Properties

Label 361.10.a.e.1.14
Level $361$
Weight $10$
Character 361.1
Self dual yes
Analytic conductor $185.928$
Analytic rank $1$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [361,10,Mod(1,361)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(361, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("361.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 361 = 19^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 361.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,-15] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(185.927936855\)
Analytic rank: \(1\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - x^{13} - 5069 x^{12} + 6049 x^{11} + 9806858 x^{10} - 13799702 x^{9} - 9054174058 x^{8} + \cdots - 17\!\cdots\!44 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{4}\cdot 19 \)
Twist minimal: no (minimal twist has level 19)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Root \(-40.9292\) of defining polynomial
Character \(\chi\) \(=\) 361.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+39.9292 q^{2} -107.016 q^{3} +1082.34 q^{4} +181.893 q^{5} -4273.07 q^{6} +6421.38 q^{7} +22773.3 q^{8} -8230.53 q^{9} +7262.85 q^{10} -18234.9 q^{11} -115828. q^{12} -64367.6 q^{13} +256401. q^{14} -19465.5 q^{15} +355162. q^{16} +330639. q^{17} -328639. q^{18} +196871. q^{20} -687192. q^{21} -728105. q^{22} -1.73454e6 q^{23} -2.43712e6 q^{24} -1.92004e6 q^{25} -2.57015e6 q^{26} +2.98720e6 q^{27} +6.95013e6 q^{28} -3.22275e6 q^{29} -777242. q^{30} -6.34620e6 q^{31} +2.52139e6 q^{32} +1.95143e6 q^{33} +1.32022e7 q^{34} +1.16800e6 q^{35} -8.90826e6 q^{36} +1.71570e7 q^{37} +6.88838e6 q^{39} +4.14231e6 q^{40} +8.37540e6 q^{41} -2.74390e7 q^{42} -3.17434e7 q^{43} -1.97364e7 q^{44} -1.49708e6 q^{45} -6.92589e7 q^{46} +3.65671e7 q^{47} -3.80081e7 q^{48} +880523. q^{49} -7.66657e7 q^{50} -3.53837e7 q^{51} -6.96678e7 q^{52} -5.01405e7 q^{53} +1.19277e8 q^{54} -3.31680e6 q^{55} +1.46236e8 q^{56} -1.28682e8 q^{58} -2.30069e7 q^{59} -2.10683e7 q^{60} +1.33499e8 q^{61} -2.53399e8 q^{62} -5.28514e7 q^{63} -8.11656e7 q^{64} -1.17080e7 q^{65} +7.79191e7 q^{66} -3.98117e7 q^{67} +3.57865e8 q^{68} +1.85624e8 q^{69} +4.66375e7 q^{70} -4.02544e8 q^{71} -1.87437e8 q^{72} +3.15273e8 q^{73} +6.85067e8 q^{74} +2.05475e8 q^{75} -1.17093e8 q^{77} +2.75048e8 q^{78} +2.13887e7 q^{79} +6.46015e7 q^{80} -1.57677e8 q^{81} +3.34423e8 q^{82} -4.17337e8 q^{83} -7.43777e8 q^{84} +6.01410e7 q^{85} -1.26749e9 q^{86} +3.44886e8 q^{87} -4.15269e8 q^{88} -8.58032e8 q^{89} -5.97771e7 q^{90} -4.13329e8 q^{91} -1.87737e9 q^{92} +6.79146e8 q^{93} +1.46010e9 q^{94} -2.69830e8 q^{96} -8.94373e8 q^{97} +3.51586e7 q^{98} +1.50083e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 15 q^{2} + 74 q^{3} + 2987 q^{4} + 285 q^{5} + 535 q^{6} - 1338 q^{7} - 12135 q^{8} + 57928 q^{9} - 41180 q^{10} - 57405 q^{11} + 117729 q^{12} - 98671 q^{13} + 148290 q^{14} - 428251 q^{15} + 279203 q^{16}+ \cdots + 736622698 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 39.9292 1.76464 0.882319 0.470651i \(-0.155981\pi\)
0.882319 + 0.470651i \(0.155981\pi\)
\(3\) −107.016 −0.762788 −0.381394 0.924413i \(-0.624556\pi\)
−0.381394 + 0.924413i \(0.624556\pi\)
\(4\) 1082.34 2.11395
\(5\) 181.893 0.130152 0.0650760 0.997880i \(-0.479271\pi\)
0.0650760 + 0.997880i \(0.479271\pi\)
\(6\) −4273.07 −1.34605
\(7\) 6421.38 1.01085 0.505426 0.862870i \(-0.331336\pi\)
0.505426 + 0.862870i \(0.331336\pi\)
\(8\) 22773.3 1.96572
\(9\) −8230.53 −0.418154
\(10\) 7262.85 0.229671
\(11\) −18234.9 −0.375523 −0.187761 0.982215i \(-0.560123\pi\)
−0.187761 + 0.982215i \(0.560123\pi\)
\(12\) −115828. −1.61250
\(13\) −64367.6 −0.625061 −0.312530 0.949908i \(-0.601177\pi\)
−0.312530 + 0.949908i \(0.601177\pi\)
\(14\) 256401. 1.78379
\(15\) −19465.5 −0.0992784
\(16\) 355162. 1.35484
\(17\) 330639. 0.960139 0.480069 0.877230i \(-0.340611\pi\)
0.480069 + 0.877230i \(0.340611\pi\)
\(18\) −328639. −0.737891
\(19\) 0 0
\(20\) 196871. 0.275135
\(21\) −687192. −0.771065
\(22\) −728105. −0.662662
\(23\) −1.73454e6 −1.29244 −0.646218 0.763153i \(-0.723650\pi\)
−0.646218 + 0.763153i \(0.723650\pi\)
\(24\) −2.43712e6 −1.49943
\(25\) −1.92004e6 −0.983060
\(26\) −2.57015e6 −1.10301
\(27\) 2.98720e6 1.08175
\(28\) 6.95013e6 2.13689
\(29\) −3.22275e6 −0.846126 −0.423063 0.906100i \(-0.639045\pi\)
−0.423063 + 0.906100i \(0.639045\pi\)
\(30\) −777242. −0.175191
\(31\) −6.34620e6 −1.23420 −0.617101 0.786884i \(-0.711693\pi\)
−0.617101 + 0.786884i \(0.711693\pi\)
\(32\) 2.52139e6 0.425075
\(33\) 1.95143e6 0.286444
\(34\) 1.32022e7 1.69430
\(35\) 1.16800e6 0.131564
\(36\) −8.90826e6 −0.883958
\(37\) 1.71570e7 1.50499 0.752497 0.658596i \(-0.228849\pi\)
0.752497 + 0.658596i \(0.228849\pi\)
\(38\) 0 0
\(39\) 6.88838e6 0.476789
\(40\) 4.14231e6 0.255843
\(41\) 8.37540e6 0.462890 0.231445 0.972848i \(-0.425655\pi\)
0.231445 + 0.972848i \(0.425655\pi\)
\(42\) −2.74390e7 −1.36065
\(43\) −3.17434e7 −1.41594 −0.707970 0.706243i \(-0.750389\pi\)
−0.707970 + 0.706243i \(0.750389\pi\)
\(44\) −1.97364e7 −0.793837
\(45\) −1.49708e6 −0.0544237
\(46\) −6.92589e7 −2.28068
\(47\) 3.65671e7 1.09308 0.546538 0.837434i \(-0.315945\pi\)
0.546538 + 0.837434i \(0.315945\pi\)
\(48\) −3.80081e7 −1.03345
\(49\) 880523. 0.0218202
\(50\) −7.66657e7 −1.73475
\(51\) −3.53837e7 −0.732382
\(52\) −6.96678e7 −1.32135
\(53\) −5.01405e7 −0.872865 −0.436432 0.899737i \(-0.643758\pi\)
−0.436432 + 0.899737i \(0.643758\pi\)
\(54\) 1.19277e8 1.90890
\(55\) −3.31680e6 −0.0488751
\(56\) 1.46236e8 1.98705
\(57\) 0 0
\(58\) −1.28682e8 −1.49311
\(59\) −2.30069e7 −0.247186 −0.123593 0.992333i \(-0.539442\pi\)
−0.123593 + 0.992333i \(0.539442\pi\)
\(60\) −2.10683e7 −0.209870
\(61\) 1.33499e8 1.23451 0.617254 0.786764i \(-0.288245\pi\)
0.617254 + 0.786764i \(0.288245\pi\)
\(62\) −2.53399e8 −2.17792
\(63\) −5.28514e7 −0.422692
\(64\) −8.11656e7 −0.604731
\(65\) −1.17080e7 −0.0813530
\(66\) 7.79191e7 0.505471
\(67\) −3.98117e7 −0.241365 −0.120682 0.992691i \(-0.538508\pi\)
−0.120682 + 0.992691i \(0.538508\pi\)
\(68\) 3.57865e8 2.02969
\(69\) 1.85624e8 0.985855
\(70\) 4.66375e7 0.232164
\(71\) −4.02544e8 −1.87997 −0.939985 0.341216i \(-0.889161\pi\)
−0.939985 + 0.341216i \(0.889161\pi\)
\(72\) −1.87437e8 −0.821974
\(73\) 3.15273e8 1.29937 0.649686 0.760203i \(-0.274900\pi\)
0.649686 + 0.760203i \(0.274900\pi\)
\(74\) 6.85067e8 2.65577
\(75\) 2.05475e8 0.749867
\(76\) 0 0
\(77\) −1.17093e8 −0.379598
\(78\) 2.75048e8 0.841360
\(79\) 2.13887e7 0.0617820 0.0308910 0.999523i \(-0.490166\pi\)
0.0308910 + 0.999523i \(0.490166\pi\)
\(80\) 6.46015e7 0.176335
\(81\) −1.57677e8 −0.406993
\(82\) 3.34423e8 0.816834
\(83\) −4.17337e8 −0.965241 −0.482620 0.875830i \(-0.660315\pi\)
−0.482620 + 0.875830i \(0.660315\pi\)
\(84\) −7.43777e8 −1.62999
\(85\) 6.01410e7 0.124964
\(86\) −1.26749e9 −2.49862
\(87\) 3.44886e8 0.645415
\(88\) −4.15269e8 −0.738173
\(89\) −8.58032e8 −1.44960 −0.724801 0.688959i \(-0.758068\pi\)
−0.724801 + 0.688959i \(0.758068\pi\)
\(90\) −5.97771e7 −0.0960381
\(91\) −4.13329e8 −0.631844
\(92\) −1.87737e9 −2.73215
\(93\) 6.79146e8 0.941434
\(94\) 1.46010e9 1.92888
\(95\) 0 0
\(96\) −2.69830e8 −0.324242
\(97\) −8.94373e8 −1.02576 −0.512880 0.858460i \(-0.671421\pi\)
−0.512880 + 0.858460i \(0.671421\pi\)
\(98\) 3.51586e7 0.0385047
\(99\) 1.50083e8 0.157027
\(100\) −2.07814e9 −2.07814
\(101\) 2.68012e8 0.256276 0.128138 0.991756i \(-0.459100\pi\)
0.128138 + 0.991756i \(0.459100\pi\)
\(102\) −1.41285e9 −1.29239
\(103\) −2.12213e8 −0.185782 −0.0928912 0.995676i \(-0.529611\pi\)
−0.0928912 + 0.995676i \(0.529611\pi\)
\(104\) −1.46587e9 −1.22869
\(105\) −1.24995e8 −0.100356
\(106\) −2.00207e9 −1.54029
\(107\) −9.27967e8 −0.684393 −0.342196 0.939628i \(-0.611171\pi\)
−0.342196 + 0.939628i \(0.611171\pi\)
\(108\) 3.23317e9 2.28677
\(109\) 1.21742e9 0.826076 0.413038 0.910714i \(-0.364468\pi\)
0.413038 + 0.910714i \(0.364468\pi\)
\(110\) −1.32437e8 −0.0862468
\(111\) −1.83608e9 −1.14799
\(112\) 2.28063e9 1.36954
\(113\) −2.75119e8 −0.158733 −0.0793667 0.996845i \(-0.525290\pi\)
−0.0793667 + 0.996845i \(0.525290\pi\)
\(114\) 0 0
\(115\) −3.15501e8 −0.168213
\(116\) −3.48812e9 −1.78867
\(117\) 5.29780e8 0.261372
\(118\) −9.18646e8 −0.436194
\(119\) 2.12316e9 0.970558
\(120\) −4.43294e8 −0.195154
\(121\) −2.02544e9 −0.858983
\(122\) 5.33052e9 2.17846
\(123\) −8.96303e8 −0.353087
\(124\) −6.86876e9 −2.60904
\(125\) −7.04502e8 −0.258099
\(126\) −2.11031e9 −0.745898
\(127\) 4.72670e9 1.61228 0.806141 0.591723i \(-0.201552\pi\)
0.806141 + 0.591723i \(0.201552\pi\)
\(128\) −4.53183e9 −1.49221
\(129\) 3.39705e9 1.08006
\(130\) −4.67492e8 −0.143559
\(131\) 3.03299e9 0.899808 0.449904 0.893077i \(-0.351458\pi\)
0.449904 + 0.893077i \(0.351458\pi\)
\(132\) 2.11212e9 0.605529
\(133\) 0 0
\(134\) −1.58965e9 −0.425922
\(135\) 5.43351e8 0.140792
\(136\) 7.52975e9 1.88736
\(137\) 5.03854e9 1.22197 0.610987 0.791640i \(-0.290773\pi\)
0.610987 + 0.791640i \(0.290773\pi\)
\(138\) 7.41182e9 1.73968
\(139\) −8.23751e9 −1.87167 −0.935835 0.352439i \(-0.885352\pi\)
−0.935835 + 0.352439i \(0.885352\pi\)
\(140\) 1.26418e9 0.278121
\(141\) −3.91327e9 −0.833785
\(142\) −1.60733e10 −3.31747
\(143\) 1.17374e9 0.234725
\(144\) −2.92317e9 −0.566530
\(145\) −5.86195e8 −0.110125
\(146\) 1.25886e10 2.29292
\(147\) −9.42302e7 −0.0166442
\(148\) 1.85698e10 3.18148
\(149\) −7.50611e9 −1.24760 −0.623802 0.781583i \(-0.714413\pi\)
−0.623802 + 0.781583i \(0.714413\pi\)
\(150\) 8.20447e9 1.32324
\(151\) 1.91537e9 0.299817 0.149909 0.988700i \(-0.452102\pi\)
0.149909 + 0.988700i \(0.452102\pi\)
\(152\) 0 0
\(153\) −2.72134e9 −0.401486
\(154\) −4.67544e9 −0.669853
\(155\) −1.15433e9 −0.160634
\(156\) 7.45558e9 1.00791
\(157\) 3.88860e9 0.510793 0.255396 0.966836i \(-0.417794\pi\)
0.255396 + 0.966836i \(0.417794\pi\)
\(158\) 8.54033e8 0.109023
\(159\) 5.36584e9 0.665811
\(160\) 4.58624e8 0.0553244
\(161\) −1.11381e10 −1.30646
\(162\) −6.29593e9 −0.718195
\(163\) 1.50186e9 0.166643 0.0833214 0.996523i \(-0.473447\pi\)
0.0833214 + 0.996523i \(0.473447\pi\)
\(164\) 9.06505e9 0.978527
\(165\) 3.54952e8 0.0372813
\(166\) −1.66640e10 −1.70330
\(167\) −1.86656e10 −1.85703 −0.928515 0.371295i \(-0.878914\pi\)
−0.928515 + 0.371295i \(0.878914\pi\)
\(168\) −1.56496e10 −1.51570
\(169\) −6.46131e9 −0.609299
\(170\) 2.40138e9 0.220516
\(171\) 0 0
\(172\) −3.43572e10 −2.99323
\(173\) −5.03149e9 −0.427060 −0.213530 0.976937i \(-0.568496\pi\)
−0.213530 + 0.976937i \(0.568496\pi\)
\(174\) 1.37710e10 1.13892
\(175\) −1.23293e10 −0.993728
\(176\) −6.47634e9 −0.508772
\(177\) 2.46211e9 0.188550
\(178\) −3.42606e10 −2.55802
\(179\) 4.65070e9 0.338595 0.169297 0.985565i \(-0.445850\pi\)
0.169297 + 0.985565i \(0.445850\pi\)
\(180\) −1.62035e9 −0.115049
\(181\) 3.11760e9 0.215907 0.107953 0.994156i \(-0.465570\pi\)
0.107953 + 0.994156i \(0.465570\pi\)
\(182\) −1.65039e10 −1.11498
\(183\) −1.42866e10 −0.941668
\(184\) −3.95013e10 −2.54057
\(185\) 3.12075e9 0.195878
\(186\) 2.71178e10 1.66129
\(187\) −6.02917e9 −0.360554
\(188\) 3.95781e10 2.31071
\(189\) 1.91819e10 1.09349
\(190\) 0 0
\(191\) 6.59491e9 0.358558 0.179279 0.983798i \(-0.442624\pi\)
0.179279 + 0.983798i \(0.442624\pi\)
\(192\) 8.68604e9 0.461282
\(193\) −3.51626e10 −1.82420 −0.912100 0.409967i \(-0.865540\pi\)
−0.912100 + 0.409967i \(0.865540\pi\)
\(194\) −3.57116e10 −1.81010
\(195\) 1.25295e9 0.0620551
\(196\) 9.53027e8 0.0461268
\(197\) −3.06100e10 −1.44799 −0.723994 0.689806i \(-0.757696\pi\)
−0.723994 + 0.689806i \(0.757696\pi\)
\(198\) 5.99270e9 0.277095
\(199\) 2.50639e10 1.13295 0.566474 0.824080i \(-0.308307\pi\)
0.566474 + 0.824080i \(0.308307\pi\)
\(200\) −4.37257e10 −1.93242
\(201\) 4.26050e9 0.184110
\(202\) 1.07015e10 0.452234
\(203\) −2.06945e10 −0.855308
\(204\) −3.82973e10 −1.54822
\(205\) 1.52343e9 0.0602461
\(206\) −8.47350e9 −0.327839
\(207\) 1.42762e10 0.540438
\(208\) −2.28609e10 −0.846855
\(209\) 0 0
\(210\) −4.99097e9 −0.177092
\(211\) −2.75875e10 −0.958166 −0.479083 0.877770i \(-0.659031\pi\)
−0.479083 + 0.877770i \(0.659031\pi\)
\(212\) −5.42692e10 −1.84519
\(213\) 4.30787e10 1.43402
\(214\) −3.70530e10 −1.20771
\(215\) −5.77389e9 −0.184287
\(216\) 6.80285e10 2.12642
\(217\) −4.07514e10 −1.24759
\(218\) 4.86105e10 1.45773
\(219\) −3.37393e10 −0.991145
\(220\) −3.58992e9 −0.103319
\(221\) −2.12824e10 −0.600145
\(222\) −7.33133e10 −2.02579
\(223\) −2.54059e10 −0.687958 −0.343979 0.938977i \(-0.611775\pi\)
−0.343979 + 0.938977i \(0.611775\pi\)
\(224\) 1.61908e10 0.429688
\(225\) 1.58030e10 0.411071
\(226\) −1.09853e10 −0.280107
\(227\) −2.45390e10 −0.613394 −0.306697 0.951807i \(-0.599224\pi\)
−0.306697 + 0.951807i \(0.599224\pi\)
\(228\) 0 0
\(229\) −2.99198e10 −0.718950 −0.359475 0.933155i \(-0.617044\pi\)
−0.359475 + 0.933155i \(0.617044\pi\)
\(230\) −1.25977e10 −0.296836
\(231\) 1.25309e10 0.289553
\(232\) −7.33927e10 −1.66325
\(233\) −2.01019e10 −0.446823 −0.223411 0.974724i \(-0.571719\pi\)
−0.223411 + 0.974724i \(0.571719\pi\)
\(234\) 2.11537e10 0.461227
\(235\) 6.65130e9 0.142266
\(236\) −2.49013e10 −0.522538
\(237\) −2.28893e9 −0.0471266
\(238\) 8.47761e10 1.71268
\(239\) 3.34671e10 0.663480 0.331740 0.943371i \(-0.392364\pi\)
0.331740 + 0.943371i \(0.392364\pi\)
\(240\) −6.91341e9 −0.134506
\(241\) −2.19604e10 −0.419337 −0.209669 0.977772i \(-0.567239\pi\)
−0.209669 + 0.977772i \(0.567239\pi\)
\(242\) −8.08741e10 −1.51579
\(243\) −4.19230e10 −0.771302
\(244\) 1.44492e11 2.60969
\(245\) 1.60161e8 0.00283994
\(246\) −3.57887e10 −0.623071
\(247\) 0 0
\(248\) −1.44524e11 −2.42609
\(249\) 4.46618e10 0.736274
\(250\) −2.81302e10 −0.455452
\(251\) 6.17049e9 0.0981269 0.0490635 0.998796i \(-0.484376\pi\)
0.0490635 + 0.998796i \(0.484376\pi\)
\(252\) −5.72033e10 −0.893550
\(253\) 3.16292e10 0.485339
\(254\) 1.88733e11 2.84510
\(255\) −6.43606e9 −0.0953211
\(256\) −1.39396e11 −2.02848
\(257\) 1.03169e11 1.47520 0.737601 0.675237i \(-0.235959\pi\)
0.737601 + 0.675237i \(0.235959\pi\)
\(258\) 1.35642e11 1.90592
\(259\) 1.10172e11 1.52132
\(260\) −1.26721e10 −0.171976
\(261\) 2.65249e10 0.353811
\(262\) 1.21105e11 1.58784
\(263\) 1.39732e11 1.80093 0.900464 0.434930i \(-0.143227\pi\)
0.900464 + 0.434930i \(0.143227\pi\)
\(264\) 4.44406e10 0.563069
\(265\) −9.12020e9 −0.113605
\(266\) 0 0
\(267\) 9.18233e10 1.10574
\(268\) −4.30899e10 −0.510233
\(269\) 5.18387e10 0.603627 0.301814 0.953367i \(-0.402408\pi\)
0.301814 + 0.953367i \(0.402408\pi\)
\(270\) 2.16956e10 0.248447
\(271\) 1.43226e11 1.61309 0.806546 0.591171i \(-0.201334\pi\)
0.806546 + 0.591171i \(0.201334\pi\)
\(272\) 1.17430e11 1.30083
\(273\) 4.42329e10 0.481963
\(274\) 2.01185e11 2.15634
\(275\) 3.50117e10 0.369162
\(276\) 2.00909e11 2.08405
\(277\) −6.54070e10 −0.667522 −0.333761 0.942658i \(-0.608318\pi\)
−0.333761 + 0.942658i \(0.608318\pi\)
\(278\) −3.28917e11 −3.30282
\(279\) 5.22326e10 0.516087
\(280\) 2.65994e10 0.258619
\(281\) 6.76622e9 0.0647392 0.0323696 0.999476i \(-0.489695\pi\)
0.0323696 + 0.999476i \(0.489695\pi\)
\(282\) −1.56254e11 −1.47133
\(283\) −9.51839e10 −0.882114 −0.441057 0.897479i \(-0.645396\pi\)
−0.441057 + 0.897479i \(0.645396\pi\)
\(284\) −4.35691e11 −3.97416
\(285\) 0 0
\(286\) 4.68664e10 0.414204
\(287\) 5.37816e10 0.467913
\(288\) −2.07524e10 −0.177747
\(289\) −9.26566e9 −0.0781333
\(290\) −2.34063e10 −0.194331
\(291\) 9.57124e10 0.782438
\(292\) 3.41233e11 2.74681
\(293\) 8.03280e10 0.636741 0.318370 0.947966i \(-0.396864\pi\)
0.318370 + 0.947966i \(0.396864\pi\)
\(294\) −3.76254e9 −0.0293710
\(295\) −4.18479e9 −0.0321717
\(296\) 3.90723e11 2.95840
\(297\) −5.44713e10 −0.406222
\(298\) −2.99713e11 −2.20157
\(299\) 1.11648e11 0.807852
\(300\) 2.22395e11 1.58518
\(301\) −2.03836e11 −1.43130
\(302\) 7.64793e10 0.529069
\(303\) −2.86816e10 −0.195484
\(304\) 0 0
\(305\) 2.42826e10 0.160674
\(306\) −1.08661e11 −0.708478
\(307\) −1.85563e11 −1.19225 −0.596127 0.802890i \(-0.703294\pi\)
−0.596127 + 0.802890i \(0.703294\pi\)
\(308\) −1.26735e11 −0.802451
\(309\) 2.27102e10 0.141713
\(310\) −4.60915e10 −0.283461
\(311\) 9.88281e10 0.599044 0.299522 0.954089i \(-0.403173\pi\)
0.299522 + 0.954089i \(0.403173\pi\)
\(312\) 1.56871e11 0.937234
\(313\) 2.06245e11 1.21460 0.607302 0.794471i \(-0.292252\pi\)
0.607302 + 0.794471i \(0.292252\pi\)
\(314\) 1.55269e11 0.901365
\(315\) −9.61330e9 −0.0550142
\(316\) 2.31499e10 0.130604
\(317\) 1.88922e11 1.05079 0.525395 0.850859i \(-0.323918\pi\)
0.525395 + 0.850859i \(0.323918\pi\)
\(318\) 2.14254e11 1.17492
\(319\) 5.87665e10 0.317740
\(320\) −1.47635e10 −0.0787070
\(321\) 9.93075e10 0.522047
\(322\) −4.44738e11 −2.30543
\(323\) 0 0
\(324\) −1.70661e11 −0.860362
\(325\) 1.23588e11 0.614473
\(326\) 5.99683e10 0.294064
\(327\) −1.30283e11 −0.630121
\(328\) 1.90736e11 0.909913
\(329\) 2.34811e11 1.10494
\(330\) 1.41729e10 0.0657881
\(331\) 2.71848e11 1.24480 0.622402 0.782698i \(-0.286157\pi\)
0.622402 + 0.782698i \(0.286157\pi\)
\(332\) −4.51702e11 −2.04047
\(333\) −1.41212e11 −0.629320
\(334\) −7.45305e11 −3.27699
\(335\) −7.24147e9 −0.0314141
\(336\) −2.44064e11 −1.04467
\(337\) −1.23731e11 −0.522568 −0.261284 0.965262i \(-0.584146\pi\)
−0.261284 + 0.965262i \(0.584146\pi\)
\(338\) −2.57995e11 −1.07519
\(339\) 2.94422e10 0.121080
\(340\) 6.50931e10 0.264168
\(341\) 1.15722e11 0.463471
\(342\) 0 0
\(343\) −2.53472e11 −0.988794
\(344\) −7.22902e11 −2.78334
\(345\) 3.37637e10 0.128311
\(346\) −2.00903e11 −0.753606
\(347\) −1.41674e9 −0.00524576 −0.00262288 0.999997i \(-0.500835\pi\)
−0.00262288 + 0.999997i \(0.500835\pi\)
\(348\) 3.73285e11 1.36438
\(349\) 2.08793e11 0.753359 0.376680 0.926344i \(-0.377066\pi\)
0.376680 + 0.926344i \(0.377066\pi\)
\(350\) −4.92300e11 −1.75357
\(351\) −1.92279e11 −0.676160
\(352\) −4.59774e10 −0.159625
\(353\) 1.94968e11 0.668309 0.334154 0.942518i \(-0.391549\pi\)
0.334154 + 0.942518i \(0.391549\pi\)
\(354\) 9.83100e10 0.332723
\(355\) −7.32200e10 −0.244682
\(356\) −9.28685e11 −3.06438
\(357\) −2.27212e11 −0.740330
\(358\) 1.85699e11 0.597497
\(359\) −1.83608e11 −0.583401 −0.291700 0.956510i \(-0.594221\pi\)
−0.291700 + 0.956510i \(0.594221\pi\)
\(360\) −3.40934e10 −0.106982
\(361\) 0 0
\(362\) 1.24483e11 0.380997
\(363\) 2.16754e11 0.655222
\(364\) −4.47364e11 −1.33569
\(365\) 5.73459e10 0.169116
\(366\) −5.70452e11 −1.66170
\(367\) 3.69522e10 0.106327 0.0531635 0.998586i \(-0.483070\pi\)
0.0531635 + 0.998586i \(0.483070\pi\)
\(368\) −6.16043e11 −1.75104
\(369\) −6.89340e10 −0.193560
\(370\) 1.24609e11 0.345654
\(371\) −3.21971e11 −0.882337
\(372\) 7.35069e11 1.99015
\(373\) 4.19970e11 1.12338 0.561692 0.827346i \(-0.310150\pi\)
0.561692 + 0.827346i \(0.310150\pi\)
\(374\) −2.40740e11 −0.636248
\(375\) 7.53931e10 0.196875
\(376\) 8.32755e11 2.14868
\(377\) 2.07441e11 0.528880
\(378\) 7.65920e11 1.92961
\(379\) 2.17132e11 0.540565 0.270282 0.962781i \(-0.412883\pi\)
0.270282 + 0.962781i \(0.412883\pi\)
\(380\) 0 0
\(381\) −5.05833e11 −1.22983
\(382\) 2.63330e11 0.632725
\(383\) −1.28220e11 −0.304481 −0.152241 0.988343i \(-0.548649\pi\)
−0.152241 + 0.988343i \(0.548649\pi\)
\(384\) 4.84980e11 1.13824
\(385\) −2.12984e10 −0.0494054
\(386\) −1.40401e12 −3.21906
\(387\) 2.61265e11 0.592081
\(388\) −9.68018e11 −2.16841
\(389\) 6.65133e11 1.47277 0.736386 0.676562i \(-0.236531\pi\)
0.736386 + 0.676562i \(0.236531\pi\)
\(390\) 5.00292e10 0.109505
\(391\) −5.73507e11 −1.24092
\(392\) 2.00524e10 0.0428924
\(393\) −3.24579e11 −0.686362
\(394\) −1.22223e12 −2.55518
\(395\) 3.89045e9 0.00804105
\(396\) 1.62441e11 0.331946
\(397\) 7.36476e11 1.48799 0.743997 0.668183i \(-0.232928\pi\)
0.743997 + 0.668183i \(0.232928\pi\)
\(398\) 1.00078e12 1.99924
\(399\) 0 0
\(400\) −6.81925e11 −1.33189
\(401\) 1.75865e11 0.339649 0.169824 0.985474i \(-0.445680\pi\)
0.169824 + 0.985474i \(0.445680\pi\)
\(402\) 1.70118e11 0.324888
\(403\) 4.08490e11 0.771451
\(404\) 2.90080e11 0.541754
\(405\) −2.86804e10 −0.0529709
\(406\) −8.26315e11 −1.50931
\(407\) −3.12857e11 −0.565160
\(408\) −8.05806e11 −1.43966
\(409\) −9.19184e11 −1.62423 −0.812115 0.583497i \(-0.801684\pi\)
−0.812115 + 0.583497i \(0.801684\pi\)
\(410\) 6.08292e10 0.106313
\(411\) −5.39206e11 −0.932108
\(412\) −2.29687e11 −0.392735
\(413\) −1.47736e11 −0.249868
\(414\) 5.70037e11 0.953678
\(415\) −7.59107e10 −0.125628
\(416\) −1.62296e11 −0.265698
\(417\) 8.81547e11 1.42769
\(418\) 0 0
\(419\) 7.74552e10 0.122769 0.0613843 0.998114i \(-0.480448\pi\)
0.0613843 + 0.998114i \(0.480448\pi\)
\(420\) −1.35288e11 −0.212147
\(421\) 4.12516e11 0.639988 0.319994 0.947420i \(-0.396319\pi\)
0.319994 + 0.947420i \(0.396319\pi\)
\(422\) −1.10155e12 −1.69082
\(423\) −3.00967e11 −0.457074
\(424\) −1.14187e12 −1.71581
\(425\) −6.34840e11 −0.943875
\(426\) 1.72010e12 2.53052
\(427\) 8.57249e11 1.24790
\(428\) −1.00438e12 −1.44677
\(429\) −1.25609e11 −0.179045
\(430\) −2.30547e11 −0.325201
\(431\) 5.92960e11 0.827709 0.413854 0.910343i \(-0.364182\pi\)
0.413854 + 0.910343i \(0.364182\pi\)
\(432\) 1.06094e12 1.46559
\(433\) 1.60832e10 0.0219875 0.0109938 0.999940i \(-0.496501\pi\)
0.0109938 + 0.999940i \(0.496501\pi\)
\(434\) −1.62717e12 −2.20155
\(435\) 6.27324e10 0.0840021
\(436\) 1.31766e12 1.74628
\(437\) 0 0
\(438\) −1.34718e12 −1.74901
\(439\) 6.10409e11 0.784387 0.392194 0.919883i \(-0.371716\pi\)
0.392194 + 0.919883i \(0.371716\pi\)
\(440\) −7.55346e10 −0.0960747
\(441\) −7.24717e9 −0.00912420
\(442\) −8.49792e11 −1.05904
\(443\) 1.38930e12 1.71388 0.856939 0.515418i \(-0.172363\pi\)
0.856939 + 0.515418i \(0.172363\pi\)
\(444\) −1.98727e12 −2.42680
\(445\) −1.56070e11 −0.188669
\(446\) −1.01444e12 −1.21400
\(447\) 8.03275e11 0.951657
\(448\) −5.21195e11 −0.611293
\(449\) −8.03312e11 −0.932773 −0.466386 0.884581i \(-0.654444\pi\)
−0.466386 + 0.884581i \(0.654444\pi\)
\(450\) 6.31000e11 0.725392
\(451\) −1.52725e11 −0.173826
\(452\) −2.97773e11 −0.335554
\(453\) −2.04976e11 −0.228697
\(454\) −9.79821e11 −1.08242
\(455\) −7.51817e10 −0.0822357
\(456\) 0 0
\(457\) 4.96584e11 0.532562 0.266281 0.963895i \(-0.414205\pi\)
0.266281 + 0.963895i \(0.414205\pi\)
\(458\) −1.19467e12 −1.26869
\(459\) 9.87685e11 1.03863
\(460\) −3.41480e11 −0.355595
\(461\) 5.85369e11 0.603636 0.301818 0.953366i \(-0.402406\pi\)
0.301818 + 0.953366i \(0.402406\pi\)
\(462\) 5.00348e11 0.510956
\(463\) 8.41165e11 0.850681 0.425340 0.905033i \(-0.360154\pi\)
0.425340 + 0.905033i \(0.360154\pi\)
\(464\) −1.14460e12 −1.14636
\(465\) 1.23532e11 0.122530
\(466\) −8.02653e11 −0.788481
\(467\) −6.37598e11 −0.620328 −0.310164 0.950683i \(-0.600384\pi\)
−0.310164 + 0.950683i \(0.600384\pi\)
\(468\) 5.73403e11 0.552527
\(469\) −2.55646e11 −0.243984
\(470\) 2.65581e11 0.251048
\(471\) −4.16143e11 −0.389627
\(472\) −5.23943e11 −0.485898
\(473\) 5.78837e11 0.531718
\(474\) −9.13954e10 −0.0831614
\(475\) 0 0
\(476\) 2.29799e12 2.05171
\(477\) 4.12683e11 0.364992
\(478\) 1.33632e12 1.17080
\(479\) 1.94352e12 1.68686 0.843429 0.537241i \(-0.180533\pi\)
0.843429 + 0.537241i \(0.180533\pi\)
\(480\) −4.90802e10 −0.0422008
\(481\) −1.10436e12 −0.940713
\(482\) −8.76861e11 −0.739979
\(483\) 1.19196e12 0.996553
\(484\) −2.19222e12 −1.81585
\(485\) −1.62680e11 −0.133505
\(486\) −1.67395e12 −1.36107
\(487\) 7.63579e11 0.615139 0.307570 0.951526i \(-0.400484\pi\)
0.307570 + 0.951526i \(0.400484\pi\)
\(488\) 3.04022e12 2.42670
\(489\) −1.60724e11 −0.127113
\(490\) 6.39510e9 0.00501147
\(491\) −1.54877e12 −1.20260 −0.601298 0.799025i \(-0.705350\pi\)
−0.601298 + 0.799025i \(0.705350\pi\)
\(492\) −9.70107e11 −0.746409
\(493\) −1.06557e12 −0.812399
\(494\) 0 0
\(495\) 2.72990e10 0.0204373
\(496\) −2.25393e12 −1.67214
\(497\) −2.58489e12 −1.90037
\(498\) 1.78331e12 1.29926
\(499\) 2.24210e12 1.61883 0.809417 0.587234i \(-0.199783\pi\)
0.809417 + 0.587234i \(0.199783\pi\)
\(500\) −7.62512e11 −0.545609
\(501\) 1.99753e12 1.41652
\(502\) 2.46383e11 0.173159
\(503\) −2.20646e11 −0.153688 −0.0768439 0.997043i \(-0.524484\pi\)
−0.0768439 + 0.997043i \(0.524484\pi\)
\(504\) −1.20360e12 −0.830894
\(505\) 4.87495e10 0.0333548
\(506\) 1.26293e12 0.856449
\(507\) 6.91465e11 0.464766
\(508\) 5.11591e12 3.40828
\(509\) −2.80660e12 −1.85332 −0.926662 0.375896i \(-0.877335\pi\)
−0.926662 + 0.375896i \(0.877335\pi\)
\(510\) −2.56987e11 −0.168207
\(511\) 2.02449e12 1.31347
\(512\) −3.24567e12 −2.08732
\(513\) 0 0
\(514\) 4.11947e12 2.60320
\(515\) −3.86001e10 −0.0241800
\(516\) 3.67677e12 2.28320
\(517\) −6.66798e11 −0.410475
\(518\) 4.39908e12 2.68459
\(519\) 5.38450e11 0.325756
\(520\) −2.66631e11 −0.159917
\(521\) −1.44996e12 −0.862155 −0.431077 0.902315i \(-0.641866\pi\)
−0.431077 + 0.902315i \(0.641866\pi\)
\(522\) 1.05912e12 0.624349
\(523\) 2.88902e11 0.168847 0.0844233 0.996430i \(-0.473095\pi\)
0.0844233 + 0.996430i \(0.473095\pi\)
\(524\) 3.28273e12 1.90215
\(525\) 1.31944e12 0.758004
\(526\) 5.57941e12 3.17799
\(527\) −2.09830e12 −1.18500
\(528\) 6.93074e11 0.388085
\(529\) 1.20748e12 0.670393
\(530\) −3.64163e11 −0.200472
\(531\) 1.89359e11 0.103362
\(532\) 0 0
\(533\) −5.39104e11 −0.289335
\(534\) 3.66643e12 1.95123
\(535\) −1.68791e11 −0.0890752
\(536\) −9.06645e11 −0.474456
\(537\) −4.97701e11 −0.258276
\(538\) 2.06988e12 1.06518
\(539\) −1.60562e10 −0.00819398
\(540\) 5.88092e11 0.297628
\(541\) 7.39497e11 0.371149 0.185575 0.982630i \(-0.440585\pi\)
0.185575 + 0.982630i \(0.440585\pi\)
\(542\) 5.71889e12 2.84652
\(543\) −3.33633e11 −0.164691
\(544\) 8.33672e11 0.408131
\(545\) 2.21440e11 0.107515
\(546\) 1.76618e12 0.850490
\(547\) −1.60956e12 −0.768712 −0.384356 0.923185i \(-0.625577\pi\)
−0.384356 + 0.923185i \(0.625577\pi\)
\(548\) 5.45343e12 2.58319
\(549\) −1.09877e12 −0.516215
\(550\) 1.39799e12 0.651437
\(551\) 0 0
\(552\) 4.22728e12 1.93792
\(553\) 1.37345e11 0.0624524
\(554\) −2.61165e12 −1.17793
\(555\) −3.33971e11 −0.149413
\(556\) −8.91580e12 −3.95662
\(557\) −4.85306e10 −0.0213632 −0.0106816 0.999943i \(-0.503400\pi\)
−0.0106816 + 0.999943i \(0.503400\pi\)
\(558\) 2.08561e12 0.910707
\(559\) 2.04324e12 0.885048
\(560\) 4.14831e11 0.178248
\(561\) 6.45219e11 0.275026
\(562\) 2.70170e11 0.114241
\(563\) −4.23336e12 −1.77581 −0.887906 0.460025i \(-0.847840\pi\)
−0.887906 + 0.460025i \(0.847840\pi\)
\(564\) −4.23550e12 −1.76258
\(565\) −5.00423e10 −0.0206595
\(566\) −3.80062e12 −1.55661
\(567\) −1.01251e12 −0.411409
\(568\) −9.16727e12 −3.69549
\(569\) 3.38804e12 1.35501 0.677505 0.735518i \(-0.263061\pi\)
0.677505 + 0.735518i \(0.263061\pi\)
\(570\) 0 0
\(571\) −1.94511e12 −0.765740 −0.382870 0.923802i \(-0.625064\pi\)
−0.382870 + 0.923802i \(0.625064\pi\)
\(572\) 1.27039e12 0.496196
\(573\) −7.05762e11 −0.273503
\(574\) 2.14746e12 0.825698
\(575\) 3.33039e12 1.27054
\(576\) 6.68036e11 0.252871
\(577\) 3.75269e12 1.40945 0.704727 0.709478i \(-0.251069\pi\)
0.704727 + 0.709478i \(0.251069\pi\)
\(578\) −3.69971e11 −0.137877
\(579\) 3.76296e12 1.39148
\(580\) −6.34464e11 −0.232799
\(581\) −2.67988e12 −0.975715
\(582\) 3.82172e12 1.38072
\(583\) 9.14307e11 0.327781
\(584\) 7.17981e12 2.55420
\(585\) 9.63632e10 0.0340181
\(586\) 3.20743e12 1.12362
\(587\) −3.23541e12 −1.12476 −0.562378 0.826880i \(-0.690113\pi\)
−0.562378 + 0.826880i \(0.690113\pi\)
\(588\) −1.01989e11 −0.0351850
\(589\) 0 0
\(590\) −1.67095e11 −0.0567715
\(591\) 3.27576e12 1.10451
\(592\) 6.09353e12 2.03902
\(593\) 7.00335e11 0.232573 0.116287 0.993216i \(-0.462901\pi\)
0.116287 + 0.993216i \(0.462901\pi\)
\(594\) −2.17500e12 −0.716836
\(595\) 3.86188e11 0.126320
\(596\) −8.12418e12 −2.63737
\(597\) −2.68224e12 −0.864199
\(598\) 4.45803e12 1.42557
\(599\) 3.39955e12 1.07895 0.539475 0.842002i \(-0.318623\pi\)
0.539475 + 0.842002i \(0.318623\pi\)
\(600\) 4.67936e12 1.47403
\(601\) −5.37340e12 −1.68002 −0.840010 0.542571i \(-0.817451\pi\)
−0.840010 + 0.542571i \(0.817451\pi\)
\(602\) −8.13902e12 −2.52574
\(603\) 3.27671e11 0.100928
\(604\) 2.07309e12 0.633799
\(605\) −3.68413e11 −0.111798
\(606\) −1.14523e12 −0.344959
\(607\) −2.42544e12 −0.725171 −0.362586 0.931950i \(-0.618106\pi\)
−0.362586 + 0.931950i \(0.618106\pi\)
\(608\) 0 0
\(609\) 2.21464e12 0.652419
\(610\) 9.69584e11 0.283531
\(611\) −2.35374e12 −0.683239
\(612\) −2.94542e12 −0.848722
\(613\) −4.05784e12 −1.16071 −0.580354 0.814364i \(-0.697086\pi\)
−0.580354 + 0.814364i \(0.697086\pi\)
\(614\) −7.40938e12 −2.10390
\(615\) −1.63031e11 −0.0459550
\(616\) −2.66660e12 −0.746183
\(617\) 7.01475e12 1.94863 0.974314 0.225193i \(-0.0723012\pi\)
0.974314 + 0.225193i \(0.0723012\pi\)
\(618\) 9.06802e11 0.250072
\(619\) 2.70616e12 0.740876 0.370438 0.928857i \(-0.379208\pi\)
0.370438 + 0.928857i \(0.379208\pi\)
\(620\) −1.24938e12 −0.339572
\(621\) −5.18142e12 −1.39809
\(622\) 3.94613e12 1.05710
\(623\) −5.50975e12 −1.46533
\(624\) 2.44649e12 0.645971
\(625\) 3.62193e12 0.949468
\(626\) 8.23522e12 2.14334
\(627\) 0 0
\(628\) 4.20880e12 1.07979
\(629\) 5.67279e12 1.44500
\(630\) −3.83852e11 −0.0970802
\(631\) −3.52498e12 −0.885166 −0.442583 0.896728i \(-0.645938\pi\)
−0.442583 + 0.896728i \(0.645938\pi\)
\(632\) 4.87091e11 0.121446
\(633\) 2.95231e12 0.730878
\(634\) 7.54351e12 1.85426
\(635\) 8.59753e11 0.209842
\(636\) 5.80768e12 1.40749
\(637\) −5.66772e10 −0.0136389
\(638\) 2.34650e12 0.560696
\(639\) 3.31315e12 0.786118
\(640\) −8.24309e11 −0.194214
\(641\) −7.85515e12 −1.83778 −0.918890 0.394514i \(-0.870913\pi\)
−0.918890 + 0.394514i \(0.870913\pi\)
\(642\) 3.96527e12 0.921224
\(643\) 1.50093e12 0.346266 0.173133 0.984898i \(-0.444611\pi\)
0.173133 + 0.984898i \(0.444611\pi\)
\(644\) −1.20553e13 −2.76179
\(645\) 6.17900e11 0.140572
\(646\) 0 0
\(647\) 2.99482e12 0.671896 0.335948 0.941881i \(-0.390943\pi\)
0.335948 + 0.941881i \(0.390943\pi\)
\(648\) −3.59084e12 −0.800033
\(649\) 4.19528e11 0.0928239
\(650\) 4.93479e12 1.08432
\(651\) 4.36106e12 0.951650
\(652\) 1.62553e12 0.352274
\(653\) −6.21285e12 −1.33715 −0.668577 0.743643i \(-0.733096\pi\)
−0.668577 + 0.743643i \(0.733096\pi\)
\(654\) −5.20211e12 −1.11194
\(655\) 5.51679e11 0.117112
\(656\) 2.97462e12 0.627140
\(657\) −2.59486e12 −0.543338
\(658\) 9.37583e12 1.94981
\(659\) 3.55299e12 0.733853 0.366927 0.930250i \(-0.380410\pi\)
0.366927 + 0.930250i \(0.380410\pi\)
\(660\) 3.84179e11 0.0788109
\(661\) −6.55156e12 −1.33487 −0.667433 0.744670i \(-0.732607\pi\)
−0.667433 + 0.744670i \(0.732607\pi\)
\(662\) 1.08547e13 2.19663
\(663\) 2.27757e12 0.457784
\(664\) −9.50416e12 −1.89739
\(665\) 0 0
\(666\) −5.63847e12 −1.11052
\(667\) 5.58999e12 1.09356
\(668\) −2.02026e13 −3.92567
\(669\) 2.71884e12 0.524766
\(670\) −2.89146e11 −0.0554346
\(671\) −2.43434e12 −0.463586
\(672\) −1.73268e12 −0.327761
\(673\) 7.46519e12 1.40273 0.701364 0.712803i \(-0.252575\pi\)
0.701364 + 0.712803i \(0.252575\pi\)
\(674\) −4.94046e12 −0.922143
\(675\) −5.73554e12 −1.06343
\(676\) −6.99335e12 −1.28803
\(677\) 8.56904e10 0.0156777 0.00783887 0.999969i \(-0.497505\pi\)
0.00783887 + 0.999969i \(0.497505\pi\)
\(678\) 1.17561e12 0.213662
\(679\) −5.74311e12 −1.03689
\(680\) 1.36961e12 0.245644
\(681\) 2.62607e12 0.467890
\(682\) 4.62070e12 0.817859
\(683\) −4.60458e11 −0.0809648 −0.0404824 0.999180i \(-0.512889\pi\)
−0.0404824 + 0.999180i \(0.512889\pi\)
\(684\) 0 0
\(685\) 9.16476e11 0.159043
\(686\) −1.01209e13 −1.74486
\(687\) 3.20190e12 0.548406
\(688\) −1.12740e13 −1.91837
\(689\) 3.22742e12 0.545594
\(690\) 1.34816e12 0.226423
\(691\) 4.05489e12 0.676594 0.338297 0.941039i \(-0.390149\pi\)
0.338297 + 0.941039i \(0.390149\pi\)
\(692\) −5.44579e12 −0.902783
\(693\) 9.63740e11 0.158730
\(694\) −5.65694e10 −0.00925687
\(695\) −1.49835e12 −0.243602
\(696\) 7.85421e12 1.26871
\(697\) 2.76923e12 0.444439
\(698\) 8.33695e12 1.32941
\(699\) 2.15123e12 0.340831
\(700\) −1.33445e13 −2.10069
\(701\) 5.47520e12 0.856385 0.428193 0.903688i \(-0.359150\pi\)
0.428193 + 0.903688i \(0.359150\pi\)
\(702\) −7.67755e12 −1.19318
\(703\) 0 0
\(704\) 1.48005e12 0.227090
\(705\) −7.11797e11 −0.108519
\(706\) 7.78492e12 1.17932
\(707\) 1.72101e12 0.259057
\(708\) 2.66484e12 0.398586
\(709\) 8.06770e12 1.19906 0.599531 0.800352i \(-0.295354\pi\)
0.599531 + 0.800352i \(0.295354\pi\)
\(710\) −2.92362e12 −0.431775
\(711\) −1.76040e11 −0.0258344
\(712\) −1.95402e13 −2.84951
\(713\) 1.10077e13 1.59513
\(714\) −9.07242e12 −1.30641
\(715\) 2.13495e11 0.0305499
\(716\) 5.03366e12 0.715772
\(717\) −3.58153e12 −0.506095
\(718\) −7.33133e12 −1.02949
\(719\) −1.14018e13 −1.59109 −0.795545 0.605895i \(-0.792815\pi\)
−0.795545 + 0.605895i \(0.792815\pi\)
\(720\) −5.31705e11 −0.0737351
\(721\) −1.36270e12 −0.187798
\(722\) 0 0
\(723\) 2.35012e12 0.319865
\(724\) 3.37431e12 0.456416
\(725\) 6.18780e12 0.831793
\(726\) 8.65484e12 1.15623
\(727\) −1.31502e12 −0.174594 −0.0872969 0.996182i \(-0.527823\pi\)
−0.0872969 + 0.996182i \(0.527823\pi\)
\(728\) −9.41288e12 −1.24203
\(729\) 7.59001e12 0.995333
\(730\) 2.28978e12 0.298428
\(731\) −1.04956e13 −1.35950
\(732\) −1.54630e13 −1.99064
\(733\) −3.41047e12 −0.436361 −0.218180 0.975908i \(-0.570012\pi\)
−0.218180 + 0.975908i \(0.570012\pi\)
\(734\) 1.47547e12 0.187629
\(735\) −1.71398e10 −0.00216627
\(736\) −4.37346e12 −0.549383
\(737\) 7.25962e11 0.0906380
\(738\) −2.75248e12 −0.341563
\(739\) 4.55484e12 0.561789 0.280895 0.959739i \(-0.409369\pi\)
0.280895 + 0.959739i \(0.409369\pi\)
\(740\) 3.37772e12 0.414076
\(741\) 0 0
\(742\) −1.28561e13 −1.55701
\(743\) −3.75058e12 −0.451491 −0.225746 0.974186i \(-0.572482\pi\)
−0.225746 + 0.974186i \(0.572482\pi\)
\(744\) 1.54664e13 1.85060
\(745\) −1.36531e12 −0.162378
\(746\) 1.67691e13 1.98237
\(747\) 3.43491e12 0.403620
\(748\) −6.52563e12 −0.762193
\(749\) −5.95883e12 −0.691819
\(750\) 3.01039e12 0.347414
\(751\) −2.90529e12 −0.333281 −0.166640 0.986018i \(-0.553292\pi\)
−0.166640 + 0.986018i \(0.553292\pi\)
\(752\) 1.29872e13 1.48094
\(753\) −6.60343e11 −0.0748501
\(754\) 8.28294e12 0.933283
\(755\) 3.48393e11 0.0390218
\(756\) 2.07614e13 2.31158
\(757\) −6.68973e12 −0.740418 −0.370209 0.928948i \(-0.620714\pi\)
−0.370209 + 0.928948i \(0.620714\pi\)
\(758\) 8.66992e12 0.953901
\(759\) −3.38483e12 −0.370211
\(760\) 0 0
\(761\) −5.25844e12 −0.568363 −0.284182 0.958770i \(-0.591722\pi\)
−0.284182 + 0.958770i \(0.591722\pi\)
\(762\) −2.01975e13 −2.17020
\(763\) 7.81750e12 0.835040
\(764\) 7.13795e12 0.757973
\(765\) −4.94992e11 −0.0522543
\(766\) −5.11971e12 −0.537299
\(767\) 1.48090e12 0.154506
\(768\) 1.49176e13 1.54730
\(769\) 1.45825e13 1.50371 0.751856 0.659327i \(-0.229159\pi\)
0.751856 + 0.659327i \(0.229159\pi\)
\(770\) −8.50430e11 −0.0871827
\(771\) −1.10408e13 −1.12527
\(772\) −3.80579e13 −3.85627
\(773\) −2.26984e12 −0.228659 −0.114329 0.993443i \(-0.536472\pi\)
−0.114329 + 0.993443i \(0.536472\pi\)
\(774\) 1.04321e13 1.04481
\(775\) 1.21850e13 1.21329
\(776\) −2.03679e13 −2.01636
\(777\) −1.17902e13 −1.16045
\(778\) 2.65582e13 2.59891
\(779\) 0 0
\(780\) 1.35612e12 0.131181
\(781\) 7.34035e12 0.705972
\(782\) −2.28997e13 −2.18977
\(783\) −9.62699e12 −0.915298
\(784\) 3.12728e11 0.0295628
\(785\) 7.07309e11 0.0664807
\(786\) −1.29602e13 −1.21118
\(787\) 1.90845e13 1.77335 0.886673 0.462396i \(-0.153010\pi\)
0.886673 + 0.462396i \(0.153010\pi\)
\(788\) −3.31305e13 −3.06098
\(789\) −1.49536e13 −1.37373
\(790\) 1.55343e11 0.0141896
\(791\) −1.76665e12 −0.160456
\(792\) 3.41789e12 0.308670
\(793\) −8.59302e12 −0.771643
\(794\) 2.94069e13 2.62577
\(795\) 9.76010e11 0.0866567
\(796\) 2.71277e13 2.39499
\(797\) −1.20818e12 −0.106065 −0.0530323 0.998593i \(-0.516889\pi\)
−0.0530323 + 0.998593i \(0.516889\pi\)
\(798\) 0 0
\(799\) 1.20905e13 1.04950
\(800\) −4.84118e12 −0.417875
\(801\) 7.06206e12 0.606157
\(802\) 7.02216e12 0.599358
\(803\) −5.74896e12 −0.487944
\(804\) 4.61132e12 0.389200
\(805\) −2.02595e12 −0.170039
\(806\) 1.63107e13 1.36133
\(807\) −5.54758e12 −0.460439
\(808\) 6.10352e12 0.503766
\(809\) 1.70303e13 1.39783 0.698914 0.715206i \(-0.253667\pi\)
0.698914 + 0.715206i \(0.253667\pi\)
\(810\) −1.14519e12 −0.0934745
\(811\) 1.48908e13 1.20871 0.604356 0.796714i \(-0.293430\pi\)
0.604356 + 0.796714i \(0.293430\pi\)
\(812\) −2.23985e13 −1.80808
\(813\) −1.53275e13 −1.23045
\(814\) −1.24921e13 −0.997303
\(815\) 2.73179e11 0.0216889
\(816\) −1.25670e13 −0.992258
\(817\) 0 0
\(818\) −3.67023e13 −2.86618
\(819\) 3.40192e12 0.264208
\(820\) 1.64887e12 0.127357
\(821\) −1.02969e13 −0.790971 −0.395486 0.918472i \(-0.629424\pi\)
−0.395486 + 0.918472i \(0.629424\pi\)
\(822\) −2.15301e13 −1.64483
\(823\) −2.00908e13 −1.52651 −0.763254 0.646099i \(-0.776399\pi\)
−0.763254 + 0.646099i \(0.776399\pi\)
\(824\) −4.83280e12 −0.365196
\(825\) −3.74682e12 −0.281592
\(826\) −5.89898e12 −0.440927
\(827\) −9.60395e12 −0.713962 −0.356981 0.934112i \(-0.616194\pi\)
−0.356981 + 0.934112i \(0.616194\pi\)
\(828\) 1.54517e13 1.14246
\(829\) −6.82720e12 −0.502051 −0.251025 0.967981i \(-0.580768\pi\)
−0.251025 + 0.967981i \(0.580768\pi\)
\(830\) −3.03106e12 −0.221688
\(831\) 6.99961e12 0.509178
\(832\) 5.22444e12 0.377994
\(833\) 2.91135e11 0.0209504
\(834\) 3.51995e13 2.51935
\(835\) −3.39515e12 −0.241696
\(836\) 0 0
\(837\) −1.89574e13 −1.33510
\(838\) 3.09273e12 0.216642
\(839\) 5.53094e12 0.385363 0.192682 0.981261i \(-0.438282\pi\)
0.192682 + 0.981261i \(0.438282\pi\)
\(840\) −2.84656e12 −0.197271
\(841\) −4.12105e12 −0.284070
\(842\) 1.64715e13 1.12935
\(843\) −7.24095e11 −0.0493823
\(844\) −2.98591e13 −2.02552
\(845\) −1.17527e12 −0.0793015
\(846\) −1.20174e13 −0.806571
\(847\) −1.30061e13 −0.868304
\(848\) −1.78080e13 −1.18259
\(849\) 1.01862e13 0.672866
\(850\) −2.53487e13 −1.66560
\(851\) −2.97596e13 −1.94511
\(852\) 4.66259e13 3.03144
\(853\) 6.69016e10 0.00432679 0.00216339 0.999998i \(-0.499311\pi\)
0.00216339 + 0.999998i \(0.499311\pi\)
\(854\) 3.42293e13 2.20210
\(855\) 0 0
\(856\) −2.11329e13 −1.34532
\(857\) −5.34699e12 −0.338607 −0.169304 0.985564i \(-0.554152\pi\)
−0.169304 + 0.985564i \(0.554152\pi\)
\(858\) −5.01546e12 −0.315950
\(859\) 4.05640e12 0.254198 0.127099 0.991890i \(-0.459433\pi\)
0.127099 + 0.991890i \(0.459433\pi\)
\(860\) −6.24933e12 −0.389575
\(861\) −5.75550e12 −0.356919
\(862\) 2.36764e13 1.46061
\(863\) −2.76880e13 −1.69920 −0.849598 0.527431i \(-0.823155\pi\)
−0.849598 + 0.527431i \(0.823155\pi\)
\(864\) 7.53191e12 0.459826
\(865\) −9.15192e11 −0.0555827
\(866\) 6.42189e11 0.0388001
\(867\) 9.91576e11 0.0595992
\(868\) −4.41069e13 −2.63735
\(869\) −3.90020e11 −0.0232005
\(870\) 2.50485e12 0.148233
\(871\) 2.56258e12 0.150868
\(872\) 2.77246e13 1.62383
\(873\) 7.36117e12 0.428926
\(874\) 0 0
\(875\) −4.52387e12 −0.260900
\(876\) −3.65175e13 −2.09523
\(877\) 1.42514e12 0.0813503 0.0406752 0.999172i \(-0.487049\pi\)
0.0406752 + 0.999172i \(0.487049\pi\)
\(878\) 2.43731e13 1.38416
\(879\) −8.59640e12 −0.485698
\(880\) −1.17800e12 −0.0662177
\(881\) 3.73378e12 0.208813 0.104406 0.994535i \(-0.466706\pi\)
0.104406 + 0.994535i \(0.466706\pi\)
\(882\) −2.89374e11 −0.0161009
\(883\) 6.19997e12 0.343215 0.171608 0.985165i \(-0.445104\pi\)
0.171608 + 0.985165i \(0.445104\pi\)
\(884\) −2.30349e13 −1.26868
\(885\) 4.47840e11 0.0245402
\(886\) 5.54737e13 3.02437
\(887\) −1.18291e13 −0.641645 −0.320822 0.947139i \(-0.603959\pi\)
−0.320822 + 0.947139i \(0.603959\pi\)
\(888\) −4.18137e13 −2.25663
\(889\) 3.03519e13 1.62978
\(890\) −6.23176e12 −0.332932
\(891\) 2.87523e12 0.152835
\(892\) −2.74978e13 −1.45431
\(893\) 0 0
\(894\) 3.20741e13 1.67933
\(895\) 8.45931e11 0.0440688
\(896\) −2.91006e13 −1.50840
\(897\) −1.19482e13 −0.616220
\(898\) −3.20756e13 −1.64601
\(899\) 2.04522e13 1.04429
\(900\) 1.71042e13 0.868984
\(901\) −1.65784e13 −0.838072
\(902\) −6.09817e12 −0.306740
\(903\) 2.18138e13 1.09178
\(904\) −6.26538e12 −0.312025
\(905\) 5.67069e11 0.0281007
\(906\) −8.18452e12 −0.403568
\(907\) −3.41302e13 −1.67458 −0.837290 0.546760i \(-0.815861\pi\)
−0.837290 + 0.546760i \(0.815861\pi\)
\(908\) −2.65596e13 −1.29669
\(909\) −2.20588e12 −0.107163
\(910\) −3.00194e12 −0.145116
\(911\) −1.93918e13 −0.932795 −0.466398 0.884575i \(-0.654448\pi\)
−0.466398 + 0.884575i \(0.654448\pi\)
\(912\) 0 0
\(913\) 7.61010e12 0.362470
\(914\) 1.98282e13 0.939780
\(915\) −2.59863e12 −0.122560
\(916\) −3.23834e13 −1.51982
\(917\) 1.94760e13 0.909572
\(918\) 3.94375e13 1.83281
\(919\) −8.70535e12 −0.402593 −0.201296 0.979530i \(-0.564515\pi\)
−0.201296 + 0.979530i \(0.564515\pi\)
\(920\) −7.18501e12 −0.330660
\(921\) 1.98582e13 0.909437
\(922\) 2.33733e13 1.06520
\(923\) 2.59108e13 1.17510
\(924\) 1.35627e13 0.612100
\(925\) −3.29422e13 −1.47950
\(926\) 3.35871e13 1.50114
\(927\) 1.74663e12 0.0776858
\(928\) −8.12582e12 −0.359667
\(929\) −3.68510e12 −0.162322 −0.0811612 0.996701i \(-0.525863\pi\)
−0.0811612 + 0.996701i \(0.525863\pi\)
\(930\) 4.93253e12 0.216221
\(931\) 0 0
\(932\) −2.17571e13 −0.944561
\(933\) −1.05762e13 −0.456944
\(934\) −2.54588e13 −1.09465
\(935\) −1.09666e12 −0.0469269
\(936\) 1.20649e13 0.513784
\(937\) −1.93364e13 −0.819496 −0.409748 0.912199i \(-0.634383\pi\)
−0.409748 + 0.912199i \(0.634383\pi\)
\(938\) −1.02077e13 −0.430544
\(939\) −2.20716e13 −0.926486
\(940\) 7.19899e12 0.300743
\(941\) −2.68822e13 −1.11766 −0.558831 0.829281i \(-0.688750\pi\)
−0.558831 + 0.829281i \(0.688750\pi\)
\(942\) −1.66163e13 −0.687550
\(943\) −1.45275e13 −0.598256
\(944\) −8.17116e12 −0.334896
\(945\) 3.48906e12 0.142320
\(946\) 2.31125e13 0.938290
\(947\) −7.58766e12 −0.306572 −0.153286 0.988182i \(-0.548986\pi\)
−0.153286 + 0.988182i \(0.548986\pi\)
\(948\) −2.47741e12 −0.0996232
\(949\) −2.02933e13 −0.812186
\(950\) 0 0
\(951\) −2.02177e13 −0.801530
\(952\) 4.83514e13 1.90784
\(953\) 8.62064e12 0.338549 0.169274 0.985569i \(-0.445858\pi\)
0.169274 + 0.985569i \(0.445858\pi\)
\(954\) 1.64781e13 0.644080
\(955\) 1.19957e12 0.0466670
\(956\) 3.62229e13 1.40256
\(957\) −6.28896e12 −0.242368
\(958\) 7.76031e13 2.97669
\(959\) 3.23544e13 1.23523
\(960\) 1.57993e12 0.0600367
\(961\) 1.38346e13 0.523253
\(962\) −4.40962e13 −1.66002
\(963\) 7.63766e12 0.286182
\(964\) −2.37687e13 −0.886458
\(965\) −6.39583e12 −0.237424
\(966\) 4.75941e13 1.75856
\(967\) −3.25923e13 −1.19866 −0.599330 0.800502i \(-0.704566\pi\)
−0.599330 + 0.800502i \(0.704566\pi\)
\(968\) −4.61259e13 −1.68852
\(969\) 0 0
\(970\) −6.49569e12 −0.235588
\(971\) −2.82778e13 −1.02084 −0.510422 0.859924i \(-0.670511\pi\)
−0.510422 + 0.859924i \(0.670511\pi\)
\(972\) −4.53751e13 −1.63049
\(973\) −5.28962e13 −1.89198
\(974\) 3.04891e13 1.08550
\(975\) −1.32260e13 −0.468712
\(976\) 4.74138e13 1.67256
\(977\) 2.35542e13 0.827071 0.413536 0.910488i \(-0.364294\pi\)
0.413536 + 0.910488i \(0.364294\pi\)
\(978\) −6.41757e12 −0.224309
\(979\) 1.56461e13 0.544358
\(980\) 1.73349e11 0.00600350
\(981\) −1.00200e13 −0.345427
\(982\) −6.18411e13 −2.12215
\(983\) 5.24215e13 1.79068 0.895342 0.445380i \(-0.146931\pi\)
0.895342 + 0.445380i \(0.146931\pi\)
\(984\) −2.04118e13 −0.694070
\(985\) −5.56774e12 −0.188459
\(986\) −4.25472e13 −1.43359
\(987\) −2.51286e13 −0.842833
\(988\) 0 0
\(989\) 5.50601e13 1.83001
\(990\) 1.09003e12 0.0360645
\(991\) 6.06921e12 0.199894 0.0999472 0.994993i \(-0.468133\pi\)
0.0999472 + 0.994993i \(0.468133\pi\)
\(992\) −1.60013e13 −0.524629
\(993\) −2.90922e13 −0.949521
\(994\) −1.03213e14 −3.35347
\(995\) 4.55895e12 0.147455
\(996\) 4.83394e13 1.55645
\(997\) −5.37864e13 −1.72403 −0.862014 0.506884i \(-0.830797\pi\)
−0.862014 + 0.506884i \(0.830797\pi\)
\(998\) 8.95253e13 2.85666
\(999\) 5.12515e13 1.62803
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 361.10.a.e.1.14 14
19.7 even 3 19.10.c.a.11.1 yes 28
19.11 even 3 19.10.c.a.7.1 28
19.18 odd 2 361.10.a.f.1.1 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
19.10.c.a.7.1 28 19.11 even 3
19.10.c.a.11.1 yes 28 19.7 even 3
361.10.a.e.1.14 14 1.1 even 1 trivial
361.10.a.f.1.1 14 19.18 odd 2