -402249. q^{17} -811158. q^{18} -1.63707e6 q^{20} -847862. q^{21} +1.05663e6 q^{22} +706002. q^{23} +1.00368e6 q^{24} +4.33054e6 q^{25} +4.81787e6 q^{26} -850757. q^{27} +2.65645e6 q^{28} +3.73855e6 q^{29} -1.78347e7 q^{30} +2.57084e6 q^{31} +8.26852e6 q^{32} +6.45250e6 q^{33} +1.37300e7 q^{34} -1.01965e7 q^{35} +1.55199e7 q^{36} +1.01623e6 q^{37} +2.94213e7 q^{39} +1.20703e7 q^{40} +3.55106e7 q^{41} +2.89402e7 q^{42} -7.55220e6 q^{43} -2.02165e7 q^{44} -5.95711e7 q^{45} -2.40981e7 q^{46} -1.71794e6 q^{47} +3.54381e7 q^{48} -2.38079e7 q^{49} -1.47815e8 q^{50} +8.38450e7 q^{51} -9.21805e7 q^{52} -6.33193e7 q^{53} +2.90390e7 q^{54} +7.75982e7 q^{55} -1.95863e7 q^{56} -1.27608e8 q^{58} +1.29382e8 q^{59} +3.41231e8 q^{60} -8.17249e7 q^{61} -8.77509e7 q^{62} +9.66656e7 q^{63} -1.95182e8 q^{64} +3.53823e8 q^{65} -2.20244e8 q^{66} -1.18446e8 q^{67} -2.62697e8 q^{68} -1.47160e8 q^{69} +3.48037e8 q^{70} +1.62123e8 q^{71} -1.14430e8 q^{72} -3.04412e7 q^{73} -3.46871e7 q^{74} -9.02662e8 q^{75} -1.25918e8 q^{77} -1.00424e9 q^{78} -6.30999e8 q^{79} +4.26182e8 q^{80} -2.90425e8 q^{81} -1.21209e9 q^{82} +2.53183e8 q^{83} -5.53713e8 q^{84} +1.00833e9 q^{85} +2.57780e8 q^{86} -7.79266e8 q^{87} +1.49058e8 q^{88} +6.19200e8 q^{89} +2.03335e9 q^{90} -5.74145e8 q^{91} +4.61069e8 q^{92} -5.35868e8 q^{93} +5.86386e7 q^{94} -1.72350e9 q^{96} +5.61676e8 q^{97} +8.12638e8 q^{98} -7.35655e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 15 q^{2} - 74 q^{3} + 2987 q^{4} + 285 q^{5} + 535 q^{6} - 1338 q^{7} + 12135 q^{8} + 57928 q^{9} + 41180 q^{10} - 57405 q^{11} - 117729 q^{12} + 98671 q^{13} - 148290 q^{14} + 428251 q^{15} + 279203 q^{16}+ \cdots + 736622698 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −34.1331 −1.50849 −0.754243 0.656596i \(-0.771996\pi\)
−0.754243 + 0.656596i \(0.771996\pi\)
\(3\) −208.441 −1.48572 −0.742860 0.669447i \(-0.766531\pi\)
−0.742860 + 0.669447i \(0.766531\pi\)
\(4\) 653.070 1.27553
\(5\) −2506.72 −1.79367 −0.896833 0.442369i \(-0.854138\pi\)
−0.896833 + 0.442369i \(0.854138\pi\)
\(6\) 7114.73 2.24119
\(7\) 4067.64 0.640326 0.320163 0.947362i \(-0.396262\pi\)
0.320163 + 0.947362i \(0.396262\pi\)
\(8\) −4815.16 −0.415629
\(9\) 23764.5 1.20736
\(10\) 85562.3 2.70572
\(11\) −30956.0 −0.637497 −0.318748 0.947839i \(-0.603263\pi\)
−0.318748 + 0.947839i \(0.603263\pi\)
\(12\) −136126. −1.89508
\(13\) −141149. −1.37067 −0.685337 0.728226i \(-0.740345\pi\)
−0.685337 + 0.728226i \(0.740345\pi\)
\(14\) −138841. −0.965923
\(15\) 522504. 2.66489
\(16\) −170015. −0.648557
\(17\) −402249. −1.16809 −0.584043 0.811723i \(-0.698530\pi\)
−0.584043 + 0.811723i \(0.698530\pi\)
\(18\) −811158. −1.82129
\(19\) 0 0
\(20\) −1.63707e6 −2.28787
\(21\) −847862. −0.951345
\(22\) 1.05663e6 0.961655
\(23\) 706002. 0.526054 0.263027 0.964788i \(-0.415279\pi\)
0.263027 + 0.964788i \(0.415279\pi\)
\(24\) 1.00368e6 0.617508
\(25\) 4.33054e6 2.21724
\(26\) 4.81787e6 2.06764
\(27\) −850757. −0.308084
\(28\) 2.65645e6 0.816754
\(29\) 3.73855e6 0.981550 0.490775 0.871286i \(-0.336714\pi\)
0.490775 + 0.871286i \(0.336714\pi\)
\(30\) −1.78347e7 −4.01994
\(31\) 2.57084e6 0.499974 0.249987 0.968249i \(-0.419574\pi\)
0.249987 + 0.968249i \(0.419574\pi\)
\(32\) 8.26852e6 1.39397
\(33\) 6.45250e6 0.947142
\(34\) 1.37300e7 1.76204
\(35\) −1.01965e7 −1.14853
\(36\) 1.55199e7 1.54002
\(37\) 1.01623e6 0.0891424 0.0445712 0.999006i \(-0.485808\pi\)
0.0445712 + 0.999006i \(0.485808\pi\)
\(38\) 0 0
\(39\) 2.94213e7 2.03644
\(40\) 1.20703e7 0.745500
\(41\) 3.55106e7 1.96260 0.981298 0.192495i \(-0.0616580\pi\)
0.981298 + 0.192495i \(0.0616580\pi\)
\(42\) 2.89402e7 1.43509
\(43\) −7.55220e6 −0.336872 −0.168436 0.985713i \(-0.553872\pi\)
−0.168436 + 0.985713i \(0.553872\pi\)
\(44\) −2.02165e7 −0.813145
\(45\) −5.95711e7 −2.16561
\(46\) −2.40981e7 −0.793545
\(47\) −1.71794e6 −0.0513532 −0.0256766 0.999670i \(-0.508174\pi\)
−0.0256766 + 0.999670i \(0.508174\pi\)
\(48\) 3.54381e7 0.963574
\(49\) −2.38079e7 −0.589982
\(50\) −1.47815e8 −3.34467
\(51\) 8.38450e7 1.73545
\(52\) −9.21805e7 −1.74833
\(53\) −6.33193e7 −1.10229 −0.551144 0.834410i \(-0.685808\pi\)
−0.551144 + 0.834410i \(0.685808\pi\)
\(54\) 2.90390e7 0.464740
\(55\) 7.75982e7 1.14346
\(56\) −1.95863e7 −0.266138
\(57\) 0 0
\(58\) −1.27608e8 −1.48065
\(59\) 1.29382e8 1.39008 0.695042 0.718969i \(-0.255386\pi\)
0.695042 + 0.718969i \(0.255386\pi\)
\(60\) 3.41231e8 3.39913
\(61\) −8.17249e7 −0.755736 −0.377868 0.925859i \(-0.623343\pi\)
−0.377868 + 0.925859i \(0.623343\pi\)
\(62\) −8.77509e7 −0.754204
\(63\) 9.66656e7 0.773106
\(64\) −1.95182e8 −1.45422
\(65\) 3.53823e8 2.45853
\(66\) −2.20244e8 −1.42875
\(67\) −1.18446e8 −0.718099 −0.359050 0.933318i \(-0.616899\pi\)
−0.359050 + 0.933318i \(0.616899\pi\)
\(68\) −2.62697e8 −1.48992
\(69\) −1.47160e8 −0.781569
\(70\) 3.48037e8 1.73254
\(71\) 1.62123e8 0.757151 0.378575 0.925570i \(-0.376414\pi\)
0.378575 + 0.925570i \(0.376414\pi\)
\(72\) −1.14430e8 −0.501815
\(73\) −3.04412e7 −0.125461 −0.0627305 0.998031i \(-0.519981\pi\)
−0.0627305 + 0.998031i \(0.519981\pi\)
\(74\) −3.46871e7 −0.134470
\(75\) −9.02662e8 −3.29420
\(76\) 0 0
\(77\) −1.25918e8 −0.408206
\(78\) −1.00424e9 −3.07194
\(79\) −6.30999e8 −1.82266 −0.911332 0.411672i \(-0.864945\pi\)
−0.911332 + 0.411672i \(0.864945\pi\)
\(80\) 4.26182e8 1.16330
\(81\) −2.90425e8 −0.749637
\(82\) −1.21209e9 −2.96055
\(83\) 2.53183e8 0.585576 0.292788 0.956177i \(-0.405417\pi\)
0.292788 + 0.956177i \(0.405417\pi\)
\(84\) −5.53713e8 −1.21347
\(85\) 1.00833e9 2.09515
\(86\) 2.57780e8 0.508167
\(87\) −7.79266e8 −1.45831
\(88\) 1.49058e8 0.264962
\(89\) 6.19200e8 1.04611 0.523053 0.852300i \(-0.324793\pi\)
0.523053 + 0.852300i \(0.324793\pi\)
\(90\) 2.03335e9 3.26679
\(91\) −5.74145e8 −0.877679
\(92\) 4.61069e8 0.670997
\(93\) −5.35868e8 −0.742822
\(94\) 5.86386e7 0.0774655
\(95\) 0 0
\(96\) −1.72350e9 −2.07105
\(97\) 5.61676e8 0.644188 0.322094 0.946708i \(-0.395613\pi\)
0.322094 + 0.946708i \(0.395613\pi\)
\(98\) 8.12638e8 0.889979
\(99\) −7.35655e8 −0.769690
\(100\) 2.82815e9 2.82815
\(101\) −4.32424e8 −0.413488 −0.206744 0.978395i \(-0.566287\pi\)
−0.206744 + 0.978395i \(0.566287\pi\)
\(102\) −2.86189e9 −2.61790
\(103\) 6.31374e8 0.552738 0.276369 0.961052i \(-0.410869\pi\)
0.276369 + 0.961052i \(0.410869\pi\)
\(104\) 6.79657e8 0.569692
\(105\) 2.12536e9 1.70640
\(106\) 2.16129e9 1.66278
\(107\) 1.19398e9 0.880581 0.440290 0.897855i \(-0.354875\pi\)
0.440290 + 0.897855i \(0.354875\pi\)
\(108\) −5.55604e8 −0.392969
\(109\) −2.69404e8 −0.182804 −0.0914018 0.995814i \(-0.529135\pi\)
−0.0914018 + 0.995814i \(0.529135\pi\)
\(110\) −2.64867e9 −1.72489
\(111\) −2.11824e8 −0.132441
\(112\) −6.91562e8 −0.415288
\(113\) −4.67502e8 −0.269731 −0.134866 0.990864i \(-0.543060\pi\)
−0.134866 + 0.990864i \(0.543060\pi\)
\(114\) 0 0
\(115\) −1.76975e9 −0.943566
\(116\) 2.44154e9 1.25199
\(117\) −3.35435e9 −1.65490
\(118\) −4.41623e9 −2.09692
\(119\) −1.63620e9 −0.747956
\(120\) −2.51594e9 −1.10760
\(121\) −1.39967e9 −0.593598
\(122\) 2.78953e9 1.14002
\(123\) −7.40186e9 −2.91587
\(124\) 1.67894e9 0.637731
\(125\) −5.95954e9 −2.18332
\(126\) −3.29950e9 −1.16622
\(127\) −3.86526e9 −1.31844 −0.659222 0.751948i \(-0.729114\pi\)
−0.659222 + 0.751948i \(0.729114\pi\)
\(128\) 2.42870e9 0.799705
\(129\) 1.57419e9 0.500498
\(130\) −1.20771e10 −3.70866
\(131\) −8.09124e8 −0.240046 −0.120023 0.992771i \(-0.538297\pi\)
−0.120023 + 0.992771i \(0.538297\pi\)
\(132\) 4.21393e9 1.20811
\(133\) 0 0
\(134\) 4.04294e9 1.08324
\(135\) 2.13261e9 0.552599
\(136\) 1.93689e9 0.485490
\(137\) −6.13933e8 −0.148895 −0.0744473 0.997225i \(-0.523719\pi\)
−0.0744473 + 0.997225i \(0.523719\pi\)
\(138\) 5.02302e9 1.17899
\(139\) 2.98974e8 0.0679308 0.0339654 0.999423i \(-0.489186\pi\)
0.0339654 + 0.999423i \(0.489186\pi\)
\(140\) −6.65900e9 −1.46498
\(141\) 3.58088e8 0.0762964
\(142\) −5.53377e9 −1.14215
\(143\) 4.36943e9 0.873801
\(144\) −4.04034e9 −0.783044
\(145\) −9.37152e9 −1.76057
\(146\) 1.03905e9 0.189256
\(147\) 4.96254e9 0.876548
\(148\) 6.63669e8 0.113704
\(149\) −8.51918e9 −1.41599 −0.707994 0.706218i \(-0.750400\pi\)
−0.707994 + 0.706218i \(0.750400\pi\)
\(150\) 3.08107e10 4.96925
\(151\) 2.60207e8 0.0407308 0.0203654 0.999793i \(-0.493517\pi\)
0.0203654 + 0.999793i \(0.493517\pi\)
\(152\) 0 0
\(153\) −9.55925e9 −1.41030
\(154\) 4.29797e9 0.615773
\(155\) −6.44439e9 −0.896787
\(156\) 1.92142e10 2.59753
\(157\) −4.14012e8 −0.0543831 −0.0271916 0.999630i \(-0.508656\pi\)
−0.0271916 + 0.999630i \(0.508656\pi\)
\(158\) 2.15380e10 2.74946
\(159\) 1.31983e10 1.63769
\(160\) −2.07269e10 −2.50031
\(161\) 2.87176e9 0.336846
\(162\) 9.91311e9 1.13082
\(163\) −6.26572e9 −0.695227 −0.347614 0.937638i \(-0.613008\pi\)
−0.347614 + 0.937638i \(0.613008\pi\)
\(164\) 2.31909e10 2.50334
\(165\) −1.61746e10 −1.69886
\(166\) −8.64192e9 −0.883332
\(167\) −1.24324e10 −1.23689 −0.618444 0.785829i \(-0.712236\pi\)
−0.618444 + 0.785829i \(0.712236\pi\)
\(168\) 4.08259e9 0.395407
\(169\) 9.31868e9 0.878748
\(170\) −3.44173e10 −3.16051
\(171\) 0 0
\(172\) −4.93212e9 −0.429690
\(173\) −2.36048e9 −0.200351 −0.100176 0.994970i \(-0.531941\pi\)
−0.100176 + 0.994970i \(0.531941\pi\)
\(174\) 2.65988e10 2.19984
\(175\) 1.76151e10 1.41976
\(176\) 5.26300e9 0.413453
\(177\) −2.69686e10 −2.06528
\(178\) −2.11352e10 −1.57804
\(179\) −1.13959e9 −0.0829680 −0.0414840 0.999139i \(-0.513209\pi\)
−0.0414840 + 0.999139i \(0.513209\pi\)
\(180\) −3.89041e10 −2.76229
\(181\) 1.34460e10 0.931194 0.465597 0.884997i \(-0.345840\pi\)
0.465597 + 0.884997i \(0.345840\pi\)
\(182\) 1.95974e10 1.32397
\(183\) 1.70348e10 1.12281
\(184\) −3.39951e9 −0.218643
\(185\) −2.54741e9 −0.159892
\(186\) 1.82909e10 1.12054
\(187\) 1.24520e10 0.744651
\(188\) −1.12193e9 −0.0655024
\(189\) −3.46057e9 −0.197274
\(190\) 0 0
\(191\) −2.51377e9 −0.136671 −0.0683354 0.997662i \(-0.521769\pi\)
−0.0683354 + 0.997662i \(0.521769\pi\)
\(192\) 4.06840e10 2.16057
\(193\) −3.17663e10 −1.64801 −0.824003 0.566586i \(-0.808264\pi\)
−0.824003 + 0.566586i \(0.808264\pi\)
\(194\) −1.91717e10 −0.971748
\(195\) −7.37511e10 −3.65269
\(196\) −1.55482e10 −0.752538
\(197\) 3.13458e10 1.48280 0.741399 0.671065i \(-0.234163\pi\)
0.741399 + 0.671065i \(0.234163\pi\)
\(198\) 2.51102e10 1.16107
\(199\) −1.60392e9 −0.0725009 −0.0362505 0.999343i \(-0.511541\pi\)
−0.0362505 + 0.999343i \(0.511541\pi\)
\(200\) −2.08523e10 −0.921548
\(201\) 2.46890e10 1.06689
\(202\) 1.47600e10 0.623741
\(203\) 1.52071e10 0.628512
\(204\) 5.47567e10 2.21361
\(205\) −8.90153e10 −3.52024
\(206\) −2.15508e10 −0.833797
\(207\) 1.67778e10 0.635139
\(208\) 2.39976e10 0.888961
\(209\) 0 0
\(210\) −7.25450e10 −2.57407
\(211\) −4.19652e10 −1.45753 −0.728767 0.684762i \(-0.759906\pi\)
−0.728767 + 0.684762i \(0.759906\pi\)
\(212\) −4.13519e10 −1.40600
\(213\) −3.37931e10 −1.12491
\(214\) −4.07542e10 −1.32834
\(215\) 1.89313e10 0.604237
\(216\) 4.09653e9 0.128048
\(217\) 1.04573e10 0.320147
\(218\) 9.19560e9 0.275756
\(219\) 6.34518e9 0.186400
\(220\) 5.06771e10 1.45851
\(221\) 5.67772e10 1.60106
\(222\) 7.23020e9 0.199785
\(223\) 1.24367e10 0.336770 0.168385 0.985721i \(-0.446145\pi\)
0.168385 + 0.985721i \(0.446145\pi\)
\(224\) 3.36334e10 0.892594
\(225\) 1.02913e11 2.67701
\(226\) 1.59573e10 0.406885
\(227\) −5.60406e10 −1.40083 −0.700416 0.713735i \(-0.747002\pi\)
−0.700416 + 0.713735i \(0.747002\pi\)
\(228\) 0 0
\(229\) 5.10125e10 1.22579 0.612896 0.790164i \(-0.290004\pi\)
0.612896 + 0.790164i \(0.290004\pi\)
\(230\) 6.04072e10 1.42336
\(231\) 2.62464e10 0.606480
\(232\) −1.80017e10 −0.407960
\(233\) 8.02937e10 1.78476 0.892381 0.451284i \(-0.149034\pi\)
0.892381 + 0.451284i \(0.149034\pi\)
\(234\) 1.14494e11 2.49639
\(235\) 4.30640e9 0.0921105
\(236\) 8.44958e10 1.77309
\(237\) 1.31526e11 2.70797
\(238\) 5.58487e10 1.12828
\(239\) 1.25824e10 0.249444 0.124722 0.992192i \(-0.460196\pi\)
0.124722 + 0.992192i \(0.460196\pi\)
\(240\) −8.88337e10 −1.72833
\(241\) 4.47908e10 0.855288 0.427644 0.903947i \(-0.359344\pi\)
0.427644 + 0.903947i \(0.359344\pi\)
\(242\) 4.77752e10 0.895433
\(243\) 7.72818e10 1.42183
\(244\) −5.33721e10 −0.963962
\(245\) 5.96799e10 1.05823
\(246\) 2.52649e11 4.39854
\(247\) 0 0
\(248\) −1.23790e10 −0.207804
\(249\) −5.27736e10 −0.870001
\(250\) 2.03418e11 3.29351
\(251\) −7.41227e10 −1.17874 −0.589372 0.807862i \(-0.700625\pi\)
−0.589372 + 0.807862i \(0.700625\pi\)
\(252\) 6.31294e10 0.986118
\(253\) −2.18550e10 −0.335358
\(254\) 1.31933e11 1.98885
\(255\) −2.10176e11 −3.11281
\(256\) 1.70341e10 0.247879
\(257\) −9.36541e10 −1.33915 −0.669573 0.742747i \(-0.733523\pi\)
−0.669573 + 0.742747i \(0.733523\pi\)
\(258\) −5.37319e10 −0.754994
\(259\) 4.13366e9 0.0570802
\(260\) 2.31071e11 3.13592
\(261\) 8.88449e10 1.18509
\(262\) 2.76179e10 0.362106
\(263\) −7.80524e10 −1.00597 −0.502986 0.864295i \(-0.667765\pi\)
−0.502986 + 0.864295i \(0.667765\pi\)
\(264\) −3.10698e10 −0.393660
\(265\) 1.58724e11 1.97714
\(266\) 0 0
\(267\) −1.29066e11 −1.55422
\(268\) −7.73536e10 −0.915955
\(269\) −7.06085e10 −0.822190 −0.411095 0.911593i \(-0.634853\pi\)
−0.411095 + 0.911593i \(0.634853\pi\)
\(270\) −7.27928e10 −0.833588
\(271\) −3.48345e10 −0.392327 −0.196163 0.980571i \(-0.562848\pi\)
−0.196163 + 0.980571i \(0.562848\pi\)
\(272\) 6.83885e10 0.757570
\(273\) 1.19675e11 1.30398
\(274\) 2.09555e10 0.224605
\(275\) −1.34056e11 −1.41348
\(276\) −9.61055e10 −0.996913
\(277\) −1.79253e10 −0.182940 −0.0914699 0.995808i \(-0.529157\pi\)
−0.0914699 + 0.995808i \(0.529157\pi\)
\(278\) −1.02049e10 −0.102473
\(279\) 6.10949e10 0.603651
\(280\) 4.90976e10 0.477363
\(281\) −6.11878e10 −0.585445 −0.292723 0.956197i \(-0.594561\pi\)
−0.292723 + 0.956197i \(0.594561\pi\)
\(282\) −1.22227e10 −0.115092
\(283\) −1.80604e11 −1.67374 −0.836871 0.547400i \(-0.815617\pi\)
−0.836871 + 0.547400i \(0.815617\pi\)
\(284\) 1.05878e11 0.965766
\(285\) 0 0
\(286\) −1.49142e11 −1.31812
\(287\) 1.44444e11 1.25670
\(288\) 1.96497e11 1.68303
\(289\) 4.32161e10 0.364423
\(290\) 3.19879e11 2.65580
\(291\) −1.17076e11 −0.957083
\(292\) −1.98802e10 −0.160029
\(293\) 1.52036e10 0.120515 0.0602577 0.998183i \(-0.480808\pi\)
0.0602577 + 0.998183i \(0.480808\pi\)
\(294\) −1.69387e11 −1.32226
\(295\) −3.24326e11 −2.49335
\(296\) −4.89331e9 −0.0370501
\(297\) 2.63361e10 0.196402
\(298\) 2.90786e11 2.13600
\(299\) −9.96518e10 −0.721049
\(300\) −5.89501e11 −4.20184
\(301\) −3.07196e10 −0.215708
\(302\) −8.88168e9 −0.0614418
\(303\) 9.01347e10 0.614328
\(304\) 0 0
\(305\) 2.04862e11 1.35554
\(306\) 3.26287e11 2.12742
\(307\) −1.53582e11 −0.986774 −0.493387 0.869810i \(-0.664241\pi\)
−0.493387 + 0.869810i \(0.664241\pi\)
\(308\) −8.22333e10 −0.520678
\(309\) −1.31604e11 −0.821214
\(310\) 2.19967e11 1.35279
\(311\) 7.14306e9 0.0432974 0.0216487 0.999766i \(-0.493108\pi\)
0.0216487 + 0.999766i \(0.493108\pi\)
\(312\) −1.41668e11 −0.846402
\(313\) −1.02636e11 −0.604434 −0.302217 0.953239i \(-0.597727\pi\)
−0.302217 + 0.953239i \(0.597727\pi\)
\(314\) 1.41315e10 0.0820362
\(315\) −2.42314e11 −1.38669
\(316\) −4.12086e11 −2.32486
\(317\) 2.72143e10 0.151367 0.0756835 0.997132i \(-0.475886\pi\)
0.0756835 + 0.997132i \(0.475886\pi\)
\(318\) −4.50500e11 −2.47043
\(319\) −1.15731e11 −0.625735
\(320\) 4.89269e11 2.60839
\(321\) −2.48874e11 −1.30830
\(322\) −9.80222e10 −0.508128
\(323\) 0 0
\(324\) −1.89668e11 −0.956183
\(325\) −6.11254e11 −3.03911
\(326\) 2.13869e11 1.04874
\(327\) 5.61547e10 0.271595
\(328\) −1.70989e11 −0.815711
\(329\) −6.98796e9 −0.0328828
\(330\) 5.52091e11 2.56270
\(331\) −3.18775e10 −0.145968 −0.0729841 0.997333i \(-0.523252\pi\)
−0.0729841 + 0.997333i \(0.523252\pi\)
\(332\) 1.65346e11 0.746918
\(333\) 2.41502e10 0.107627
\(334\) 4.24356e11 1.86583
\(335\) 2.96912e11 1.28803
\(336\) 1.44150e11 0.617002
\(337\) 4.36969e11 1.84551 0.922755 0.385387i \(-0.125932\pi\)
0.922755 + 0.385387i \(0.125932\pi\)
\(338\) −3.18076e11 −1.32558
\(339\) 9.74465e10 0.400745
\(340\) 6.58508e11 2.67243
\(341\) −7.95831e10 −0.318732
\(342\) 0 0
\(343\) −2.60986e11 −1.01811
\(344\) 3.63650e10 0.140014
\(345\) 3.68889e11 1.40187
\(346\) 8.05705e10 0.302227
\(347\) 8.37067e10 0.309940 0.154970 0.987919i \(-0.450472\pi\)
0.154970 + 0.987919i \(0.450472\pi\)
\(348\) −5.08915e11 −1.86011
\(349\) 1.29123e11 0.465896 0.232948 0.972489i \(-0.425163\pi\)
0.232948 + 0.972489i \(0.425163\pi\)
\(350\) −6.01258e11 −2.14168
\(351\) 1.20084e11 0.422282
\(352\) −2.55960e11 −0.888650
\(353\) 6.74363e10 0.231157 0.115579 0.993298i \(-0.463128\pi\)
0.115579 + 0.993298i \(0.463128\pi\)
\(354\) 9.20521e11 3.11544
\(355\) −4.06398e11 −1.35808
\(356\) 4.04381e11 1.33434
\(357\) 3.41051e11 1.11125
\(358\) 3.88978e10 0.125156
\(359\) 4.52320e11 1.43721 0.718606 0.695417i \(-0.244780\pi\)
0.718606 + 0.695417i \(0.244780\pi\)
\(360\) 2.86845e11 0.900089
\(361\) 0 0
\(362\) −4.58955e11 −1.40469
\(363\) 2.91749e11 0.881920
\(364\) −3.74957e11 −1.11950
\(365\) 7.63077e10 0.225035
\(366\) −5.81451e11 −1.69375
\(367\) −1.69351e11 −0.487294 −0.243647 0.969864i \(-0.578344\pi\)
−0.243647 + 0.969864i \(0.578344\pi\)
\(368\) −1.20031e11 −0.341176
\(369\) 8.43893e11 2.36957
\(370\) 8.69510e10 0.241194
\(371\) −2.57560e11 −0.705824
\(372\) −3.49959e11 −0.947490
\(373\) −2.28609e11 −0.611510 −0.305755 0.952110i \(-0.598909\pi\)
−0.305755 + 0.952110i \(0.598909\pi\)
\(374\) −4.25026e11 −1.12329
\(375\) 1.24221e12 3.24380
\(376\) 8.27215e9 0.0213439
\(377\) −5.27695e11 −1.34538
\(378\) 1.18120e11 0.297585
\(379\) −5.28445e11 −1.31560 −0.657799 0.753193i \(-0.728513\pi\)
−0.657799 + 0.753193i \(0.728513\pi\)
\(380\) 0 0
\(381\) 8.05677e11 1.95884
\(382\) 8.58029e10 0.206166
\(383\) −1.24398e11 −0.295406 −0.147703 0.989032i \(-0.547188\pi\)
−0.147703 + 0.989032i \(0.547188\pi\)
\(384\) −5.06241e11 −1.18814
\(385\) 3.15642e11 0.732186
\(386\) 1.08428e12 2.48599
\(387\) −1.79474e11 −0.406727
\(388\) 3.66814e11 0.821680
\(389\) −3.46547e11 −0.767342 −0.383671 0.923470i \(-0.625340\pi\)
−0.383671 + 0.923470i \(0.625340\pi\)
\(390\) 2.51736e12 5.51003
\(391\) −2.83988e11 −0.614476
\(392\) 1.14639e11 0.245214
\(393\) 1.68654e11 0.356641
\(394\) −1.06993e12 −2.23678
\(395\) 1.58174e12 3.26925
\(396\) −4.80435e11 −0.981761
\(397\) 5.41660e11 1.09438 0.547192 0.837007i \(-0.315697\pi\)
0.547192 + 0.837007i \(0.315697\pi\)
\(398\) 5.47468e10 0.109367
\(399\) 0 0
\(400\) −7.36259e11 −1.43801
\(401\) 4.34240e11 0.838649 0.419325 0.907836i \(-0.362267\pi\)
0.419325 + 0.907836i \(0.362267\pi\)
\(402\) −8.42713e11 −1.60939
\(403\) −3.62873e11 −0.685302
\(404\) −2.82403e11 −0.527416
\(405\) 7.28015e11 1.34460
\(406\) −5.19065e11 −0.948101
\(407\) −3.14584e10 −0.0568280
\(408\) −4.03727e11 −0.721302
\(409\) −3.57810e11 −0.632263 −0.316131 0.948715i \(-0.602384\pi\)
−0.316131 + 0.948715i \(0.602384\pi\)
\(410\) 3.03837e12 5.31023
\(411\) 1.27969e11 0.221216
\(412\) 4.12331e11 0.705032
\(413\) 5.26281e11 0.890108
\(414\) −5.72679e11 −0.958097
\(415\) −6.34660e11 −1.05033
\(416\) −1.16710e12 −1.91068
\(417\) −6.23184e10 −0.100926
\(418\) 0 0
\(419\) −3.09461e11 −0.490504 −0.245252 0.969459i \(-0.578871\pi\)
−0.245252 + 0.969459i \(0.578871\pi\)
\(420\) 1.38801e12 2.17656
\(421\) 2.05249e11 0.318428 0.159214 0.987244i \(-0.449104\pi\)
0.159214 + 0.987244i \(0.449104\pi\)
\(422\) 1.43240e12 2.19867
\(423\) −4.08260e10 −0.0620019
\(424\) 3.04893e11 0.458142
\(425\) −1.74196e12 −2.58992
\(426\) 1.15346e12 1.69692
\(427\) −3.32428e11 −0.483918
\(428\) 7.79751e11 1.12321
\(429\) −9.10767e11 −1.29822
\(430\) −6.46184e11 −0.911482
\(431\) 8.36945e11 1.16829 0.584143 0.811650i \(-0.301431\pi\)
0.584143 + 0.811650i \(0.301431\pi\)
\(432\) 1.44642e11 0.199810
\(433\) 1.54146e11 0.210735 0.105367 0.994433i \(-0.466398\pi\)
0.105367 + 0.994433i \(0.466398\pi\)
\(434\) −3.56939e11 −0.482937
\(435\) 1.95341e12 2.61572
\(436\) −1.75940e11 −0.233171
\(437\) 0 0
\(438\) −2.16581e11 −0.281181
\(439\) 2.94967e11 0.379038 0.189519 0.981877i \(-0.439307\pi\)
0.189519 + 0.981877i \(0.439307\pi\)
\(440\) −3.73648e11 −0.475254
\(441\) −5.65784e11 −0.712323
\(442\) −1.93798e12 −2.41518
\(443\) −1.22510e12 −1.51131 −0.755655 0.654970i \(-0.772681\pi\)
−0.755655 + 0.654970i \(0.772681\pi\)
\(444\) −1.38336e11 −0.168932
\(445\) −1.55216e12 −1.87636
\(446\) −4.24503e11 −0.508012
\(447\) 1.77574e12 2.10376
\(448\) −7.93932e11 −0.931177
\(449\) 1.38448e12 1.60760 0.803802 0.594897i \(-0.202807\pi\)
0.803802 + 0.594897i \(0.202807\pi\)
\(450\) −3.51275e12 −4.03823
\(451\) −1.09927e12 −1.25115
\(452\) −3.05312e11 −0.344049
\(453\) −5.42377e10 −0.0605145
\(454\) 1.91284e12 2.11314
\(455\) 1.43922e12 1.57426
\(456\) 0 0
\(457\) 1.41558e12 1.51814 0.759070 0.651009i \(-0.225654\pi\)
0.759070 + 0.651009i \(0.225654\pi\)
\(458\) −1.74122e12 −1.84909
\(459\) 3.42216e11 0.359868
\(460\) −1.15577e12 −1.20354
\(461\) 9.94561e10 0.102560 0.0512799 0.998684i \(-0.483670\pi\)
0.0512799 + 0.998684i \(0.483670\pi\)
\(462\) −8.95873e11 −0.914866
\(463\) 9.82855e11 0.993974 0.496987 0.867758i \(-0.334440\pi\)
0.496987 + 0.867758i \(0.334440\pi\)
\(464\) −6.35611e11 −0.636591
\(465\) 1.34327e12 1.33237
\(466\) −2.74068e12 −2.69229
\(467\) −1.82782e12 −1.77831 −0.889157 0.457603i \(-0.848708\pi\)
−0.889157 + 0.457603i \(0.848708\pi\)
\(468\) −2.19063e12 −2.11087
\(469\) −4.81796e11 −0.459818
\(470\) −1.46991e11 −0.138947
\(471\) 8.62969e10 0.0807981
\(472\) −6.22997e11 −0.577759
\(473\) 2.33786e11 0.214755
\(474\) −4.48939e12 −4.08493
\(475\) 0 0
\(476\) −1.06856e12 −0.954038
\(477\) −1.50475e12 −1.33086
\(478\) −4.29476e11 −0.376282
\(479\) 1.99914e12 1.73513 0.867567 0.497321i \(-0.165683\pi\)
0.867567 + 0.497321i \(0.165683\pi\)
\(480\) 4.32033e12 3.71477
\(481\) −1.43440e11 −0.122185
\(482\) −1.52885e12 −1.29019
\(483\) −5.98592e11 −0.500459
\(484\) −9.14084e11 −0.757150
\(485\) −1.40797e12 −1.15546
\(486\) −2.63787e12 −2.14482
\(487\) 1.44418e12 1.16343 0.581716 0.813392i \(-0.302382\pi\)
0.581716 + 0.813392i \(0.302382\pi\)
\(488\) 3.93519e11 0.314106
\(489\) 1.30603e12 1.03291
\(490\) −2.03706e12 −1.59633
\(491\) −1.53011e12 −1.18811 −0.594056 0.804424i \(-0.702474\pi\)
−0.594056 + 0.804424i \(0.702474\pi\)
\(492\) −4.83393e12 −3.71927
\(493\) −1.50383e12 −1.14653
\(494\) 0 0
\(495\) 1.84409e12 1.38057
\(496\) −4.37083e11 −0.324262
\(497\) 6.59458e11 0.484824
\(498\) 1.80133e12 1.31238
\(499\) −3.25360e8 −0.000234915 0 −0.000117458 1.00000i \(-0.500037\pi\)
−0.000117458 1.00000i \(0.500037\pi\)
\(500\) −3.89199e12 −2.78488
\(501\) 2.59141e12 1.83767
\(502\) 2.53004e12 1.77812
\(503\) 5.20981e11 0.362882 0.181441 0.983402i \(-0.441924\pi\)
0.181441 + 0.983402i \(0.441924\pi\)
\(504\) −4.65460e11 −0.321325
\(505\) 1.08397e12 0.741660
\(506\) 7.45980e11 0.505883
\(507\) −1.94239e12 −1.30557
\(508\) −2.52428e12 −1.68171
\(509\) 6.70739e11 0.442918 0.221459 0.975170i \(-0.428918\pi\)
0.221459 + 0.975170i \(0.428918\pi\)
\(510\) 7.17398e12 4.69563
\(511\) −1.23824e11 −0.0803360
\(512\) −1.82493e12 −1.17363
\(513\) 0 0
\(514\) 3.19671e12 2.02008
\(515\) −1.58268e12 −0.991427
\(516\) 1.02805e12 0.638399
\(517\) 5.31806e10 0.0327375
\(518\) −1.41095e11 −0.0861046
\(519\) 4.92020e11 0.297666
\(520\) −1.70371e12 −1.02184
\(521\) −2.52718e12 −1.50268 −0.751339 0.659917i \(-0.770592\pi\)
−0.751339 + 0.659917i \(0.770592\pi\)
\(522\) −3.03255e12 −1.78769
\(523\) 1.06654e12 0.623333 0.311666 0.950192i \(-0.399113\pi\)
0.311666 + 0.950192i \(0.399113\pi\)
\(524\) −5.28414e11 −0.306185
\(525\) −3.67170e12 −2.10936
\(526\) 2.66417e12 1.51749
\(527\) −1.03412e12 −0.584013
\(528\) −1.09702e12 −0.614276
\(529\) −1.30271e12 −0.723267
\(530\) −5.41775e12 −2.98248
\(531\) 3.07471e12 1.67834
\(532\) 0 0
\(533\) −5.01231e12 −2.69008
\(534\) 4.40544e12 2.34452
\(535\) −2.99297e12 −1.57947
\(536\) 5.70337e11 0.298463
\(537\) 2.37537e11 0.123267
\(538\) 2.41009e12 1.24026
\(539\) 7.36998e11 0.376112
\(540\) 1.39275e12 0.704855
\(541\) 1.68314e12 0.844758 0.422379 0.906419i \(-0.361195\pi\)
0.422379 + 0.906419i \(0.361195\pi\)
\(542\) 1.18901e12 0.591819
\(543\) −2.80270e12 −1.38349
\(544\) −3.32600e12 −1.62827
\(545\) 6.75322e11 0.327889
\(546\) −4.08489e12 −1.96704
\(547\) −2.61181e12 −1.24738 −0.623690 0.781672i \(-0.714367\pi\)
−0.623690 + 0.781672i \(0.714367\pi\)
\(548\) −4.00942e11 −0.189919
\(549\) −1.94215e12 −0.912448
\(550\) 4.57577e12 2.13222
\(551\) 0 0
\(552\) 7.08597e11 0.324843
\(553\) −2.56668e12 −1.16710
\(554\) 6.11847e11 0.275962
\(555\) 5.30984e11 0.237554
\(556\) 1.95251e11 0.0866476
\(557\) −5.23423e11 −0.230412 −0.115206 0.993342i \(-0.536753\pi\)
−0.115206 + 0.993342i \(0.536753\pi\)
\(558\) −2.08536e12 −0.910598
\(559\) 1.06599e12 0.461742
\(560\) 1.73355e12 0.744889
\(561\) −2.59551e12 −1.10634
\(562\) 2.08853e12 0.883135
\(563\) −2.15892e12 −0.905625 −0.452813 0.891606i \(-0.649579\pi\)
−0.452813 + 0.891606i \(0.649579\pi\)
\(564\) 2.33857e11 0.0973182
\(565\) 1.17190e12 0.483807
\(566\) 6.16458e12 2.52481
\(567\) −1.18134e12 −0.480012
\(568\) −7.80649e11 −0.314694
\(569\) −3.81657e11 −0.152640 −0.0763199 0.997083i \(-0.524317\pi\)
−0.0763199 + 0.997083i \(0.524317\pi\)
\(570\) 0 0
\(571\) 4.13241e12 1.62683 0.813413 0.581687i \(-0.197607\pi\)
0.813413 + 0.581687i \(0.197607\pi\)
\(572\) 2.85354e12 1.11456
\(573\) 5.23972e11 0.203055
\(574\) −4.93034e12 −1.89572
\(575\) 3.05737e12 1.16639
\(576\) −4.63842e12 −1.75577
\(577\) −3.52348e12 −1.32337 −0.661684 0.749783i \(-0.730158\pi\)
−0.661684 + 0.749783i \(0.730158\pi\)
\(578\) −1.47510e12 −0.549727
\(579\) 6.62139e12 2.44847
\(580\) −6.12026e12 −2.24566
\(581\) 1.02986e12 0.374959
\(582\) 3.99617e12 1.44375
\(583\) 1.96011e12 0.702705
\(584\) 1.46579e11 0.0521452
\(585\) 8.40844e12 2.96834
\(586\) −5.18947e11 −0.181796
\(587\) −1.02613e12 −0.356721 −0.178361 0.983965i \(-0.557079\pi\)
−0.178361 + 0.983965i \(0.557079\pi\)
\(588\) 3.24088e12 1.11806
\(589\) 0 0
\(590\) 1.10703e13 3.76118
\(591\) −6.53375e12 −2.20302
\(592\) −1.72775e11 −0.0578139
\(593\) −2.00737e12 −0.666626 −0.333313 0.942816i \(-0.608167\pi\)
−0.333313 + 0.942816i \(0.608167\pi\)
\(594\) −8.98932e11 −0.296270
\(595\) 4.10151e12 1.34158
\(596\) −5.56362e12 −1.80613
\(597\) 3.34322e11 0.107716
\(598\) 3.40143e12 1.08769
\(599\) 5.91194e11 0.187633 0.0938165 0.995590i \(-0.470093\pi\)
0.0938165 + 0.995590i \(0.470093\pi\)
\(600\) 4.34646e12 1.36916
\(601\) −2.13322e11 −0.0666961 −0.0333481 0.999444i \(-0.510617\pi\)
−0.0333481 + 0.999444i \(0.510617\pi\)
\(602\) 1.04856e12 0.325393
\(603\) −2.81482e12 −0.867007
\(604\) 1.69933e11 0.0519532
\(605\) 3.50859e12 1.06472
\(606\) −3.07658e12 −0.926704
\(607\) −2.87264e12 −0.858880 −0.429440 0.903095i \(-0.641289\pi\)
−0.429440 + 0.903095i \(0.641289\pi\)
\(608\) 0 0
\(609\) −3.16977e12 −0.933793
\(610\) −6.99258e12 −2.04481
\(611\) 2.42486e11 0.0703885
\(612\) −6.24286e12 −1.79888
\(613\) −6.05905e12 −1.73313 −0.866567 0.499060i \(-0.833679\pi\)
−0.866567 + 0.499060i \(0.833679\pi\)
\(614\) 5.24224e12 1.48853
\(615\) 1.85544e13 5.23009
\(616\) 6.06315e11 0.169662
\(617\) 1.30247e12 0.361812 0.180906 0.983500i \(-0.442097\pi\)
0.180906 + 0.983500i \(0.442097\pi\)
\(618\) 4.49206e12 1.23879
\(619\) −1.00261e11 −0.0274489 −0.0137245 0.999906i \(-0.504369\pi\)
−0.0137245 + 0.999906i \(0.504369\pi\)
\(620\) −4.20864e12 −1.14388
\(621\) −6.00636e11 −0.162069
\(622\) −2.43815e11 −0.0653136
\(623\) 2.51868e12 0.669849
\(624\) −5.00207e12 −1.32075
\(625\) 6.48082e12 1.69891
\(626\) 3.50328e12 0.911780
\(627\) 0 0
\(628\) −2.70379e11 −0.0693672
\(629\) −4.08777e11 −0.104126
\(630\) 8.27093e12 2.09181
\(631\) −6.06750e11 −0.152362 −0.0761812 0.997094i \(-0.524273\pi\)
−0.0761812 + 0.997094i \(0.524273\pi\)
\(632\) 3.03836e12 0.757552
\(633\) 8.74726e12 2.16549
\(634\) −9.28910e11 −0.228335
\(635\) 9.68914e12 2.36485
\(636\) 8.61943e12 2.08892
\(637\) 3.36047e12 0.808673
\(638\) 3.95025e12 0.943912
\(639\) 3.85278e12 0.914156
\(640\) −6.08810e12 −1.43440
\(641\) 5.03899e12 1.17891 0.589457 0.807800i \(-0.299342\pi\)
0.589457 + 0.807800i \(0.299342\pi\)
\(642\) 8.49483e12 1.97355
\(643\) 3.67766e12 0.848442 0.424221 0.905559i \(-0.360548\pi\)
0.424221 + 0.905559i \(0.360548\pi\)
\(644\) 1.87546e12 0.429657
\(645\) −3.94605e12 −0.897726
\(646\) 0 0
\(647\) 1.29323e11 0.0290139 0.0145070 0.999895i \(-0.495382\pi\)
0.0145070 + 0.999895i \(0.495382\pi\)
\(648\) 1.39844e12 0.311571
\(649\) −4.00517e12 −0.886175
\(650\) 2.08640e13 4.58446
\(651\) −2.17972e12 −0.475648
\(652\) −4.09195e12 −0.886781
\(653\) −5.47148e12 −1.17759 −0.588796 0.808281i \(-0.700398\pi\)
−0.588796 + 0.808281i \(0.700398\pi\)
\(654\) −1.91674e12 −0.409697
\(655\) 2.02825e12 0.430562
\(656\) −6.03735e12 −1.27286
\(657\) −7.23420e11 −0.151477
\(658\) 2.38521e11 0.0496032
\(659\) 5.72024e12 1.18149 0.590744 0.806859i \(-0.298834\pi\)
0.590744 + 0.806859i \(0.298834\pi\)
\(660\) −1.05632e13 −2.16694
\(661\) 3.56131e12 0.725610 0.362805 0.931865i \(-0.381819\pi\)
0.362805 + 0.931865i \(0.381819\pi\)
\(662\) 1.08808e12 0.220191
\(663\) −1.18347e13 −2.37873
\(664\) −1.21912e12 −0.243382
\(665\) 0 0
\(666\) −8.24322e11 −0.162354
\(667\) 2.63942e12 0.516349
\(668\) −8.11921e12 −1.57768
\(669\) −2.59231e12 −0.500345
\(670\) −1.01345e13 −1.94297
\(671\) 2.52988e12 0.481780
\(672\) −7.01056e12 −1.32615
\(673\) −1.33660e12 −0.251151 −0.125575 0.992084i \(-0.540078\pi\)
−0.125575 + 0.992084i \(0.540078\pi\)
\(674\) −1.49151e13 −2.78392
\(675\) −3.68424e12 −0.683095
\(676\) 6.08575e12 1.12087
\(677\) 1.01411e13 1.85539 0.927694 0.373343i \(-0.121788\pi\)
0.927694 + 0.373343i \(0.121788\pi\)
\(678\) −3.32615e12 −0.604517
\(679\) 2.28469e12 0.412491
\(680\) −4.85525e12 −0.870807
\(681\) 1.16811e13 2.08124
\(682\) 2.71642e12 0.480803
\(683\) −8.19823e12 −1.44154 −0.720770 0.693174i \(-0.756212\pi\)
−0.720770 + 0.693174i \(0.756212\pi\)
\(684\) 0 0
\(685\) 1.53896e12 0.267067
\(686\) 8.90827e12 1.53580
\(687\) −1.06331e13 −1.82118
\(688\) 1.28399e12 0.218481
\(689\) 8.93749e12 1.51088
\(690\) −1.25913e13 −2.11471
\(691\) 7.58904e12 1.26630 0.633148 0.774031i \(-0.281762\pi\)
0.633148 + 0.774031i \(0.281762\pi\)
\(692\) −1.54156e12 −0.255554
\(693\) −2.99238e12 −0.492853
\(694\) −2.85717e12 −0.467540
\(695\) −7.49446e11 −0.121845
\(696\) 3.75229e12 0.606115
\(697\) −1.42841e13 −2.29248
\(698\) −4.40737e12 −0.702798
\(699\) −1.67365e13 −2.65165
\(700\) 1.15039e13 1.81094
\(701\) −5.16852e12 −0.808417 −0.404208 0.914667i \(-0.632453\pi\)
−0.404208 + 0.914667i \(0.632453\pi\)
\(702\) −4.09884e12 −0.637007
\(703\) 0 0
\(704\) 6.04207e12 0.927063
\(705\) −8.97629e11 −0.136850
\(706\) −2.30181e12 −0.348697
\(707\) −1.75894e12 −0.264767
\(708\) −1.76124e13 −2.63432
\(709\) −1.21897e13 −1.81170 −0.905848 0.423604i \(-0.860765\pi\)
−0.905848 + 0.423604i \(0.860765\pi\)
\(710\) 1.38716e13 2.04864
\(711\) −1.49954e13 −2.20062
\(712\) −2.98154e12 −0.434792
\(713\) 1.81502e12 0.263014
\(714\) −1.16411e13 −1.67631
\(715\) −1.09530e13 −1.56731
\(716\) −7.44233e11 −0.105828
\(717\) −2.62268e12 −0.370604
\(718\) −1.54391e13 −2.16801
\(719\) 7.19508e12 1.00405 0.502025 0.864853i \(-0.332588\pi\)
0.502025 + 0.864853i \(0.332588\pi\)
\(720\) 1.01280e13 1.40452
\(721\) 2.56820e12 0.353933
\(722\) 0 0
\(723\) −9.33623e12 −1.27072
\(724\) 8.78120e12 1.18776
\(725\) 1.61900e13 2.17633
\(726\) −9.95829e12 −1.33036
\(727\) 2.69280e12 0.357520 0.178760 0.983893i \(-0.442791\pi\)
0.178760 + 0.983893i \(0.442791\pi\)
\(728\) 2.76460e12 0.364789
\(729\) −1.03922e13 −1.36281
\(730\) −2.60462e12 −0.339462
\(731\) 3.03786e12 0.393496
\(732\) 1.11249e13 1.43218
\(733\) 1.42163e12 0.181894 0.0909470 0.995856i \(-0.471011\pi\)
0.0909470 + 0.995856i \(0.471011\pi\)
\(734\) 5.78048e12 0.735075
\(735\) −1.24397e13 −1.57224
\(736\) 5.83759e12 0.733303
\(737\) 3.66662e12 0.457786
\(738\) −2.88047e13 −3.57445
\(739\) 1.01945e13 1.25737 0.628687 0.777659i \(-0.283593\pi\)
0.628687 + 0.777659i \(0.283593\pi\)
\(740\) −1.66364e12 −0.203946
\(741\) 0 0
\(742\) 8.79133e12 1.06472
\(743\) 6.41623e12 0.772378 0.386189 0.922420i \(-0.373791\pi\)
0.386189 + 0.922420i \(0.373791\pi\)
\(744\) 2.58029e12 0.308738
\(745\) 2.13552e13 2.53981
\(746\) 7.80313e12 0.922453
\(747\) 6.01677e12 0.707002
\(748\) 8.13204e12 0.949822
\(749\) 4.85667e12 0.563859
\(750\) −4.24005e13 −4.89323
\(751\) 7.84873e12 0.900367 0.450183 0.892936i \(-0.351359\pi\)
0.450183 + 0.892936i \(0.351359\pi\)
\(752\) 2.92076e11 0.0333055
\(753\) 1.54502e13 1.75128
\(754\) 1.80119e13 2.02949
\(755\) −6.52268e11 −0.0730574
\(756\) −2.26000e12 −0.251628
\(757\) −1.77164e13 −1.96085 −0.980425 0.196892i \(-0.936915\pi\)
−0.980425 + 0.196892i \(0.936915\pi\)
\(758\) 1.80375e13 1.98456
\(759\) 4.55548e12 0.498248
\(760\) 0 0
\(761\) −1.63568e11 −0.0176794 −0.00883972 0.999961i \(-0.502814\pi\)
−0.00883972 + 0.999961i \(0.502814\pi\)
\(762\) −2.75003e13 −2.95488
\(763\) −1.09584e12 −0.117054
\(764\) −1.64167e12 −0.174327
\(765\) 2.39624e13 2.52961
\(766\) 4.24610e12 0.445616
\(767\) −1.82623e13 −1.90535
\(768\) −3.55061e12 −0.368279
\(769\) 1.12646e13 1.16157 0.580786 0.814056i \(-0.302745\pi\)
0.580786 + 0.814056i \(0.302745\pi\)
\(770\) −1.07738e13 −1.10449
\(771\) 1.95213e13 1.98959
\(772\) −2.07456e13 −2.10208
\(773\) −1.83700e12 −0.185056 −0.0925278 0.995710i \(-0.529495\pi\)
−0.0925278 + 0.995710i \(0.529495\pi\)
\(774\) 6.12602e12 0.613542
\(775\) 1.11331e13 1.10856
\(776\) −2.70456e12 −0.267743
\(777\) −8.61622e11 −0.0848052
\(778\) 1.18287e13 1.15752
\(779\) 0 0
\(780\) −4.81646e13 −4.65911
\(781\) −5.01869e12 −0.482681
\(782\) 9.69341e12 0.926928
\(783\) −3.18060e12 −0.302399
\(784\) 4.04771e12 0.382637
\(785\) 1.03781e12 0.0975452
\(786\) −5.75670e12 −0.537987
\(787\) −5.98053e11 −0.0555716 −0.0277858 0.999614i \(-0.508846\pi\)
−0.0277858 + 0.999614i \(0.508846\pi\)
\(788\) 2.04710e13 1.89135
\(789\) 1.62693e13 1.49459
\(790\) −5.39897e13 −4.93162
\(791\) −1.90163e12 −0.172716
\(792\) 3.54230e12 0.319906
\(793\) 1.15354e13 1.03587
\(794\) −1.84885e13 −1.65086
\(795\) −3.30846e13 −2.93747
\(796\) −1.04747e12 −0.0924769
\(797\) −9.81580e12 −0.861715 −0.430857 0.902420i \(-0.641789\pi\)
−0.430857 + 0.902420i \(0.641789\pi\)
\(798\) 0 0
\(799\) 6.91039e11 0.0599849
\(800\) 3.58072e13 3.09076
\(801\) 1.47150e13 1.26303
\(802\) −1.48220e13 −1.26509
\(803\) 9.42338e11 0.0799810
\(804\) 1.61236e13 1.36085
\(805\) −7.19872e12 −0.604190
\(806\) 1.23860e13 1.03377
\(807\) 1.47177e13 1.22154
\(808\) 2.08219e12 0.171858
\(809\) 1.46061e12 0.119886 0.0599429 0.998202i \(-0.480908\pi\)
0.0599429 + 0.998202i \(0.480908\pi\)
\(810\) −2.48494e13 −2.02831
\(811\) 7.20885e11 0.0585157 0.0292579 0.999572i \(-0.490686\pi\)
0.0292579 + 0.999572i \(0.490686\pi\)
\(812\) 9.93129e12 0.801684
\(813\) 7.26093e12 0.582888
\(814\) 1.07377e12 0.0857242
\(815\) 1.57064e13 1.24701
\(816\) −1.42549e13 −1.12554
\(817\) 0 0
\(818\) 1.22132e13 0.953759
\(819\) −1.36443e13 −1.05968
\(820\) −5.81333e13 −4.49016
\(821\) −9.58084e12 −0.735969 −0.367984 0.929832i \(-0.619952\pi\)
−0.367984 + 0.929832i \(0.619952\pi\)
\(822\) −4.36797e12 −0.333700
\(823\) 5.01674e12 0.381173 0.190586 0.981670i \(-0.438961\pi\)
0.190586 + 0.981670i \(0.438961\pi\)
\(824\) −3.04017e12 −0.229734
\(825\) 2.79428e13 2.10004
\(826\) −1.79636e13 −1.34271
\(827\) −9.34995e11 −0.0695080 −0.0347540 0.999396i \(-0.511065\pi\)
−0.0347540 + 0.999396i \(0.511065\pi\)
\(828\) 1.09571e13 0.810137
\(829\) 1.49880e13 1.10217 0.551085 0.834449i \(-0.314214\pi\)
0.551085 + 0.834449i \(0.314214\pi\)
\(830\) 2.16629e13 1.58440
\(831\) 3.73637e12 0.271797
\(832\) 2.75499e13 1.99327
\(833\) 9.57670e12 0.689149
\(834\) 2.12712e12 0.152246
\(835\) 3.11646e13 2.21856
\(836\) 0 0
\(837\) −2.18716e12 −0.154034
\(838\) 1.05629e13 0.739918
\(839\) 1.58708e13 1.10578 0.552892 0.833253i \(-0.313524\pi\)
0.552892 + 0.833253i \(0.313524\pi\)
\(840\) −1.02339e13 −0.709228
\(841\) −5.30382e11 −0.0365601
\(842\) −7.00579e12 −0.480344
\(843\) 1.27540e13 0.869808
\(844\) −2.74062e13 −1.85912
\(845\) −2.33594e13 −1.57618
\(846\) 1.39352e12 0.0935290
\(847\) −5.69336e12 −0.380096
\(848\) 1.07653e13 0.714897
\(849\) 3.76452e13 2.48671
\(850\) 5.94584e13 3.90686
\(851\) 7.17460e11 0.0468937
\(852\) −2.20692e13 −1.43486
\(853\) −3.63511e12 −0.235097 −0.117549 0.993067i \(-0.537504\pi\)
−0.117549 + 0.993067i \(0.537504\pi\)
\(854\) 1.13468e13 0.729983
\(855\) 0 0
\(856\) −5.74919e12 −0.365995
\(857\) 2.33818e13 1.48069 0.740345 0.672227i \(-0.234662\pi\)
0.740345 + 0.672227i \(0.234662\pi\)
\(858\) 3.10873e13 1.95835
\(859\) −2.68917e13 −1.68519 −0.842595 0.538547i \(-0.818973\pi\)
−0.842595 + 0.538547i \(0.818973\pi\)
\(860\) 1.23635e13 0.770720
\(861\) −3.01081e13 −1.86711
\(862\) −2.85676e13 −1.76234
\(863\) −2.63772e13 −1.61875 −0.809375 0.587293i \(-0.800194\pi\)
−0.809375 + 0.587293i \(0.800194\pi\)
\(864\) −7.03450e12 −0.429459
\(865\) 5.91707e12 0.359364
\(866\) −5.26147e12 −0.317890
\(867\) −9.00800e12 −0.541430
\(868\) 6.82932e12 0.408356
\(869\) 1.95332e13 1.16194
\(870\) −6.66758e13 −3.94577
\(871\) 1.67186e13 0.984280
\(872\) 1.29722e12 0.0759784
\(873\) 1.33480e13 0.777769
\(874\) 0 0
\(875\) −2.42413e13 −1.39804
\(876\) 4.14385e12 0.237758
\(877\) 6.08610e12 0.347409 0.173704 0.984798i \(-0.444426\pi\)
0.173704 + 0.984798i \(0.444426\pi\)
\(878\) −1.00681e13 −0.571773
\(879\) −3.16905e12 −0.179052
\(880\) −1.31929e13 −0.741597
\(881\) −2.57026e13 −1.43743 −0.718713 0.695307i \(-0.755269\pi\)
−0.718713 + 0.695307i \(0.755269\pi\)
\(882\) 1.93120e13 1.07453
\(883\) −1.20949e13 −0.669543 −0.334771 0.942299i \(-0.608659\pi\)
−0.334771 + 0.942299i \(0.608659\pi\)
\(884\) 3.70795e13 2.04220
\(885\) 6.76028e13 3.70442
\(886\) 4.18164e13 2.27979
\(887\) −2.23314e13 −1.21132 −0.605661 0.795723i \(-0.707091\pi\)
−0.605661 + 0.795723i \(0.707091\pi\)
\(888\) 1.01996e12 0.0550461
\(889\) −1.57225e13 −0.844234
\(890\) 5.29802e13 2.83047
\(891\) 8.99040e12 0.477892
\(892\) 8.12203e12 0.429559
\(893\) 0 0
\(894\) −6.06117e13 −3.17349
\(895\) 2.85664e12 0.148817
\(896\) 9.87910e12 0.512072
\(897\) 2.07715e13 1.07128
\(898\) −4.72567e13 −2.42505
\(899\) 9.61122e12 0.490750
\(900\) 6.72096e13 3.41460
\(901\) 2.54701e13 1.28757
\(902\) 3.75214e13 1.88734
\(903\) 6.40322e12 0.320482
\(904\) 2.25110e12 0.112108
\(905\) −3.37055e13 −1.67025
\(906\) 1.85130e12 0.0912853
\(907\) −3.16396e13 −1.55238 −0.776190 0.630500i \(-0.782850\pi\)
−0.776190 + 0.630500i \(0.782850\pi\)
\(908\) −3.65984e13 −1.78680
\(909\) −1.02763e13 −0.499231
\(910\) −4.91252e13 −2.37475
\(911\) −2.77199e13 −1.33340 −0.666698 0.745328i \(-0.732293\pi\)
−0.666698 + 0.745328i \(0.732293\pi\)
\(912\) 0 0
\(913\) −7.83754e12 −0.373303
\(914\) −4.83182e13 −2.29009
\(915\) −4.27016e13 −2.01395
\(916\) 3.33147e13 1.56353
\(917\) −3.29122e12 −0.153708
\(918\) −1.16809e13 −0.542855
\(919\) 1.66068e13 0.768008 0.384004 0.923331i \(-0.374545\pi\)
0.384004 + 0.923331i \(0.374545\pi\)
\(920\) 8.52164e12 0.392173
\(921\) 3.20128e13 1.46607
\(922\) −3.39475e12 −0.154710
\(923\) −2.28836e13 −1.03781
\(924\) 1.71408e13 0.773582
\(925\) 4.40083e12 0.197650
\(926\) −3.35479e13 −1.49939
\(927\) 1.50043e13 0.667355
\(928\) 3.09123e13 1.36825
\(929\) −6.20497e12 −0.273319 −0.136659 0.990618i \(-0.543637\pi\)
−0.136659 + 0.990618i \(0.543637\pi\)
\(930\) −4.58501e13 −2.00987
\(931\) 0 0
\(932\) 5.24374e13 2.27651
\(933\) −1.48890e12 −0.0643279
\(934\) 6.23893e13 2.68256
\(935\) −3.12138e13 −1.33566
\(936\) 1.61517e13 0.687825
\(937\) −8.96609e12 −0.379992 −0.189996 0.981785i \(-0.560848\pi\)
−0.189996 + 0.981785i \(0.560848\pi\)
\(938\) 1.64452e13 0.693628
\(939\) 2.13935e13 0.898020
\(940\) 2.81238e12 0.117489
\(941\) −3.53782e13 −1.47090 −0.735450 0.677580i \(-0.763029\pi\)
−0.735450 + 0.677580i \(0.763029\pi\)
\(942\) −2.94558e12 −0.121883
\(943\) 2.50706e13 1.03243
\(944\) −2.19970e13 −0.901549
\(945\) 8.67471e12 0.353844
\(946\) −7.97985e12 −0.323955
\(947\) 4.19688e13 1.69571 0.847854 0.530230i \(-0.177894\pi\)
0.847854 + 0.530230i \(0.177894\pi\)
\(948\) 8.58956e13 3.45409
\(949\) 4.29676e12 0.171966
\(950\) 0 0
\(951\) −5.67258e12 −0.224889
\(952\) 7.87858e12 0.310872
\(953\) −2.65644e13 −1.04323 −0.521617 0.853180i \(-0.674671\pi\)
−0.521617 + 0.853180i \(0.674671\pi\)
\(954\) 5.13619e13 2.00758
\(955\) 6.30134e12 0.245142
\(956\) 8.21718e12 0.318172
\(957\) 2.41230e13 0.929667
\(958\) −6.82368e13 −2.61742
\(959\) −2.49726e12 −0.0953411
\(960\) −1.01984e14 −3.87534
\(961\) −1.98304e13 −0.750026
\(962\) 4.89607e12 0.184314
\(963\) 2.83743e13 1.06318
\(964\) 2.92516e13 1.09094
\(965\) 7.96294e13 2.95597
\(966\) 2.04318e13 0.754936
\(967\) −1.49735e13 −0.550685 −0.275343 0.961346i \(-0.588791\pi\)
−0.275343 + 0.961346i \(0.588791\pi\)
\(968\) 6.73964e12 0.246716
\(969\) 0 0
\(970\) 4.80583e13 1.74299
\(971\) 4.02523e13 1.45313 0.726565 0.687097i \(-0.241115\pi\)
0.726565 + 0.687097i \(0.241115\pi\)
\(972\) 5.04704e13 1.81359
\(973\) 1.21612e12 0.0434979
\(974\) −4.92944e13 −1.75502
\(975\) 1.27410e14 4.51527
\(976\) 1.38945e13 0.490138
\(977\) 2.48678e12 0.0873198 0.0436599 0.999046i \(-0.486098\pi\)
0.0436599 + 0.999046i \(0.486098\pi\)
\(978\) −4.45789e13 −1.55813
\(979\) −1.91680e13 −0.666889
\(980\) 3.89751e13 1.34980
\(981\) −6.40226e12 −0.220710
\(982\) 5.22276e13 1.79225
\(983\) −1.73760e12 −0.0593552 −0.0296776 0.999560i \(-0.509448\pi\)
−0.0296776 + 0.999560i \(0.509448\pi\)
\(984\) 3.56411e13 1.21192
\(985\) −7.85754e13 −2.65964
\(986\) 5.13303e13 1.72953
\(987\) 1.45657e12 0.0488546
\(988\) 0 0
\(989\) −5.33187e12 −0.177213
\(990\) −6.29444e13 −2.08257
\(991\) −4.68023e13 −1.54147 −0.770735 0.637155i \(-0.780111\pi\)
−0.770735 + 0.637155i \(0.780111\pi\)
\(992\) 2.12571e13 0.696948
\(993\) 6.64457e12 0.216868
\(994\) −2.25094e13 −0.731349
\(995\) 4.02058e12 0.130042
\(996\) −3.44649e13 −1.10971
\(997\) −1.43322e13 −0.459394 −0.229697 0.973262i \(-0.573774\pi\)
−0.229697 + 0.973262i \(0.573774\pi\)
\(998\) 1.11055e10 0.000354366 0
\(999\) −8.64565e11 −0.0274633
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 361.10.a.f.1.2 14
19.8 odd 6 19.10.c.a.7.2 28
19.12 odd 6 19.10.c.a.11.2 yes 28
19.18 odd 2 361.10.a.e.1.13 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
19.10.c.a.7.2 28 19.8 odd 6
19.10.c.a.11.2 yes 28 19.12 odd 6
361.10.a.e.1.13 14 19.18 odd 2
361.10.a.f.1.2 14 1.1 even 1 trivial