Properties

Label 361.10.a.f.1.14
Level $361$
Weight $10$
Character 361.1
Self dual yes
Analytic conductor $185.928$
Analytic rank $0$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [361,10,Mod(1,361)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(361, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("361.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 361 = 19^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 361.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,15] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(185.927936855\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - x^{13} - 5069 x^{12} + 6049 x^{11} + 9806858 x^{10} - 13799702 x^{9} - 9054174058 x^{8} + \cdots - 17\!\cdots\!44 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{4}\cdot 19 \)
Twist minimal: no (minimal twist has level 19)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Root \(39.3897\) of defining polynomial
Character \(\chi\) \(=\) 361.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+40.3897 q^{2} -130.181 q^{3} +1119.32 q^{4} -1773.63 q^{5} -5257.96 q^{6} -9612.95 q^{7} +24529.6 q^{8} -2735.95 q^{9} -71636.1 q^{10} -50797.0 q^{11} -145715. q^{12} +21423.0 q^{13} -388264. q^{14} +230892. q^{15} +417648. q^{16} -464495. q^{17} -110504. q^{18} -1.98526e6 q^{20} +1.25142e6 q^{21} -2.05167e6 q^{22} +107093. q^{23} -3.19329e6 q^{24} +1.19262e6 q^{25} +865267. q^{26} +2.91852e6 q^{27} -1.07600e7 q^{28} -4.47852e6 q^{29} +9.32565e6 q^{30} -8.18175e6 q^{31} +4.30952e6 q^{32} +6.61279e6 q^{33} -1.87608e7 q^{34} +1.70498e7 q^{35} -3.06241e6 q^{36} -1.82843e7 q^{37} -2.78886e6 q^{39} -4.35063e7 q^{40} -2.60375e6 q^{41} +5.05445e7 q^{42} +1.06336e7 q^{43} -5.68583e7 q^{44} +4.85254e6 q^{45} +4.32545e6 q^{46} +5.45915e7 q^{47} -5.43698e7 q^{48} +5.20552e7 q^{49} +4.81696e7 q^{50} +6.04683e7 q^{51} +2.39793e7 q^{52} +1.89840e7 q^{53} +1.17878e8 q^{54} +9.00948e7 q^{55} -2.35802e8 q^{56} -1.80886e8 q^{58} -4.37047e7 q^{59} +2.58443e8 q^{60} -1.99367e7 q^{61} -3.30458e8 q^{62} +2.63005e7 q^{63} -3.97761e7 q^{64} -3.79963e7 q^{65} +2.67088e8 q^{66} +8.97698e7 q^{67} -5.19920e8 q^{68} -1.39415e7 q^{69} +6.88634e8 q^{70} +2.75493e7 q^{71} -6.71117e7 q^{72} +2.82917e8 q^{73} -7.38496e8 q^{74} -1.55257e8 q^{75} +4.88309e8 q^{77} -1.12641e8 q^{78} +9.54984e6 q^{79} -7.40752e8 q^{80} -3.26083e8 q^{81} -1.05165e8 q^{82} -6.70013e8 q^{83} +1.40075e9 q^{84} +8.23840e8 q^{85} +4.29486e8 q^{86} +5.83017e8 q^{87} -1.24603e9 q^{88} +5.44309e8 q^{89} +1.95993e8 q^{90} -2.05938e8 q^{91} +1.19872e8 q^{92} +1.06511e9 q^{93} +2.20493e9 q^{94} -5.61017e8 q^{96} +1.03589e9 q^{97} +2.10249e9 q^{98} +1.38978e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 15 q^{2} - 74 q^{3} + 2987 q^{4} + 285 q^{5} + 535 q^{6} - 1338 q^{7} + 12135 q^{8} + 57928 q^{9} + 41180 q^{10} - 57405 q^{11} - 117729 q^{12} + 98671 q^{13} - 148290 q^{14} + 428251 q^{15} + 279203 q^{16}+ \cdots + 736622698 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 40.3897 1.78499 0.892494 0.451060i \(-0.148954\pi\)
0.892494 + 0.451060i \(0.148954\pi\)
\(3\) −130.181 −0.927901 −0.463950 0.885861i \(-0.653568\pi\)
−0.463950 + 0.885861i \(0.653568\pi\)
\(4\) 1119.32 2.18618
\(5\) −1773.63 −1.26910 −0.634552 0.772881i \(-0.718815\pi\)
−0.634552 + 0.772881i \(0.718815\pi\)
\(6\) −5257.96 −1.65629
\(7\) −9612.95 −1.51327 −0.756633 0.653839i \(-0.773157\pi\)
−0.756633 + 0.653839i \(0.773157\pi\)
\(8\) 24529.6 2.11732
\(9\) −2735.95 −0.139000
\(10\) −71636.1 −2.26533
\(11\) −50797.0 −1.04609 −0.523047 0.852304i \(-0.675205\pi\)
−0.523047 + 0.852304i \(0.675205\pi\)
\(12\) −145715. −2.02856
\(13\) 21423.0 0.208034 0.104017 0.994576i \(-0.466830\pi\)
0.104017 + 0.994576i \(0.466830\pi\)
\(14\) −388264. −2.70116
\(15\) 230892. 1.17760
\(16\) 417648. 1.59320
\(17\) −464495. −1.34884 −0.674421 0.738347i \(-0.735606\pi\)
−0.674421 + 0.738347i \(0.735606\pi\)
\(18\) −110504. −0.248114
\(19\) 0 0
\(20\) −1.98526e6 −2.77449
\(21\) 1.25142e6 1.40416
\(22\) −2.05167e6 −1.86726
\(23\) 107093. 0.0797969 0.0398984 0.999204i \(-0.487297\pi\)
0.0398984 + 0.999204i \(0.487297\pi\)
\(24\) −3.19329e6 −1.96466
\(25\) 1.19262e6 0.610622
\(26\) 865267. 0.371338
\(27\) 2.91852e6 1.05688
\(28\) −1.07600e7 −3.30827
\(29\) −4.47852e6 −1.17583 −0.587913 0.808924i \(-0.700050\pi\)
−0.587913 + 0.808924i \(0.700050\pi\)
\(30\) 9.32565e6 2.10200
\(31\) −8.18175e6 −1.59118 −0.795588 0.605838i \(-0.792838\pi\)
−0.795588 + 0.605838i \(0.792838\pi\)
\(32\) 4.30952e6 0.726530
\(33\) 6.61279e6 0.970671
\(34\) −1.87608e7 −2.40766
\(35\) 1.70498e7 1.92049
\(36\) −3.06241e6 −0.303880
\(37\) −1.82843e7 −1.60388 −0.801938 0.597408i \(-0.796197\pi\)
−0.801938 + 0.597408i \(0.796197\pi\)
\(38\) 0 0
\(39\) −2.78886e6 −0.193035
\(40\) −4.35063e7 −2.68709
\(41\) −2.60375e6 −0.143904 −0.0719519 0.997408i \(-0.522923\pi\)
−0.0719519 + 0.997408i \(0.522923\pi\)
\(42\) 5.05445e7 2.50641
\(43\) 1.06336e7 0.474320 0.237160 0.971471i \(-0.423784\pi\)
0.237160 + 0.971471i \(0.423784\pi\)
\(44\) −5.68583e7 −2.28695
\(45\) 4.85254e6 0.176406
\(46\) 4.32545e6 0.142436
\(47\) 5.45915e7 1.63187 0.815934 0.578145i \(-0.196223\pi\)
0.815934 + 0.578145i \(0.196223\pi\)
\(48\) −5.43698e7 −1.47833
\(49\) 5.20552e7 1.28998
\(50\) 4.81696e7 1.08995
\(51\) 6.04683e7 1.25159
\(52\) 2.39793e7 0.454800
\(53\) 1.89840e7 0.330481 0.165241 0.986253i \(-0.447160\pi\)
0.165241 + 0.986253i \(0.447160\pi\)
\(54\) 1.17878e8 1.88652
\(55\) 9.00948e7 1.32760
\(56\) −2.35802e8 −3.20406
\(57\) 0 0
\(58\) −1.80886e8 −2.09884
\(59\) −4.37047e7 −0.469564 −0.234782 0.972048i \(-0.575438\pi\)
−0.234782 + 0.972048i \(0.575438\pi\)
\(60\) 2.58443e8 2.57445
\(61\) −1.99367e7 −0.184361 −0.0921806 0.995742i \(-0.529384\pi\)
−0.0921806 + 0.995742i \(0.529384\pi\)
\(62\) −3.30458e8 −2.84023
\(63\) 2.63005e7 0.210345
\(64\) −3.97761e7 −0.296355
\(65\) −3.79963e7 −0.264017
\(66\) 2.67088e8 1.73264
\(67\) 8.97698e7 0.544244 0.272122 0.962263i \(-0.412275\pi\)
0.272122 + 0.962263i \(0.412275\pi\)
\(68\) −5.19920e8 −2.94881
\(69\) −1.39415e7 −0.0740436
\(70\) 6.88634e8 3.42805
\(71\) 2.75493e7 0.128661 0.0643306 0.997929i \(-0.479509\pi\)
0.0643306 + 0.997929i \(0.479509\pi\)
\(72\) −6.71117e7 −0.294308
\(73\) 2.82917e8 1.16602 0.583009 0.812465i \(-0.301875\pi\)
0.583009 + 0.812465i \(0.301875\pi\)
\(74\) −7.38496e8 −2.86290
\(75\) −1.55257e8 −0.566597
\(76\) 0 0
\(77\) 4.88309e8 1.58302
\(78\) −1.12641e8 −0.344565
\(79\) 9.54984e6 0.0275851 0.0137925 0.999905i \(-0.495610\pi\)
0.0137925 + 0.999905i \(0.495610\pi\)
\(80\) −7.40752e8 −2.02194
\(81\) −3.26083e8 −0.841678
\(82\) −1.05165e8 −0.256866
\(83\) −6.70013e8 −1.54964 −0.774821 0.632180i \(-0.782160\pi\)
−0.774821 + 0.632180i \(0.782160\pi\)
\(84\) 1.40075e9 3.06975
\(85\) 8.23840e8 1.71182
\(86\) 4.29486e8 0.846654
\(87\) 5.83017e8 1.09105
\(88\) −1.24603e9 −2.21491
\(89\) 5.44309e8 0.919582 0.459791 0.888027i \(-0.347924\pi\)
0.459791 + 0.888027i \(0.347924\pi\)
\(90\) 1.95993e8 0.314882
\(91\) −2.05938e8 −0.314811
\(92\) 1.19872e8 0.174450
\(93\) 1.06511e9 1.47645
\(94\) 2.20493e9 2.91286
\(95\) 0 0
\(96\) −5.61017e8 −0.674148
\(97\) 1.03589e9 1.18807 0.594033 0.804441i \(-0.297535\pi\)
0.594033 + 0.804441i \(0.297535\pi\)
\(98\) 2.10249e9 2.30259
\(99\) 1.38978e8 0.145408
\(100\) 1.33493e9 1.33493
\(101\) −2.37416e8 −0.227020 −0.113510 0.993537i \(-0.536209\pi\)
−0.113510 + 0.993537i \(0.536209\pi\)
\(102\) 2.44230e9 2.23407
\(103\) −1.52038e9 −1.33102 −0.665509 0.746389i \(-0.731786\pi\)
−0.665509 + 0.746389i \(0.731786\pi\)
\(104\) 5.25497e8 0.440474
\(105\) −2.21955e9 −1.78203
\(106\) 7.66758e8 0.589905
\(107\) −8.05083e8 −0.593764 −0.296882 0.954914i \(-0.595947\pi\)
−0.296882 + 0.954914i \(0.595947\pi\)
\(108\) 3.26677e9 2.31053
\(109\) 1.54756e9 1.05009 0.525046 0.851074i \(-0.324048\pi\)
0.525046 + 0.851074i \(0.324048\pi\)
\(110\) 3.63890e9 2.36975
\(111\) 2.38027e9 1.48824
\(112\) −4.01483e9 −2.41094
\(113\) 2.08633e9 1.20373 0.601865 0.798598i \(-0.294424\pi\)
0.601865 + 0.798598i \(0.294424\pi\)
\(114\) 0 0
\(115\) −1.89943e8 −0.101270
\(116\) −5.01291e9 −2.57057
\(117\) −5.86121e7 −0.0289168
\(118\) −1.76522e9 −0.838165
\(119\) 4.46517e9 2.04116
\(120\) 5.66369e9 2.49335
\(121\) 2.22385e8 0.0943131
\(122\) −8.05237e8 −0.329082
\(123\) 3.38959e8 0.133528
\(124\) −9.15803e9 −3.47860
\(125\) 1.34885e9 0.494160
\(126\) 1.06227e9 0.375463
\(127\) −4.37782e9 −1.49328 −0.746640 0.665229i \(-0.768334\pi\)
−0.746640 + 0.665229i \(0.768334\pi\)
\(128\) −3.81302e9 −1.25552
\(129\) −1.38429e9 −0.440121
\(130\) −1.53466e9 −0.471267
\(131\) −5.64424e9 −1.67450 −0.837249 0.546822i \(-0.815837\pi\)
−0.837249 + 0.546822i \(0.815837\pi\)
\(132\) 7.40186e9 2.12206
\(133\) 0 0
\(134\) 3.62577e9 0.971468
\(135\) −5.17636e9 −1.34129
\(136\) −1.13939e10 −2.85592
\(137\) 2.33386e7 0.00566020 0.00283010 0.999996i \(-0.499099\pi\)
0.00283010 + 0.999996i \(0.499099\pi\)
\(138\) −5.63091e8 −0.132167
\(139\) −3.81015e9 −0.865717 −0.432858 0.901462i \(-0.642495\pi\)
−0.432858 + 0.901462i \(0.642495\pi\)
\(140\) 1.90842e10 4.19854
\(141\) −7.10677e9 −1.51421
\(142\) 1.11271e9 0.229659
\(143\) −1.08822e9 −0.217623
\(144\) −1.14266e9 −0.221456
\(145\) 7.94321e9 1.49225
\(146\) 1.14269e10 2.08133
\(147\) −6.77659e9 −1.19697
\(148\) −2.04661e10 −3.50636
\(149\) −2.52303e9 −0.419357 −0.209678 0.977770i \(-0.567242\pi\)
−0.209678 + 0.977770i \(0.567242\pi\)
\(150\) −6.27076e9 −1.01137
\(151\) 1.86229e9 0.291508 0.145754 0.989321i \(-0.453439\pi\)
0.145754 + 0.989321i \(0.453439\pi\)
\(152\) 0 0
\(153\) 1.27083e9 0.187489
\(154\) 1.97226e10 2.82567
\(155\) 1.45114e10 2.01937
\(156\) −3.12164e9 −0.422009
\(157\) 3.15882e9 0.414932 0.207466 0.978242i \(-0.433478\pi\)
0.207466 + 0.978242i \(0.433478\pi\)
\(158\) 3.85715e8 0.0492390
\(159\) −2.47136e9 −0.306654
\(160\) −7.64347e9 −0.922042
\(161\) −1.02948e9 −0.120754
\(162\) −1.31704e10 −1.50239
\(163\) 1.36849e10 1.51844 0.759218 0.650837i \(-0.225582\pi\)
0.759218 + 0.650837i \(0.225582\pi\)
\(164\) −2.91444e9 −0.314600
\(165\) −1.17286e10 −1.23188
\(166\) −2.70616e10 −2.76609
\(167\) 2.63102e9 0.261758 0.130879 0.991398i \(-0.458220\pi\)
0.130879 + 0.991398i \(0.458220\pi\)
\(168\) 3.06969e10 2.97305
\(169\) −1.01456e10 −0.956722
\(170\) 3.32746e10 3.05557
\(171\) 0 0
\(172\) 1.19024e10 1.03695
\(173\) −9.66556e9 −0.820388 −0.410194 0.911998i \(-0.634539\pi\)
−0.410194 + 0.911998i \(0.634539\pi\)
\(174\) 2.35479e10 1.94751
\(175\) −1.14646e10 −0.924035
\(176\) −2.12153e10 −1.66664
\(177\) 5.68952e9 0.435708
\(178\) 2.19845e10 1.64144
\(179\) 2.66812e9 0.194252 0.0971261 0.995272i \(-0.469035\pi\)
0.0971261 + 0.995272i \(0.469035\pi\)
\(180\) 5.43157e9 0.385655
\(181\) −1.09480e10 −0.758195 −0.379097 0.925357i \(-0.623765\pi\)
−0.379097 + 0.925357i \(0.623765\pi\)
\(182\) −8.31776e9 −0.561934
\(183\) 2.59538e9 0.171069
\(184\) 2.62695e9 0.168955
\(185\) 3.24295e10 2.03548
\(186\) 4.30193e10 2.63545
\(187\) 2.35949e10 1.41101
\(188\) 6.11056e10 3.56756
\(189\) −2.80556e10 −1.59934
\(190\) 0 0
\(191\) 6.71373e8 0.0365018 0.0182509 0.999833i \(-0.494190\pi\)
0.0182509 + 0.999833i \(0.494190\pi\)
\(192\) 5.17809e9 0.274988
\(193\) −5.24308e9 −0.272006 −0.136003 0.990708i \(-0.543426\pi\)
−0.136003 + 0.990708i \(0.543426\pi\)
\(194\) 4.18392e10 2.12068
\(195\) 4.94640e9 0.244981
\(196\) 5.82666e10 2.82012
\(197\) −5.28793e9 −0.250143 −0.125071 0.992148i \(-0.539916\pi\)
−0.125071 + 0.992148i \(0.539916\pi\)
\(198\) 5.61326e9 0.259551
\(199\) −2.61806e10 −1.18342 −0.591712 0.806149i \(-0.701548\pi\)
−0.591712 + 0.806149i \(0.701548\pi\)
\(200\) 2.92545e10 1.29288
\(201\) −1.16863e10 −0.505004
\(202\) −9.58915e9 −0.405228
\(203\) 4.30518e10 1.77934
\(204\) 6.76837e10 2.73620
\(205\) 4.61808e9 0.182629
\(206\) −6.14076e10 −2.37585
\(207\) −2.93001e8 −0.0110918
\(208\) 8.94727e9 0.331441
\(209\) 0 0
\(210\) −8.96470e10 −3.18089
\(211\) −1.06696e10 −0.370576 −0.185288 0.982684i \(-0.559322\pi\)
−0.185288 + 0.982684i \(0.559322\pi\)
\(212\) 2.12493e10 0.722491
\(213\) −3.58639e9 −0.119385
\(214\) −3.25170e10 −1.05986
\(215\) −1.88600e10 −0.601960
\(216\) 7.15901e10 2.23775
\(217\) 7.86507e10 2.40787
\(218\) 6.25053e10 1.87440
\(219\) −3.68303e10 −1.08195
\(220\) 1.00845e11 2.90238
\(221\) −9.95086e9 −0.280605
\(222\) 9.61381e10 2.65648
\(223\) 1.46530e10 0.396785 0.198392 0.980123i \(-0.436428\pi\)
0.198392 + 0.980123i \(0.436428\pi\)
\(224\) −4.14272e10 −1.09943
\(225\) −3.26295e9 −0.0848768
\(226\) 8.42660e10 2.14864
\(227\) −1.69607e10 −0.423961 −0.211981 0.977274i \(-0.567991\pi\)
−0.211981 + 0.977274i \(0.567991\pi\)
\(228\) 0 0
\(229\) 4.78651e10 1.15016 0.575081 0.818096i \(-0.304970\pi\)
0.575081 + 0.818096i \(0.304970\pi\)
\(230\) −7.67173e9 −0.180766
\(231\) −6.35685e10 −1.46888
\(232\) −1.09856e11 −2.48960
\(233\) −5.41380e10 −1.20337 −0.601687 0.798732i \(-0.705505\pi\)
−0.601687 + 0.798732i \(0.705505\pi\)
\(234\) −2.36732e9 −0.0516162
\(235\) −9.68249e10 −2.07101
\(236\) −4.89198e10 −1.02655
\(237\) −1.24321e9 −0.0255962
\(238\) 1.80346e11 3.64344
\(239\) 2.11901e10 0.420090 0.210045 0.977692i \(-0.432639\pi\)
0.210045 + 0.977692i \(0.432639\pi\)
\(240\) 9.64317e10 1.87616
\(241\) −4.79693e10 −0.915982 −0.457991 0.888957i \(-0.651431\pi\)
−0.457991 + 0.888957i \(0.651431\pi\)
\(242\) 8.98206e9 0.168348
\(243\) −1.49954e10 −0.275885
\(244\) −2.23156e10 −0.403047
\(245\) −9.23264e10 −1.63711
\(246\) 1.36904e10 0.238346
\(247\) 0 0
\(248\) −2.00695e11 −3.36902
\(249\) 8.72228e10 1.43791
\(250\) 5.44795e10 0.882070
\(251\) 4.36437e10 0.694048 0.347024 0.937856i \(-0.387192\pi\)
0.347024 + 0.937856i \(0.387192\pi\)
\(252\) 2.94388e10 0.459851
\(253\) −5.44000e9 −0.0834750
\(254\) −1.76819e11 −2.66549
\(255\) −1.07248e11 −1.58840
\(256\) −1.33641e11 −1.94473
\(257\) −2.66936e10 −0.381688 −0.190844 0.981620i \(-0.561122\pi\)
−0.190844 + 0.981620i \(0.561122\pi\)
\(258\) −5.59109e10 −0.785611
\(259\) 1.75766e11 2.42709
\(260\) −4.25302e10 −0.577188
\(261\) 1.22530e10 0.163440
\(262\) −2.27969e11 −2.98896
\(263\) 5.72495e10 0.737854 0.368927 0.929458i \(-0.379725\pi\)
0.368927 + 0.929458i \(0.379725\pi\)
\(264\) 1.62209e11 2.05522
\(265\) −3.36705e10 −0.419415
\(266\) 0 0
\(267\) −7.08586e10 −0.853281
\(268\) 1.00481e11 1.18981
\(269\) −1.91009e10 −0.222418 −0.111209 0.993797i \(-0.535472\pi\)
−0.111209 + 0.993797i \(0.535472\pi\)
\(270\) −2.09071e11 −2.39418
\(271\) −2.06615e10 −0.232702 −0.116351 0.993208i \(-0.537120\pi\)
−0.116351 + 0.993208i \(0.537120\pi\)
\(272\) −1.93996e11 −2.14898
\(273\) 2.68092e10 0.292114
\(274\) 9.42637e8 0.0101034
\(275\) −6.05816e10 −0.638769
\(276\) −1.56050e10 −0.161873
\(277\) −2.89600e10 −0.295556 −0.147778 0.989021i \(-0.547212\pi\)
−0.147778 + 0.989021i \(0.547212\pi\)
\(278\) −1.53891e11 −1.54529
\(279\) 2.23848e10 0.221174
\(280\) 4.18224e11 4.06629
\(281\) −1.23174e11 −1.17853 −0.589266 0.807939i \(-0.700583\pi\)
−0.589266 + 0.807939i \(0.700583\pi\)
\(282\) −2.87040e11 −2.70285
\(283\) 1.18222e11 1.09562 0.547811 0.836602i \(-0.315461\pi\)
0.547811 + 0.836602i \(0.315461\pi\)
\(284\) 3.08366e10 0.281277
\(285\) 0 0
\(286\) −4.39529e10 −0.388455
\(287\) 2.50297e10 0.217765
\(288\) −1.17906e10 −0.100988
\(289\) 9.71676e10 0.819372
\(290\) 3.20824e11 2.66364
\(291\) −1.34853e11 −1.10241
\(292\) 3.16675e11 2.54913
\(293\) 1.53730e11 1.21858 0.609290 0.792948i \(-0.291455\pi\)
0.609290 + 0.792948i \(0.291455\pi\)
\(294\) −2.73704e11 −2.13658
\(295\) 7.75158e10 0.595925
\(296\) −4.48507e11 −3.39591
\(297\) −1.48252e11 −1.10560
\(298\) −1.01904e11 −0.748546
\(299\) 2.29425e9 0.0166005
\(300\) −1.73782e11 −1.23868
\(301\) −1.02220e11 −0.717772
\(302\) 7.52172e10 0.520339
\(303\) 3.09070e10 0.210652
\(304\) 0 0
\(305\) 3.53603e10 0.233973
\(306\) 5.13285e10 0.334666
\(307\) −1.67271e11 −1.07473 −0.537365 0.843350i \(-0.680580\pi\)
−0.537365 + 0.843350i \(0.680580\pi\)
\(308\) 5.46576e11 3.46077
\(309\) 1.97924e11 1.23505
\(310\) 5.86109e11 3.60454
\(311\) 2.16624e11 1.31306 0.656531 0.754299i \(-0.272023\pi\)
0.656531 + 0.754299i \(0.272023\pi\)
\(312\) −6.84097e10 −0.408716
\(313\) −3.34946e10 −0.197254 −0.0986270 0.995124i \(-0.531445\pi\)
−0.0986270 + 0.995124i \(0.531445\pi\)
\(314\) 1.27584e11 0.740648
\(315\) −4.66472e10 −0.266949
\(316\) 1.06894e10 0.0603059
\(317\) −2.04437e11 −1.13709 −0.568543 0.822653i \(-0.692493\pi\)
−0.568543 + 0.822653i \(0.692493\pi\)
\(318\) −9.98172e10 −0.547373
\(319\) 2.27495e11 1.23003
\(320\) 7.05480e10 0.376105
\(321\) 1.04806e11 0.550954
\(322\) −4.15803e10 −0.215544
\(323\) 0 0
\(324\) −3.64993e11 −1.84006
\(325\) 2.55495e10 0.127030
\(326\) 5.52727e11 2.71039
\(327\) −2.01462e11 −0.974382
\(328\) −6.38690e10 −0.304690
\(329\) −5.24786e11 −2.46945
\(330\) −4.73715e11 −2.19889
\(331\) −2.97146e11 −1.36064 −0.680320 0.732915i \(-0.738159\pi\)
−0.680320 + 0.732915i \(0.738159\pi\)
\(332\) −7.49961e11 −3.38780
\(333\) 5.00248e10 0.222939
\(334\) 1.06266e11 0.467235
\(335\) −1.59218e11 −0.690701
\(336\) 5.22654e11 2.23711
\(337\) −2.53746e11 −1.07168 −0.535838 0.844321i \(-0.680004\pi\)
−0.535838 + 0.844321i \(0.680004\pi\)
\(338\) −4.09775e11 −1.70774
\(339\) −2.71600e11 −1.11694
\(340\) 9.22144e11 3.74234
\(341\) 4.15608e11 1.66452
\(342\) 0 0
\(343\) −1.12487e11 −0.438811
\(344\) 2.60837e11 1.00428
\(345\) 2.47269e10 0.0939689
\(346\) −3.90389e11 −1.46438
\(347\) −4.41660e11 −1.63533 −0.817666 0.575693i \(-0.804732\pi\)
−0.817666 + 0.575693i \(0.804732\pi\)
\(348\) 6.52585e11 2.38523
\(349\) −5.67673e10 −0.204825 −0.102413 0.994742i \(-0.532656\pi\)
−0.102413 + 0.994742i \(0.532656\pi\)
\(350\) −4.63052e11 −1.64939
\(351\) 6.25233e10 0.219867
\(352\) −2.18910e11 −0.760019
\(353\) 1.62704e11 0.557713 0.278857 0.960333i \(-0.410045\pi\)
0.278857 + 0.960333i \(0.410045\pi\)
\(354\) 2.29798e11 0.777734
\(355\) −4.88621e10 −0.163284
\(356\) 6.09258e11 2.01037
\(357\) −5.81279e11 −1.89399
\(358\) 1.07764e11 0.346738
\(359\) −3.17431e11 −1.00861 −0.504306 0.863525i \(-0.668252\pi\)
−0.504306 + 0.863525i \(0.668252\pi\)
\(360\) 1.19031e11 0.373507
\(361\) 0 0
\(362\) −4.42186e11 −1.35337
\(363\) −2.89503e10 −0.0875132
\(364\) −2.30511e11 −0.688234
\(365\) −5.01788e11 −1.47980
\(366\) 1.04826e11 0.305356
\(367\) −1.70962e11 −0.491928 −0.245964 0.969279i \(-0.579105\pi\)
−0.245964 + 0.969279i \(0.579105\pi\)
\(368\) 4.47272e10 0.127133
\(369\) 7.12372e9 0.0200027
\(370\) 1.30982e12 3.63331
\(371\) −1.82492e11 −0.500106
\(372\) 1.19220e12 3.22779
\(373\) 2.39356e11 0.640257 0.320129 0.947374i \(-0.396274\pi\)
0.320129 + 0.947374i \(0.396274\pi\)
\(374\) 9.52991e11 2.51864
\(375\) −1.75594e11 −0.458532
\(376\) 1.33911e12 3.45518
\(377\) −9.59432e10 −0.244612
\(378\) −1.13315e12 −2.85480
\(379\) 1.72464e10 0.0429361 0.0214680 0.999770i \(-0.493166\pi\)
0.0214680 + 0.999770i \(0.493166\pi\)
\(380\) 0 0
\(381\) 5.69908e11 1.38562
\(382\) 2.71165e10 0.0651552
\(383\) 2.91742e11 0.692796 0.346398 0.938088i \(-0.387405\pi\)
0.346398 + 0.938088i \(0.387405\pi\)
\(384\) 4.96382e11 1.16500
\(385\) −8.66077e11 −2.00901
\(386\) −2.11766e11 −0.485528
\(387\) −2.90929e10 −0.0659306
\(388\) 1.15950e12 2.59732
\(389\) −1.93578e11 −0.428630 −0.214315 0.976765i \(-0.568752\pi\)
−0.214315 + 0.976765i \(0.568752\pi\)
\(390\) 1.99783e11 0.437289
\(391\) −4.97441e10 −0.107633
\(392\) 1.27689e12 2.73129
\(393\) 7.34772e11 1.55377
\(394\) −2.13578e11 −0.446502
\(395\) −1.69378e10 −0.0350083
\(396\) 1.55561e11 0.317887
\(397\) 5.93498e11 1.19912 0.599559 0.800331i \(-0.295343\pi\)
0.599559 + 0.800331i \(0.295343\pi\)
\(398\) −1.05743e12 −2.11240
\(399\) 0 0
\(400\) 4.98097e11 0.972845
\(401\) 1.07171e11 0.206980 0.103490 0.994630i \(-0.466999\pi\)
0.103490 + 0.994630i \(0.466999\pi\)
\(402\) −4.72006e11 −0.901426
\(403\) −1.75277e11 −0.331019
\(404\) −2.65745e11 −0.496306
\(405\) 5.78350e11 1.06818
\(406\) 1.73885e12 3.17610
\(407\) 9.28787e11 1.67780
\(408\) 1.48326e12 2.65001
\(409\) 3.80962e10 0.0673174 0.0336587 0.999433i \(-0.489284\pi\)
0.0336587 + 0.999433i \(0.489284\pi\)
\(410\) 1.86523e11 0.325990
\(411\) −3.03824e9 −0.00525211
\(412\) −1.70180e12 −2.90985
\(413\) 4.20131e11 0.710575
\(414\) −1.18342e10 −0.0197987
\(415\) 1.18835e12 1.96666
\(416\) 9.23227e10 0.151143
\(417\) 4.96009e11 0.803299
\(418\) 0 0
\(419\) 2.80944e10 0.0445305 0.0222652 0.999752i \(-0.492912\pi\)
0.0222652 + 0.999752i \(0.492912\pi\)
\(420\) −2.48440e12 −3.89583
\(421\) −5.96519e11 −0.925453 −0.462727 0.886501i \(-0.653129\pi\)
−0.462727 + 0.886501i \(0.653129\pi\)
\(422\) −4.30942e11 −0.661474
\(423\) −1.49359e11 −0.226830
\(424\) 4.65671e11 0.699733
\(425\) −5.53967e11 −0.823633
\(426\) −1.44853e11 −0.213100
\(427\) 1.91651e11 0.278988
\(428\) −9.01149e11 −1.29807
\(429\) 1.41666e11 0.201933
\(430\) −7.61748e11 −1.07449
\(431\) 7.77897e11 1.08586 0.542931 0.839778i \(-0.317315\pi\)
0.542931 + 0.839778i \(0.317315\pi\)
\(432\) 1.21891e12 1.68382
\(433\) −1.91800e11 −0.262213 −0.131106 0.991368i \(-0.541853\pi\)
−0.131106 + 0.991368i \(0.541853\pi\)
\(434\) 3.17668e12 4.29803
\(435\) −1.03405e12 −1.38466
\(436\) 1.73222e12 2.29569
\(437\) 0 0
\(438\) −1.48756e12 −1.93127
\(439\) 9.14173e11 1.17473 0.587365 0.809322i \(-0.300165\pi\)
0.587365 + 0.809322i \(0.300165\pi\)
\(440\) 2.20999e12 2.81095
\(441\) −1.42420e11 −0.179307
\(442\) −4.01912e11 −0.500876
\(443\) 1.13845e12 1.40442 0.702211 0.711969i \(-0.252196\pi\)
0.702211 + 0.711969i \(0.252196\pi\)
\(444\) 2.66429e12 3.25355
\(445\) −9.65401e11 −1.16704
\(446\) 5.91830e11 0.708256
\(447\) 3.28450e11 0.389121
\(448\) 3.82366e11 0.448465
\(449\) −8.78278e11 −1.01982 −0.509910 0.860228i \(-0.670321\pi\)
−0.509910 + 0.860228i \(0.670321\pi\)
\(450\) −1.31789e11 −0.151504
\(451\) 1.32263e11 0.150537
\(452\) 2.33528e12 2.63157
\(453\) −2.42434e11 −0.270491
\(454\) −6.85035e11 −0.756766
\(455\) 3.65257e11 0.399528
\(456\) 0 0
\(457\) 7.14022e11 0.765753 0.382877 0.923800i \(-0.374933\pi\)
0.382877 + 0.923800i \(0.374933\pi\)
\(458\) 1.93325e12 2.05302
\(459\) −1.35564e12 −1.42556
\(460\) −2.12608e11 −0.221395
\(461\) 1.51036e12 1.55750 0.778748 0.627337i \(-0.215855\pi\)
0.778748 + 0.627337i \(0.215855\pi\)
\(462\) −2.56751e12 −2.62194
\(463\) −6.77202e11 −0.684863 −0.342432 0.939543i \(-0.611251\pi\)
−0.342432 + 0.939543i \(0.611251\pi\)
\(464\) −1.87045e12 −1.87333
\(465\) −1.88910e12 −1.87377
\(466\) −2.18662e12 −2.14801
\(467\) −2.81510e11 −0.273884 −0.136942 0.990579i \(-0.543727\pi\)
−0.136942 + 0.990579i \(0.543727\pi\)
\(468\) −6.56059e10 −0.0632174
\(469\) −8.62952e11 −0.823586
\(470\) −3.91072e12 −3.69672
\(471\) −4.11218e11 −0.385016
\(472\) −1.07206e12 −0.994214
\(473\) −5.40153e11 −0.496183
\(474\) −5.02127e10 −0.0456889
\(475\) 0 0
\(476\) 4.99797e12 4.46233
\(477\) −5.19392e10 −0.0459370
\(478\) 8.55860e11 0.749855
\(479\) 9.08984e11 0.788945 0.394472 0.918908i \(-0.370927\pi\)
0.394472 + 0.918908i \(0.370927\pi\)
\(480\) 9.95033e11 0.855563
\(481\) −3.91704e11 −0.333661
\(482\) −1.93746e12 −1.63502
\(483\) 1.34019e11 0.112048
\(484\) 2.48921e11 0.206185
\(485\) −1.83728e12 −1.50778
\(486\) −6.05657e11 −0.492452
\(487\) −1.95171e12 −1.57230 −0.786148 0.618038i \(-0.787928\pi\)
−0.786148 + 0.618038i \(0.787928\pi\)
\(488\) −4.89040e11 −0.390351
\(489\) −1.78151e12 −1.40896
\(490\) −3.72903e12 −2.92222
\(491\) −1.47294e12 −1.14372 −0.571860 0.820351i \(-0.693778\pi\)
−0.571860 + 0.820351i \(0.693778\pi\)
\(492\) 3.79405e11 0.291917
\(493\) 2.08025e12 1.58600
\(494\) 0 0
\(495\) −2.46494e11 −0.184537
\(496\) −3.41709e12 −2.53507
\(497\) −2.64830e11 −0.194699
\(498\) 3.52290e12 2.56666
\(499\) −1.57148e12 −1.13464 −0.567319 0.823498i \(-0.692019\pi\)
−0.567319 + 0.823498i \(0.692019\pi\)
\(500\) 1.50980e12 1.08032
\(501\) −3.42508e11 −0.242885
\(502\) 1.76275e12 1.23887
\(503\) −1.78836e12 −1.24566 −0.622831 0.782357i \(-0.714017\pi\)
−0.622831 + 0.782357i \(0.714017\pi\)
\(504\) 6.45141e11 0.445366
\(505\) 4.21087e11 0.288112
\(506\) −2.19720e11 −0.149002
\(507\) 1.32076e12 0.887743
\(508\) −4.90020e12 −3.26458
\(509\) 1.58538e12 1.04690 0.523448 0.852057i \(-0.324645\pi\)
0.523448 + 0.852057i \(0.324645\pi\)
\(510\) −4.33172e12 −2.83527
\(511\) −2.71966e12 −1.76450
\(512\) −3.44545e12 −2.21580
\(513\) 0 0
\(514\) −1.07815e12 −0.681308
\(515\) 2.69658e12 1.68920
\(516\) −1.54947e12 −0.962184
\(517\) −2.77308e12 −1.70709
\(518\) 7.09913e12 4.33233
\(519\) 1.25827e12 0.761239
\(520\) −9.32035e11 −0.559007
\(521\) 4.70053e11 0.279497 0.139748 0.990187i \(-0.455371\pi\)
0.139748 + 0.990187i \(0.455371\pi\)
\(522\) 4.94894e11 0.291739
\(523\) 2.84074e12 1.66025 0.830125 0.557577i \(-0.188269\pi\)
0.830125 + 0.557577i \(0.188269\pi\)
\(524\) −6.31773e12 −3.66075
\(525\) 1.49247e12 0.857412
\(526\) 2.31229e12 1.31706
\(527\) 3.80038e12 2.14624
\(528\) 2.76182e12 1.54648
\(529\) −1.78968e12 −0.993632
\(530\) −1.35994e12 −0.748650
\(531\) 1.19574e11 0.0652695
\(532\) 0 0
\(533\) −5.57801e10 −0.0299369
\(534\) −2.86196e12 −1.52310
\(535\) 1.42792e12 0.753548
\(536\) 2.20202e12 1.15234
\(537\) −3.47338e11 −0.180247
\(538\) −7.71480e11 −0.397013
\(539\) −2.64425e12 −1.34944
\(540\) −5.79402e12 −2.93230
\(541\) −2.55519e12 −1.28243 −0.641217 0.767359i \(-0.721570\pi\)
−0.641217 + 0.767359i \(0.721570\pi\)
\(542\) −8.34511e11 −0.415370
\(543\) 1.42522e12 0.703529
\(544\) −2.00175e12 −0.979974
\(545\) −2.74479e12 −1.33268
\(546\) 1.08281e12 0.521419
\(547\) −2.95756e12 −1.41251 −0.706254 0.707958i \(-0.749616\pi\)
−0.706254 + 0.707958i \(0.749616\pi\)
\(548\) 2.61234e10 0.0123742
\(549\) 5.45458e10 0.0256263
\(550\) −2.44687e12 −1.14019
\(551\) 0 0
\(552\) −3.41978e11 −0.156774
\(553\) −9.18021e10 −0.0417436
\(554\) −1.16969e12 −0.527564
\(555\) −4.22170e12 −1.88873
\(556\) −4.26480e12 −1.89261
\(557\) −3.17079e12 −1.39579 −0.697894 0.716201i \(-0.745880\pi\)
−0.697894 + 0.716201i \(0.745880\pi\)
\(558\) 9.04115e11 0.394793
\(559\) 2.27803e11 0.0986747
\(560\) 7.12081e12 3.05973
\(561\) −3.07161e12 −1.30928
\(562\) −4.97496e12 −2.10366
\(563\) 2.44299e12 1.02479 0.512393 0.858751i \(-0.328759\pi\)
0.512393 + 0.858751i \(0.328759\pi\)
\(564\) −7.95478e12 −3.31034
\(565\) −3.70036e12 −1.52766
\(566\) 4.77496e12 1.95567
\(567\) 3.13462e12 1.27368
\(568\) 6.75773e11 0.272416
\(569\) −1.82279e12 −0.729007 −0.364503 0.931202i \(-0.618761\pi\)
−0.364503 + 0.931202i \(0.618761\pi\)
\(570\) 0 0
\(571\) 1.27674e12 0.502621 0.251310 0.967907i \(-0.419139\pi\)
0.251310 + 0.967907i \(0.419139\pi\)
\(572\) −1.21807e12 −0.475764
\(573\) −8.73999e10 −0.0338700
\(574\) 1.01094e12 0.388707
\(575\) 1.27721e11 0.0487258
\(576\) 1.08825e11 0.0411935
\(577\) −3.78237e12 −1.42060 −0.710301 0.703898i \(-0.751441\pi\)
−0.710301 + 0.703898i \(0.751441\pi\)
\(578\) 3.92457e12 1.46257
\(579\) 6.82549e11 0.252395
\(580\) 8.89103e12 3.26232
\(581\) 6.44080e12 2.34502
\(582\) −5.44666e12 −1.96778
\(583\) −9.64331e11 −0.345714
\(584\) 6.93983e12 2.46883
\(585\) 1.03956e11 0.0366985
\(586\) 6.20909e12 2.17515
\(587\) 3.85151e12 1.33894 0.669468 0.742841i \(-0.266522\pi\)
0.669468 + 0.742841i \(0.266522\pi\)
\(588\) −7.58520e12 −2.61679
\(589\) 0 0
\(590\) 3.13084e12 1.06372
\(591\) 6.88388e11 0.232108
\(592\) −7.63641e12 −2.55530
\(593\) 3.95614e12 1.31379 0.656894 0.753983i \(-0.271870\pi\)
0.656894 + 0.753983i \(0.271870\pi\)
\(594\) −5.98784e12 −1.97347
\(595\) −7.91953e12 −2.59044
\(596\) −2.82408e12 −0.916789
\(597\) 3.40821e12 1.09810
\(598\) 9.26640e10 0.0296316
\(599\) 2.16141e12 0.685988 0.342994 0.939338i \(-0.388559\pi\)
0.342994 + 0.939338i \(0.388559\pi\)
\(600\) −3.80838e12 −1.19966
\(601\) −3.76890e12 −1.17836 −0.589181 0.808001i \(-0.700550\pi\)
−0.589181 + 0.808001i \(0.700550\pi\)
\(602\) −4.12863e12 −1.28121
\(603\) −2.45605e11 −0.0756501
\(604\) 2.08451e12 0.637290
\(605\) −3.94428e11 −0.119693
\(606\) 1.24832e12 0.376011
\(607\) 4.08291e11 0.122073 0.0610366 0.998136i \(-0.480559\pi\)
0.0610366 + 0.998136i \(0.480559\pi\)
\(608\) 0 0
\(609\) −5.60452e12 −1.65105
\(610\) 1.42819e12 0.417639
\(611\) 1.16951e12 0.339484
\(612\) 1.42247e12 0.409886
\(613\) 6.27548e12 1.79504 0.897522 0.440970i \(-0.145365\pi\)
0.897522 + 0.440970i \(0.145365\pi\)
\(614\) −6.75604e12 −1.91838
\(615\) −6.01186e11 −0.169461
\(616\) 1.19780e13 3.35175
\(617\) −3.92160e12 −1.08938 −0.544691 0.838637i \(-0.683353\pi\)
−0.544691 + 0.838637i \(0.683353\pi\)
\(618\) 7.99409e12 2.20455
\(619\) 4.37972e12 1.19905 0.599527 0.800354i \(-0.295355\pi\)
0.599527 + 0.800354i \(0.295355\pi\)
\(620\) 1.62429e13 4.41470
\(621\) 3.12553e11 0.0843356
\(622\) 8.74938e12 2.34380
\(623\) −5.23242e12 −1.39157
\(624\) −1.16476e12 −0.307544
\(625\) −4.72169e12 −1.23776
\(626\) −1.35284e12 −0.352096
\(627\) 0 0
\(628\) 3.53575e12 0.907116
\(629\) 8.49296e12 2.16337
\(630\) −1.88407e12 −0.476501
\(631\) −1.91970e12 −0.482059 −0.241030 0.970518i \(-0.577485\pi\)
−0.241030 + 0.970518i \(0.577485\pi\)
\(632\) 2.34254e11 0.0584063
\(633\) 1.38898e12 0.343858
\(634\) −8.25715e12 −2.02968
\(635\) 7.76461e12 1.89513
\(636\) −2.76625e12 −0.670400
\(637\) 1.11518e12 0.268359
\(638\) 9.18845e12 2.19558
\(639\) −7.53733e10 −0.0178840
\(640\) 6.76286e12 1.59338
\(641\) 3.17631e12 0.743126 0.371563 0.928408i \(-0.378822\pi\)
0.371563 + 0.928408i \(0.378822\pi\)
\(642\) 4.23310e12 0.983446
\(643\) 1.40839e12 0.324919 0.162459 0.986715i \(-0.448057\pi\)
0.162459 + 0.986715i \(0.448057\pi\)
\(644\) −1.15232e12 −0.263990
\(645\) 2.45521e12 0.558559
\(646\) 0 0
\(647\) −2.75462e12 −0.618005 −0.309003 0.951061i \(-0.599995\pi\)
−0.309003 + 0.951061i \(0.599995\pi\)
\(648\) −7.99870e12 −1.78210
\(649\) 2.22007e12 0.491208
\(650\) 1.03194e12 0.226748
\(651\) −1.02388e13 −2.23427
\(652\) 1.53178e13 3.31957
\(653\) −6.16480e12 −1.32681 −0.663406 0.748260i \(-0.730890\pi\)
−0.663406 + 0.748260i \(0.730890\pi\)
\(654\) −8.13700e12 −1.73926
\(655\) 1.00108e13 2.12511
\(656\) −1.08745e12 −0.229268
\(657\) −7.74045e11 −0.162077
\(658\) −2.11959e13 −4.40794
\(659\) 1.17650e12 0.243000 0.121500 0.992591i \(-0.461229\pi\)
0.121500 + 0.992591i \(0.461229\pi\)
\(660\) −1.31281e13 −2.69312
\(661\) −4.98495e12 −1.01567 −0.507837 0.861453i \(-0.669555\pi\)
−0.507837 + 0.861453i \(0.669555\pi\)
\(662\) −1.20016e13 −2.42873
\(663\) 1.29541e12 0.260374
\(664\) −1.64351e13 −3.28108
\(665\) 0 0
\(666\) 2.02049e12 0.397944
\(667\) −4.79618e11 −0.0938273
\(668\) 2.94496e12 0.572250
\(669\) −1.90754e12 −0.368177
\(670\) −6.43076e12 −1.23289
\(671\) 1.01272e12 0.192859
\(672\) 5.39302e12 1.02017
\(673\) −8.79480e12 −1.65256 −0.826282 0.563257i \(-0.809548\pi\)
−0.826282 + 0.563257i \(0.809548\pi\)
\(674\) −1.02487e13 −1.91293
\(675\) 3.48069e12 0.645354
\(676\) −1.13562e13 −2.09157
\(677\) 9.07801e12 1.66089 0.830446 0.557099i \(-0.188086\pi\)
0.830446 + 0.557099i \(0.188086\pi\)
\(678\) −1.09698e13 −1.99373
\(679\) −9.95795e12 −1.79786
\(680\) 2.02085e13 3.62446
\(681\) 2.20795e12 0.393394
\(682\) 1.67863e13 2.97115
\(683\) −3.54139e12 −0.622702 −0.311351 0.950295i \(-0.600782\pi\)
−0.311351 + 0.950295i \(0.600782\pi\)
\(684\) 0 0
\(685\) −4.13939e10 −0.00718338
\(686\) −4.54330e12 −0.783272
\(687\) −6.23112e12 −1.06724
\(688\) 4.44109e12 0.755687
\(689\) 4.06694e11 0.0687514
\(690\) 9.98712e11 0.167733
\(691\) 3.84132e12 0.640957 0.320479 0.947256i \(-0.396156\pi\)
0.320479 + 0.947256i \(0.396156\pi\)
\(692\) −1.08189e13 −1.79352
\(693\) −1.33599e12 −0.220040
\(694\) −1.78385e13 −2.91905
\(695\) 6.75778e12 1.09868
\(696\) 1.43012e13 2.31010
\(697\) 1.20943e12 0.194103
\(698\) −2.29281e12 −0.365611
\(699\) 7.04774e12 1.11661
\(700\) −1.28326e13 −2.02011
\(701\) −9.72170e12 −1.52059 −0.760293 0.649580i \(-0.774945\pi\)
−0.760293 + 0.649580i \(0.774945\pi\)
\(702\) 2.52530e12 0.392460
\(703\) 0 0
\(704\) 2.02051e12 0.310016
\(705\) 1.26048e13 1.92169
\(706\) 6.57154e12 0.995511
\(707\) 2.28227e12 0.343542
\(708\) 6.36842e12 0.952537
\(709\) 2.09029e12 0.310669 0.155335 0.987862i \(-0.450354\pi\)
0.155335 + 0.987862i \(0.450354\pi\)
\(710\) −1.97352e12 −0.291460
\(711\) −2.61278e10 −0.00383434
\(712\) 1.33517e13 1.94705
\(713\) −8.76208e11 −0.126971
\(714\) −2.34777e13 −3.38075
\(715\) 1.93010e12 0.276186
\(716\) 2.98649e12 0.424670
\(717\) −2.75854e12 −0.389802
\(718\) −1.28209e13 −1.80036
\(719\) 4.28698e12 0.598235 0.299117 0.954216i \(-0.403308\pi\)
0.299117 + 0.954216i \(0.403308\pi\)
\(720\) 2.02666e12 0.281050
\(721\) 1.46153e13 2.01419
\(722\) 0 0
\(723\) 6.24469e12 0.849940
\(724\) −1.22543e13 −1.65755
\(725\) −5.34118e12 −0.717986
\(726\) −1.16929e12 −0.156210
\(727\) 8.65994e12 1.14977 0.574884 0.818235i \(-0.305047\pi\)
0.574884 + 0.818235i \(0.305047\pi\)
\(728\) −5.05158e12 −0.666555
\(729\) 8.37041e12 1.09767
\(730\) −2.02670e13 −2.64142
\(731\) −4.93924e12 −0.639782
\(732\) 2.90507e12 0.373987
\(733\) 3.40841e12 0.436098 0.218049 0.975938i \(-0.430031\pi\)
0.218049 + 0.975938i \(0.430031\pi\)
\(734\) −6.90509e12 −0.878085
\(735\) 1.20191e13 1.51908
\(736\) 4.61519e11 0.0579748
\(737\) −4.56003e12 −0.569330
\(738\) 2.87725e11 0.0357045
\(739\) 8.47639e12 1.04547 0.522734 0.852496i \(-0.324912\pi\)
0.522734 + 0.852496i \(0.324912\pi\)
\(740\) 3.62991e13 4.44993
\(741\) 0 0
\(742\) −7.37080e12 −0.892683
\(743\) −1.09797e13 −1.32172 −0.660860 0.750510i \(-0.729808\pi\)
−0.660860 + 0.750510i \(0.729808\pi\)
\(744\) 2.61267e13 3.12612
\(745\) 4.47490e12 0.532207
\(746\) 9.66751e12 1.14285
\(747\) 1.83312e12 0.215401
\(748\) 2.64104e13 3.08473
\(749\) 7.73922e12 0.898523
\(750\) −7.09219e12 −0.818473
\(751\) 7.89916e12 0.906152 0.453076 0.891472i \(-0.350327\pi\)
0.453076 + 0.891472i \(0.350327\pi\)
\(752\) 2.28001e13 2.59990
\(753\) −5.68157e12 −0.644008
\(754\) −3.87511e12 −0.436630
\(755\) −3.30300e12 −0.369954
\(756\) −3.14033e13 −3.49644
\(757\) 4.24235e12 0.469543 0.234771 0.972051i \(-0.424566\pi\)
0.234771 + 0.972051i \(0.424566\pi\)
\(758\) 6.96576e11 0.0766403
\(759\) 7.08184e11 0.0774565
\(760\) 0 0
\(761\) 1.64007e13 1.77268 0.886342 0.463031i \(-0.153238\pi\)
0.886342 + 0.463031i \(0.153238\pi\)
\(762\) 2.30184e13 2.47331
\(763\) −1.48766e13 −1.58907
\(764\) 7.51484e11 0.0797994
\(765\) −2.25398e12 −0.237943
\(766\) 1.17834e13 1.23663
\(767\) −9.36285e11 −0.0976853
\(768\) 1.73975e13 1.80452
\(769\) −1.34378e13 −1.38567 −0.692835 0.721096i \(-0.743638\pi\)
−0.692835 + 0.721096i \(0.743638\pi\)
\(770\) −3.49805e13 −3.58607
\(771\) 3.47500e12 0.354169
\(772\) −5.86871e12 −0.594655
\(773\) −6.63378e12 −0.668272 −0.334136 0.942525i \(-0.608444\pi\)
−0.334136 + 0.942525i \(0.608444\pi\)
\(774\) −1.17505e12 −0.117685
\(775\) −9.75773e12 −0.971608
\(776\) 2.54099e13 2.51551
\(777\) −2.28814e13 −2.25210
\(778\) −7.81854e12 −0.765099
\(779\) 0 0
\(780\) 5.53662e12 0.535573
\(781\) −1.39942e12 −0.134592
\(782\) −2.00915e12 −0.192124
\(783\) −1.30706e13 −1.24271
\(784\) 2.17408e13 2.05519
\(785\) −5.60257e12 −0.526591
\(786\) 2.96772e13 2.77345
\(787\) 3.85149e12 0.357884 0.178942 0.983860i \(-0.442733\pi\)
0.178942 + 0.983860i \(0.442733\pi\)
\(788\) −5.91891e12 −0.546857
\(789\) −7.45279e12 −0.684656
\(790\) −6.84113e11 −0.0624894
\(791\) −2.00558e13 −1.82157
\(792\) 3.40907e12 0.307874
\(793\) −4.27104e11 −0.0383534
\(794\) 2.39712e13 2.14041
\(795\) 4.38326e12 0.389175
\(796\) −2.93046e13 −2.58718
\(797\) 8.96871e12 0.787349 0.393675 0.919250i \(-0.371204\pi\)
0.393675 + 0.919250i \(0.371204\pi\)
\(798\) 0 0
\(799\) −2.53575e13 −2.20113
\(800\) 5.13962e12 0.443636
\(801\) −1.48920e12 −0.127822
\(802\) 4.32861e12 0.369457
\(803\) −1.43713e13 −1.21977
\(804\) −1.30808e13 −1.10403
\(805\) 1.82591e12 0.153249
\(806\) −7.07939e12 −0.590865
\(807\) 2.48658e12 0.206381
\(808\) −5.82372e12 −0.480673
\(809\) 7.19472e12 0.590535 0.295268 0.955415i \(-0.404591\pi\)
0.295268 + 0.955415i \(0.404591\pi\)
\(810\) 2.33594e13 1.90668
\(811\) −1.32351e13 −1.07432 −0.537160 0.843480i \(-0.680503\pi\)
−0.537160 + 0.843480i \(0.680503\pi\)
\(812\) 4.81889e13 3.88996
\(813\) 2.68973e12 0.215924
\(814\) 3.75134e13 2.99486
\(815\) −2.42718e13 −1.92705
\(816\) 2.52545e13 1.99404
\(817\) 0 0
\(818\) 1.53869e12 0.120161
\(819\) 5.63435e11 0.0437589
\(820\) 5.16913e12 0.399259
\(821\) −5.68620e12 −0.436796 −0.218398 0.975860i \(-0.570083\pi\)
−0.218398 + 0.975860i \(0.570083\pi\)
\(822\) −1.22713e11 −0.00937494
\(823\) 2.35782e13 1.79148 0.895739 0.444579i \(-0.146647\pi\)
0.895739 + 0.444579i \(0.146647\pi\)
\(824\) −3.72943e13 −2.81819
\(825\) 7.88656e12 0.592714
\(826\) 1.69690e13 1.26837
\(827\) −9.82813e11 −0.0730628 −0.0365314 0.999333i \(-0.511631\pi\)
−0.0365314 + 0.999333i \(0.511631\pi\)
\(828\) −3.27963e11 −0.0242487
\(829\) 8.04163e12 0.591356 0.295678 0.955288i \(-0.404454\pi\)
0.295678 + 0.955288i \(0.404454\pi\)
\(830\) 4.79971e13 3.51046
\(831\) 3.77004e12 0.274247
\(832\) −8.52123e11 −0.0616520
\(833\) −2.41794e13 −1.73997
\(834\) 2.00336e13 1.43388
\(835\) −4.66644e12 −0.332198
\(836\) 0 0
\(837\) −2.38786e13 −1.68168
\(838\) 1.13472e12 0.0794863
\(839\) −5.28475e12 −0.368210 −0.184105 0.982907i \(-0.558939\pi\)
−0.184105 + 0.982907i \(0.558939\pi\)
\(840\) −5.44448e13 −3.77311
\(841\) 5.54998e12 0.382569
\(842\) −2.40932e13 −1.65192
\(843\) 1.60349e13 1.09356
\(844\) −1.19427e13 −0.810146
\(845\) 1.79944e13 1.21418
\(846\) −6.03258e12 −0.404889
\(847\) −2.13778e12 −0.142721
\(848\) 7.92865e12 0.526523
\(849\) −1.53903e13 −1.01663
\(850\) −2.23745e13 −1.47017
\(851\) −1.95812e12 −0.127984
\(852\) −4.01433e12 −0.260997
\(853\) 1.61791e13 1.04636 0.523182 0.852221i \(-0.324745\pi\)
0.523182 + 0.852221i \(0.324745\pi\)
\(854\) 7.74070e12 0.497989
\(855\) 0 0
\(856\) −1.97484e13 −1.25719
\(857\) −7.87950e12 −0.498982 −0.249491 0.968377i \(-0.580263\pi\)
−0.249491 + 0.968377i \(0.580263\pi\)
\(858\) 5.72183e12 0.360448
\(859\) −1.99033e13 −1.24726 −0.623629 0.781720i \(-0.714343\pi\)
−0.623629 + 0.781720i \(0.714343\pi\)
\(860\) −2.11104e13 −1.31599
\(861\) −3.25839e12 −0.202064
\(862\) 3.14190e13 1.93825
\(863\) 6.88670e12 0.422632 0.211316 0.977418i \(-0.432225\pi\)
0.211316 + 0.977418i \(0.432225\pi\)
\(864\) 1.25774e13 0.767855
\(865\) 1.71431e13 1.04116
\(866\) −7.74675e12 −0.468047
\(867\) −1.26494e13 −0.760296
\(868\) 8.80356e13 5.26405
\(869\) −4.85103e11 −0.0288566
\(870\) −4.17651e13 −2.47159
\(871\) 1.92314e12 0.113221
\(872\) 3.79610e13 2.22338
\(873\) −2.83414e12 −0.165142
\(874\) 0 0
\(875\) −1.29664e13 −0.747796
\(876\) −4.12251e13 −2.36534
\(877\) 2.71377e13 1.54908 0.774542 0.632522i \(-0.217980\pi\)
0.774542 + 0.632522i \(0.217980\pi\)
\(878\) 3.69231e13 2.09688
\(879\) −2.00127e13 −1.13072
\(880\) 3.76280e13 2.11514
\(881\) −5.73268e12 −0.320602 −0.160301 0.987068i \(-0.551246\pi\)
−0.160301 + 0.987068i \(0.551246\pi\)
\(882\) −5.75230e12 −0.320061
\(883\) 3.14591e13 1.74150 0.870750 0.491726i \(-0.163634\pi\)
0.870750 + 0.491726i \(0.163634\pi\)
\(884\) −1.11382e13 −0.613453
\(885\) −1.00911e13 −0.552959
\(886\) 4.59816e13 2.50688
\(887\) 2.79211e13 1.51453 0.757263 0.653110i \(-0.226536\pi\)
0.757263 + 0.653110i \(0.226536\pi\)
\(888\) 5.83870e13 3.15107
\(889\) 4.20838e13 2.25973
\(890\) −3.89922e13 −2.08316
\(891\) 1.65641e13 0.880475
\(892\) 1.64015e13 0.867443
\(893\) 0 0
\(894\) 1.32660e13 0.694577
\(895\) −4.73224e12 −0.246526
\(896\) 3.66543e13 1.89994
\(897\) −2.98668e11 −0.0154036
\(898\) −3.54733e13 −1.82037
\(899\) 3.66421e13 1.87095
\(900\) −3.65230e12 −0.185556
\(901\) −8.81798e12 −0.445767
\(902\) 5.34204e12 0.268706
\(903\) 1.33071e13 0.666021
\(904\) 5.11768e13 2.54868
\(905\) 1.94176e13 0.962227
\(906\) −9.79185e12 −0.482823
\(907\) −9.54271e12 −0.468208 −0.234104 0.972212i \(-0.575216\pi\)
−0.234104 + 0.972212i \(0.575216\pi\)
\(908\) −1.89845e13 −0.926856
\(909\) 6.49557e11 0.0315559
\(910\) 1.47526e13 0.713152
\(911\) −2.01303e13 −0.968315 −0.484158 0.874981i \(-0.660874\pi\)
−0.484158 + 0.874981i \(0.660874\pi\)
\(912\) 0 0
\(913\) 3.40346e13 1.62107
\(914\) 2.88391e13 1.36686
\(915\) −4.60323e12 −0.217104
\(916\) 5.35765e13 2.51446
\(917\) 5.42578e13 2.53396
\(918\) −5.47537e13 −2.54461
\(919\) −2.20807e13 −1.02116 −0.510580 0.859830i \(-0.670569\pi\)
−0.510580 + 0.859830i \(0.670569\pi\)
\(920\) −4.65922e12 −0.214421
\(921\) 2.17755e13 0.997242
\(922\) 6.10030e13 2.78011
\(923\) 5.90188e11 0.0267659
\(924\) −7.11537e13 −3.21125
\(925\) −2.18063e13 −0.979362
\(926\) −2.73520e13 −1.22247
\(927\) 4.15967e12 0.185012
\(928\) −1.93002e13 −0.854274
\(929\) 1.59561e12 0.0702840 0.0351420 0.999382i \(-0.488812\pi\)
0.0351420 + 0.999382i \(0.488812\pi\)
\(930\) −7.63001e13 −3.34466
\(931\) 0 0
\(932\) −6.05980e13 −2.63079
\(933\) −2.82003e13 −1.21839
\(934\) −1.13701e13 −0.488880
\(935\) −4.18486e13 −1.79072
\(936\) −1.43773e12 −0.0612261
\(937\) 1.11135e13 0.471003 0.235502 0.971874i \(-0.424327\pi\)
0.235502 + 0.971874i \(0.424327\pi\)
\(938\) −3.48543e13 −1.47009
\(939\) 4.36036e12 0.183032
\(940\) −1.08378e14 −4.52760
\(941\) 2.43184e13 1.01107 0.505535 0.862806i \(-0.331295\pi\)
0.505535 + 0.862806i \(0.331295\pi\)
\(942\) −1.66090e13 −0.687248
\(943\) −2.78844e11 −0.0114831
\(944\) −1.82532e13 −0.748110
\(945\) 4.97601e13 2.02973
\(946\) −2.18166e13 −0.885680
\(947\) −3.00100e12 −0.121252 −0.0606262 0.998161i \(-0.519310\pi\)
−0.0606262 + 0.998161i \(0.519310\pi\)
\(948\) −1.39155e12 −0.0559579
\(949\) 6.06092e12 0.242572
\(950\) 0 0
\(951\) 2.66138e13 1.05510
\(952\) 1.09529e14 4.32177
\(953\) −2.15171e13 −0.845017 −0.422509 0.906359i \(-0.638850\pi\)
−0.422509 + 0.906359i \(0.638850\pi\)
\(954\) −2.09781e12 −0.0819970
\(955\) −1.19076e12 −0.0463245
\(956\) 2.37186e13 0.918392
\(957\) −2.96155e13 −1.14134
\(958\) 3.67136e13 1.40826
\(959\) −2.24353e11 −0.00856540
\(960\) −9.18399e12 −0.348988
\(961\) 4.05014e13 1.53184
\(962\) −1.58208e13 −0.595580
\(963\) 2.20266e12 0.0825334
\(964\) −5.36932e13 −2.00250
\(965\) 9.29927e12 0.345204
\(966\) 5.41296e12 0.200004
\(967\) 1.71091e13 0.629228 0.314614 0.949220i \(-0.398125\pi\)
0.314614 + 0.949220i \(0.398125\pi\)
\(968\) 5.45502e12 0.199691
\(969\) 0 0
\(970\) −7.42070e13 −2.69136
\(971\) 1.22718e13 0.443020 0.221510 0.975158i \(-0.428902\pi\)
0.221510 + 0.975158i \(0.428902\pi\)
\(972\) −1.67847e13 −0.603135
\(973\) 3.66268e13 1.31006
\(974\) −7.88288e13 −2.80653
\(975\) −3.32606e12 −0.117872
\(976\) −8.32654e12 −0.293725
\(977\) −1.53208e13 −0.537969 −0.268984 0.963145i \(-0.586688\pi\)
−0.268984 + 0.963145i \(0.586688\pi\)
\(978\) −7.19545e13 −2.51497
\(979\) −2.76493e13 −0.961970
\(980\) −1.03343e14 −3.57902
\(981\) −4.23403e12 −0.145963
\(982\) −5.94917e13 −2.04153
\(983\) 5.63651e13 1.92539 0.962696 0.270584i \(-0.0872167\pi\)
0.962696 + 0.270584i \(0.0872167\pi\)
\(984\) 8.31452e12 0.282722
\(985\) 9.37881e12 0.317457
\(986\) 8.40205e13 2.83100
\(987\) 6.83170e13 2.29140
\(988\) 0 0
\(989\) 1.13878e12 0.0378492
\(990\) −9.95583e12 −0.329396
\(991\) 4.55615e12 0.150061 0.0750304 0.997181i \(-0.476095\pi\)
0.0750304 + 0.997181i \(0.476095\pi\)
\(992\) −3.52594e13 −1.15604
\(993\) 3.86827e13 1.26254
\(994\) −1.06964e13 −0.347535
\(995\) 4.64346e13 1.50189
\(996\) 9.76306e13 3.14354
\(997\) −3.02485e13 −0.969561 −0.484781 0.874636i \(-0.661101\pi\)
−0.484781 + 0.874636i \(0.661101\pi\)
\(998\) −6.34717e13 −2.02531
\(999\) −5.33630e13 −1.69510
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 361.10.a.f.1.14 14
19.8 odd 6 19.10.c.a.7.14 28
19.12 odd 6 19.10.c.a.11.14 yes 28
19.18 odd 2 361.10.a.e.1.1 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
19.10.c.a.7.14 28 19.8 odd 6
19.10.c.a.11.14 yes 28 19.12 odd 6
361.10.a.e.1.1 14 19.18 odd 2
361.10.a.f.1.14 14 1.1 even 1 trivial