Properties

Label 3600.3.e.q.3151.1
Level $3600$
Weight $3$
Character 3600.3151
Analytic conductor $98.093$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3600,3,Mod(3151,3600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3600.3151"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3600, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 3600.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,36,0,0,0,0,0,0,0,0,0,0,0,56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(29)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(98.0928951697\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3151.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 3600.3151
Dual form 3600.3.e.q.3151.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.46410i q^{7} -3.46410i q^{11} +6.00000 q^{13} +18.0000 q^{17} -13.8564i q^{19} -6.92820i q^{23} +28.0000 q^{29} +48.4974i q^{31} -30.0000 q^{37} -2.00000 q^{41} -62.3538i q^{43} +55.4256i q^{47} +37.0000 q^{49} +102.000 q^{53} -100.459i q^{59} -74.0000 q^{61} +96.9948i q^{67} +6.92820i q^{71} -132.000 q^{73} -12.0000 q^{77} -103.923i q^{79} +117.779i q^{83} -14.0000 q^{89} -20.7846i q^{91} -24.0000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 12 q^{13} + 36 q^{17} + 56 q^{29} - 60 q^{37} - 4 q^{41} + 74 q^{49} + 204 q^{53} - 148 q^{61} - 264 q^{73} - 24 q^{77} - 28 q^{89} - 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3600\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(2801\) \(3151\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 3.46410i − 0.494872i −0.968904 0.247436i \(-0.920412\pi\)
0.968904 0.247436i \(-0.0795879\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 3.46410i − 0.314918i −0.987525 0.157459i \(-0.949670\pi\)
0.987525 0.157459i \(-0.0503303\pi\)
\(12\) 0 0
\(13\) 6.00000 0.461538 0.230769 0.973009i \(-0.425876\pi\)
0.230769 + 0.973009i \(0.425876\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 18.0000 1.05882 0.529412 0.848365i \(-0.322413\pi\)
0.529412 + 0.848365i \(0.322413\pi\)
\(18\) 0 0
\(19\) − 13.8564i − 0.729285i −0.931148 0.364642i \(-0.881191\pi\)
0.931148 0.364642i \(-0.118809\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 6.92820i − 0.301226i −0.988593 0.150613i \(-0.951875\pi\)
0.988593 0.150613i \(-0.0481248\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 28.0000 0.965517 0.482759 0.875753i \(-0.339635\pi\)
0.482759 + 0.875753i \(0.339635\pi\)
\(30\) 0 0
\(31\) 48.4974i 1.56443i 0.623007 + 0.782216i \(0.285911\pi\)
−0.623007 + 0.782216i \(0.714089\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −30.0000 −0.810811 −0.405405 0.914137i \(-0.632870\pi\)
−0.405405 + 0.914137i \(0.632870\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.00000 −0.0487805 −0.0243902 0.999703i \(-0.507764\pi\)
−0.0243902 + 0.999703i \(0.507764\pi\)
\(42\) 0 0
\(43\) − 62.3538i − 1.45009i −0.688702 0.725045i \(-0.741819\pi\)
0.688702 0.725045i \(-0.258181\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 55.4256i 1.17927i 0.807670 + 0.589634i \(0.200728\pi\)
−0.807670 + 0.589634i \(0.799272\pi\)
\(48\) 0 0
\(49\) 37.0000 0.755102
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 102.000 1.92453 0.962264 0.272117i \(-0.0877238\pi\)
0.962264 + 0.272117i \(0.0877238\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 100.459i − 1.70269i −0.524603 0.851347i \(-0.675786\pi\)
0.524603 0.851347i \(-0.324214\pi\)
\(60\) 0 0
\(61\) −74.0000 −1.21311 −0.606557 0.795040i \(-0.707450\pi\)
−0.606557 + 0.795040i \(0.707450\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 96.9948i 1.44768i 0.689966 + 0.723842i \(0.257626\pi\)
−0.689966 + 0.723842i \(0.742374\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6.92820i 0.0975803i 0.998809 + 0.0487902i \(0.0155366\pi\)
−0.998809 + 0.0487902i \(0.984463\pi\)
\(72\) 0 0
\(73\) −132.000 −1.80822 −0.904110 0.427301i \(-0.859465\pi\)
−0.904110 + 0.427301i \(0.859465\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −12.0000 −0.155844
\(78\) 0 0
\(79\) − 103.923i − 1.31548i −0.753244 0.657741i \(-0.771512\pi\)
0.753244 0.657741i \(-0.228488\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 117.779i 1.41903i 0.704691 + 0.709515i \(0.251086\pi\)
−0.704691 + 0.709515i \(0.748914\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −14.0000 −0.157303 −0.0786517 0.996902i \(-0.525061\pi\)
−0.0786517 + 0.996902i \(0.525061\pi\)
\(90\) 0 0
\(91\) − 20.7846i − 0.228402i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −24.0000 −0.247423 −0.123711 0.992318i \(-0.539480\pi\)
−0.123711 + 0.992318i \(0.539480\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 20.0000 0.198020 0.0990099 0.995086i \(-0.468432\pi\)
0.0990099 + 0.995086i \(0.468432\pi\)
\(102\) 0 0
\(103\) − 114.315i − 1.10986i −0.831898 0.554929i \(-0.812745\pi\)
0.831898 0.554929i \(-0.187255\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 34.6410i − 0.323748i −0.986811 0.161874i \(-0.948246\pi\)
0.986811 0.161874i \(-0.0517538\pi\)
\(108\) 0 0
\(109\) 86.0000 0.788991 0.394495 0.918898i \(-0.370919\pi\)
0.394495 + 0.918898i \(0.370919\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 126.000 1.11504 0.557522 0.830162i \(-0.311752\pi\)
0.557522 + 0.830162i \(0.311752\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 62.3538i − 0.523982i
\(120\) 0 0
\(121\) 109.000 0.900826
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 183.597i − 1.44565i −0.691032 0.722824i \(-0.742844\pi\)
0.691032 0.722824i \(-0.257156\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 45.0333i 0.343766i 0.985117 + 0.171883i \(0.0549851\pi\)
−0.985117 + 0.171883i \(0.945015\pi\)
\(132\) 0 0
\(133\) −48.0000 −0.360902
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 102.000 0.744526 0.372263 0.928127i \(-0.378582\pi\)
0.372263 + 0.928127i \(0.378582\pi\)
\(138\) 0 0
\(139\) − 90.0666i − 0.647961i −0.946064 0.323981i \(-0.894979\pi\)
0.946064 0.323981i \(-0.105021\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 20.7846i − 0.145347i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 248.000 1.66443 0.832215 0.554453i \(-0.187073\pi\)
0.832215 + 0.554453i \(0.187073\pi\)
\(150\) 0 0
\(151\) − 76.2102i − 0.504704i −0.967636 0.252352i \(-0.918796\pi\)
0.967636 0.252352i \(-0.0812040\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −162.000 −1.03185 −0.515924 0.856635i \(-0.672551\pi\)
−0.515924 + 0.856635i \(0.672551\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −24.0000 −0.149068
\(162\) 0 0
\(163\) 41.5692i 0.255026i 0.991837 + 0.127513i \(0.0406994\pi\)
−0.991837 + 0.127513i \(0.959301\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 117.779i 0.705266i 0.935762 + 0.352633i \(0.114714\pi\)
−0.935762 + 0.352633i \(0.885286\pi\)
\(168\) 0 0
\(169\) −133.000 −0.786982
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −30.0000 −0.173410 −0.0867052 0.996234i \(-0.527634\pi\)
−0.0867052 + 0.996234i \(0.527634\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 142.028i − 0.793453i −0.917937 0.396727i \(-0.870146\pi\)
0.917937 0.396727i \(-0.129854\pi\)
\(180\) 0 0
\(181\) 86.0000 0.475138 0.237569 0.971371i \(-0.423649\pi\)
0.237569 + 0.971371i \(0.423649\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 62.3538i − 0.333443i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 284.056i − 1.48721i −0.668621 0.743603i \(-0.733115\pi\)
0.668621 0.743603i \(-0.266885\pi\)
\(192\) 0 0
\(193\) −84.0000 −0.435233 −0.217617 0.976034i \(-0.569828\pi\)
−0.217617 + 0.976034i \(0.569828\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.00000 0.0304569 0.0152284 0.999884i \(-0.495152\pi\)
0.0152284 + 0.999884i \(0.495152\pi\)
\(198\) 0 0
\(199\) 62.3538i 0.313336i 0.987651 + 0.156668i \(0.0500752\pi\)
−0.987651 + 0.156668i \(0.949925\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 96.9948i − 0.477807i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −48.0000 −0.229665
\(210\) 0 0
\(211\) − 200.918i − 0.952218i −0.879386 0.476109i \(-0.842047\pi\)
0.879386 0.476109i \(-0.157953\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 168.000 0.774194
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 108.000 0.488688
\(222\) 0 0
\(223\) 79.6743i 0.357284i 0.983914 + 0.178642i \(0.0571704\pi\)
−0.983914 + 0.178642i \(0.942830\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 311.769i − 1.37343i −0.726926 0.686716i \(-0.759052\pi\)
0.726926 0.686716i \(-0.240948\pi\)
\(228\) 0 0
\(229\) 130.000 0.567686 0.283843 0.958871i \(-0.408391\pi\)
0.283843 + 0.958871i \(0.408391\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −126.000 −0.540773 −0.270386 0.962752i \(-0.587151\pi\)
−0.270386 + 0.962752i \(0.587151\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 436.477i − 1.82626i −0.407665 0.913131i \(-0.633657\pi\)
0.407665 0.913131i \(-0.366343\pi\)
\(240\) 0 0
\(241\) 118.000 0.489627 0.244813 0.969570i \(-0.421273\pi\)
0.244813 + 0.969570i \(0.421273\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 83.1384i − 0.336593i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 384.515i − 1.53193i −0.642880 0.765967i \(-0.722261\pi\)
0.642880 0.765967i \(-0.277739\pi\)
\(252\) 0 0
\(253\) −24.0000 −0.0948617
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −138.000 −0.536965 −0.268482 0.963285i \(-0.586522\pi\)
−0.268482 + 0.963285i \(0.586522\pi\)
\(258\) 0 0
\(259\) 103.923i 0.401247i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 394.908i 1.50155i 0.660558 + 0.750775i \(0.270320\pi\)
−0.660558 + 0.750775i \(0.729680\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 212.000 0.788104 0.394052 0.919088i \(-0.371073\pi\)
0.394052 + 0.919088i \(0.371073\pi\)
\(270\) 0 0
\(271\) − 228.631i − 0.843656i −0.906676 0.421828i \(-0.861389\pi\)
0.906676 0.421828i \(-0.138611\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 186.000 0.671480 0.335740 0.941955i \(-0.391014\pi\)
0.335740 + 0.941955i \(0.391014\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 394.000 1.40214 0.701068 0.713095i \(-0.252707\pi\)
0.701068 + 0.713095i \(0.252707\pi\)
\(282\) 0 0
\(283\) 471.118i 1.66473i 0.554230 + 0.832364i \(0.313013\pi\)
−0.554230 + 0.832364i \(0.686987\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 6.92820i 0.0241401i
\(288\) 0 0
\(289\) 35.0000 0.121107
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 6.00000 0.0204778 0.0102389 0.999948i \(-0.496741\pi\)
0.0102389 + 0.999948i \(0.496741\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 41.5692i − 0.139027i
\(300\) 0 0
\(301\) −216.000 −0.717608
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 339.482i 1.10580i 0.833246 + 0.552902i \(0.186480\pi\)
−0.833246 + 0.552902i \(0.813520\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 242.487i 0.779701i 0.920878 + 0.389851i \(0.127473\pi\)
−0.920878 + 0.389851i \(0.872527\pi\)
\(312\) 0 0
\(313\) 108.000 0.345048 0.172524 0.985005i \(-0.444808\pi\)
0.172524 + 0.985005i \(0.444808\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −102.000 −0.321767 −0.160883 0.986973i \(-0.551434\pi\)
−0.160883 + 0.986973i \(0.551434\pi\)
\(318\) 0 0
\(319\) − 96.9948i − 0.304059i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 249.415i − 0.772184i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 192.000 0.583587
\(330\) 0 0
\(331\) 235.559i 0.711658i 0.934551 + 0.355829i \(0.115802\pi\)
−0.934551 + 0.355829i \(0.884198\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 372.000 1.10386 0.551929 0.833891i \(-0.313892\pi\)
0.551929 + 0.833891i \(0.313892\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 168.000 0.492669
\(342\) 0 0
\(343\) − 297.913i − 0.868550i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 145.492i 0.419286i 0.977778 + 0.209643i \(0.0672302\pi\)
−0.977778 + 0.209643i \(0.932770\pi\)
\(348\) 0 0
\(349\) 334.000 0.957020 0.478510 0.878082i \(-0.341177\pi\)
0.478510 + 0.878082i \(0.341177\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −486.000 −1.37677 −0.688385 0.725345i \(-0.741680\pi\)
−0.688385 + 0.725345i \(0.741680\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 512.687i − 1.42810i −0.700096 0.714049i \(-0.746859\pi\)
0.700096 0.714049i \(-0.253141\pi\)
\(360\) 0 0
\(361\) 169.000 0.468144
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 239.023i − 0.651289i −0.945492 0.325644i \(-0.894419\pi\)
0.945492 0.325644i \(-0.105581\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 353.338i − 0.952395i
\(372\) 0 0
\(373\) 726.000 1.94638 0.973190 0.230001i \(-0.0738730\pi\)
0.973190 + 0.230001i \(0.0738730\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 168.000 0.445623
\(378\) 0 0
\(379\) − 644.323i − 1.70006i −0.526734 0.850030i \(-0.676584\pi\)
0.526734 0.850030i \(-0.323416\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 581.969i − 1.51950i −0.650214 0.759751i \(-0.725321\pi\)
0.650214 0.759751i \(-0.274679\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 200.000 0.514139 0.257069 0.966393i \(-0.417243\pi\)
0.257069 + 0.966393i \(0.417243\pi\)
\(390\) 0 0
\(391\) − 124.708i − 0.318945i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −342.000 −0.861461 −0.430730 0.902481i \(-0.641744\pi\)
−0.430730 + 0.902481i \(0.641744\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −622.000 −1.55112 −0.775561 0.631273i \(-0.782533\pi\)
−0.775561 + 0.631273i \(0.782533\pi\)
\(402\) 0 0
\(403\) 290.985i 0.722046i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 103.923i 0.255339i
\(408\) 0 0
\(409\) −370.000 −0.904645 −0.452323 0.891854i \(-0.649404\pi\)
−0.452323 + 0.891854i \(0.649404\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −348.000 −0.842615
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 800.207i − 1.90980i −0.296923 0.954902i \(-0.595960\pi\)
0.296923 0.954902i \(-0.404040\pi\)
\(420\) 0 0
\(421\) 178.000 0.422803 0.211401 0.977399i \(-0.432197\pi\)
0.211401 + 0.977399i \(0.432197\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 256.344i 0.600336i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 152.420i − 0.353644i −0.984243 0.176822i \(-0.943418\pi\)
0.984243 0.176822i \(-0.0565817\pi\)
\(432\) 0 0
\(433\) 468.000 1.08083 0.540416 0.841398i \(-0.318267\pi\)
0.540416 + 0.841398i \(0.318267\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −96.0000 −0.219680
\(438\) 0 0
\(439\) − 408.764i − 0.931125i −0.885015 0.465563i \(-0.845852\pi\)
0.885015 0.465563i \(-0.154148\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 367.195i − 0.828882i −0.910076 0.414441i \(-0.863977\pi\)
0.910076 0.414441i \(-0.136023\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 314.000 0.699332 0.349666 0.936874i \(-0.386295\pi\)
0.349666 + 0.936874i \(0.386295\pi\)
\(450\) 0 0
\(451\) 6.92820i 0.0153619i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −96.0000 −0.210066 −0.105033 0.994469i \(-0.533495\pi\)
−0.105033 + 0.994469i \(0.533495\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 152.000 0.329718 0.164859 0.986317i \(-0.447283\pi\)
0.164859 + 0.986317i \(0.447283\pi\)
\(462\) 0 0
\(463\) 197.454i 0.426466i 0.977001 + 0.213233i \(0.0683994\pi\)
−0.977001 + 0.213233i \(0.931601\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 436.477i − 0.934640i −0.884088 0.467320i \(-0.845220\pi\)
0.884088 0.467320i \(-0.154780\pi\)
\(468\) 0 0
\(469\) 336.000 0.716418
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −216.000 −0.456660
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 297.913i 0.621947i 0.950419 + 0.310974i \(0.100655\pi\)
−0.950419 + 0.310974i \(0.899345\pi\)
\(480\) 0 0
\(481\) −180.000 −0.374220
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 31.1769i 0.0640183i 0.999488 + 0.0320092i \(0.0101906\pi\)
−0.999488 + 0.0320092i \(0.989809\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 751.710i 1.53098i 0.643449 + 0.765489i \(0.277503\pi\)
−0.643449 + 0.765489i \(0.722497\pi\)
\(492\) 0 0
\(493\) 504.000 1.02231
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 24.0000 0.0482897
\(498\) 0 0
\(499\) − 304.841i − 0.610904i −0.952208 0.305452i \(-0.901192\pi\)
0.952208 0.305452i \(-0.0988075\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 443.405i 0.881521i 0.897625 + 0.440760i \(0.145291\pi\)
−0.897625 + 0.440760i \(0.854709\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 580.000 1.13949 0.569745 0.821822i \(-0.307042\pi\)
0.569745 + 0.821822i \(0.307042\pi\)
\(510\) 0 0
\(511\) 457.261i 0.894836i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 192.000 0.371373
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −262.000 −0.502879 −0.251440 0.967873i \(-0.580904\pi\)
−0.251440 + 0.967873i \(0.580904\pi\)
\(522\) 0 0
\(523\) − 429.549i − 0.821317i −0.911789 0.410658i \(-0.865299\pi\)
0.911789 0.410658i \(-0.134701\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 872.954i 1.65646i
\(528\) 0 0
\(529\) 481.000 0.909263
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −12.0000 −0.0225141
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 128.172i − 0.237795i
\(540\) 0 0
\(541\) −58.0000 −0.107209 −0.0536044 0.998562i \(-0.517071\pi\)
−0.0536044 + 0.998562i \(0.517071\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 1004.59i 1.83654i 0.395950 + 0.918272i \(0.370415\pi\)
−0.395950 + 0.918272i \(0.629585\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 387.979i − 0.704137i
\(552\) 0 0
\(553\) −360.000 −0.650995
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −498.000 −0.894075 −0.447038 0.894515i \(-0.647521\pi\)
−0.447038 + 0.894515i \(0.647521\pi\)
\(558\) 0 0
\(559\) − 374.123i − 0.669272i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 533.472i − 0.947552i −0.880645 0.473776i \(-0.842891\pi\)
0.880645 0.473776i \(-0.157109\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −502.000 −0.882250 −0.441125 0.897446i \(-0.645420\pi\)
−0.441125 + 0.897446i \(0.645420\pi\)
\(570\) 0 0
\(571\) 13.8564i 0.0242669i 0.999926 + 0.0121335i \(0.00386229\pi\)
−0.999926 + 0.0121335i \(0.996138\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −504.000 −0.873484 −0.436742 0.899587i \(-0.643868\pi\)
−0.436742 + 0.899587i \(0.643868\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 408.000 0.702238
\(582\) 0 0
\(583\) − 353.338i − 0.606069i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 1032.30i − 1.75861i −0.476262 0.879303i \(-0.658009\pi\)
0.476262 0.879303i \(-0.341991\pi\)
\(588\) 0 0
\(589\) 672.000 1.14092
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 462.000 0.779089 0.389545 0.921008i \(-0.372632\pi\)
0.389545 + 0.921008i \(0.372632\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 734.390i − 1.22603i −0.790073 0.613013i \(-0.789957\pi\)
0.790073 0.613013i \(-0.210043\pi\)
\(600\) 0 0
\(601\) −902.000 −1.50083 −0.750416 0.660966i \(-0.770147\pi\)
−0.750416 + 0.660966i \(0.770147\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 329.090i − 0.542158i −0.962557 0.271079i \(-0.912620\pi\)
0.962557 0.271079i \(-0.0873804\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 332.554i 0.544278i
\(612\) 0 0
\(613\) −966.000 −1.57586 −0.787928 0.615767i \(-0.788846\pi\)
−0.787928 + 0.615767i \(0.788846\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −846.000 −1.37115 −0.685575 0.728002i \(-0.740449\pi\)
−0.685575 + 0.728002i \(0.740449\pi\)
\(618\) 0 0
\(619\) 478.046i 0.772288i 0.922439 + 0.386144i \(0.126193\pi\)
−0.922439 + 0.386144i \(0.873807\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 48.4974i 0.0778450i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −540.000 −0.858506
\(630\) 0 0
\(631\) − 242.487i − 0.384290i −0.981367 0.192145i \(-0.938456\pi\)
0.981367 0.192145i \(-0.0615444\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 222.000 0.348509
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −26.0000 −0.0405616 −0.0202808 0.999794i \(-0.506456\pi\)
−0.0202808 + 0.999794i \(0.506456\pi\)
\(642\) 0 0
\(643\) − 387.979i − 0.603389i −0.953405 0.301695i \(-0.902448\pi\)
0.953405 0.301695i \(-0.0975523\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 678.964i 1.04940i 0.851286 + 0.524702i \(0.175823\pi\)
−0.851286 + 0.524702i \(0.824177\pi\)
\(648\) 0 0
\(649\) −348.000 −0.536210
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 858.000 1.31394 0.656968 0.753919i \(-0.271839\pi\)
0.656968 + 0.753919i \(0.271839\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 155.885i 0.236547i 0.992981 + 0.118274i \(0.0377360\pi\)
−0.992981 + 0.118274i \(0.962264\pi\)
\(660\) 0 0
\(661\) 1102.00 1.66717 0.833585 0.552390i \(-0.186284\pi\)
0.833585 + 0.552390i \(0.186284\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 193.990i − 0.290839i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 256.344i 0.382032i
\(672\) 0 0
\(673\) −180.000 −0.267459 −0.133730 0.991018i \(-0.542695\pi\)
−0.133730 + 0.991018i \(0.542695\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 810.000 1.19645 0.598227 0.801326i \(-0.295872\pi\)
0.598227 + 0.801326i \(0.295872\pi\)
\(678\) 0 0
\(679\) 83.1384i 0.122442i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 893.738i 1.30855i 0.756258 + 0.654274i \(0.227026\pi\)
−0.756258 + 0.654274i \(0.772974\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 612.000 0.888244
\(690\) 0 0
\(691\) 166.277i 0.240632i 0.992736 + 0.120316i \(0.0383908\pi\)
−0.992736 + 0.120316i \(0.961609\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −36.0000 −0.0516499
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1012.00 1.44365 0.721826 0.692075i \(-0.243303\pi\)
0.721826 + 0.692075i \(0.243303\pi\)
\(702\) 0 0
\(703\) 415.692i 0.591312i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 69.2820i − 0.0979944i
\(708\) 0 0
\(709\) −902.000 −1.27221 −0.636107 0.771601i \(-0.719456\pi\)
−0.636107 + 0.771601i \(0.719456\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 336.000 0.471248
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 886.810i 1.23339i 0.787201 + 0.616697i \(0.211530\pi\)
−0.787201 + 0.616697i \(0.788470\pi\)
\(720\) 0 0
\(721\) −396.000 −0.549237
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 1077.34i − 1.48189i −0.671565 0.740946i \(-0.734377\pi\)
0.671565 0.740946i \(-0.265623\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 1122.37i − 1.53539i
\(732\) 0 0
\(733\) −174.000 −0.237381 −0.118690 0.992931i \(-0.537870\pi\)
−0.118690 + 0.992931i \(0.537870\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 336.000 0.455902
\(738\) 0 0
\(739\) 595.825i 0.806259i 0.915143 + 0.403130i \(0.132078\pi\)
−0.915143 + 0.403130i \(0.867922\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 429.549i 0.578127i 0.957310 + 0.289064i \(0.0933439\pi\)
−0.957310 + 0.289064i \(0.906656\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −120.000 −0.160214
\(750\) 0 0
\(751\) 394.908i 0.525842i 0.964817 + 0.262921i \(0.0846859\pi\)
−0.964817 + 0.262921i \(0.915314\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 378.000 0.499339 0.249670 0.968331i \(-0.419678\pi\)
0.249670 + 0.968331i \(0.419678\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1150.00 −1.51117 −0.755585 0.655051i \(-0.772647\pi\)
−0.755585 + 0.655051i \(0.772647\pi\)
\(762\) 0 0
\(763\) − 297.913i − 0.390449i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 602.754i − 0.785859i
\(768\) 0 0
\(769\) 34.0000 0.0442133 0.0221066 0.999756i \(-0.492963\pi\)
0.0221066 + 0.999756i \(0.492963\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −966.000 −1.24968 −0.624838 0.780754i \(-0.714835\pi\)
−0.624838 + 0.780754i \(0.714835\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 27.7128i 0.0355749i
\(780\) 0 0
\(781\) 24.0000 0.0307298
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 457.261i − 0.581018i −0.956872 0.290509i \(-0.906175\pi\)
0.956872 0.290509i \(-0.0938247\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 436.477i − 0.551804i
\(792\) 0 0
\(793\) −444.000 −0.559899
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 786.000 0.986198 0.493099 0.869973i \(-0.335864\pi\)
0.493099 + 0.869973i \(0.335864\pi\)
\(798\) 0 0
\(799\) 997.661i 1.24864i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 457.261i 0.569441i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −386.000 −0.477132 −0.238566 0.971126i \(-0.576677\pi\)
−0.238566 + 0.971126i \(0.576677\pi\)
\(810\) 0 0
\(811\) − 1115.44i − 1.37539i −0.726000 0.687695i \(-0.758623\pi\)
0.726000 0.687695i \(-0.241377\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −864.000 −1.05753
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 532.000 0.647990 0.323995 0.946059i \(-0.394974\pi\)
0.323995 + 0.946059i \(0.394974\pi\)
\(822\) 0 0
\(823\) 17.3205i 0.0210456i 0.999945 + 0.0105228i \(0.00334957\pi\)
−0.999945 + 0.0105228i \(0.996650\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 284.056i 0.343478i 0.985142 + 0.171739i \(0.0549386\pi\)
−0.985142 + 0.171739i \(0.945061\pi\)
\(828\) 0 0
\(829\) −994.000 −1.19903 −0.599517 0.800362i \(-0.704641\pi\)
−0.599517 + 0.800362i \(0.704641\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 666.000 0.799520
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1441.07i 1.71760i 0.512311 + 0.858800i \(0.328789\pi\)
−0.512311 + 0.858800i \(0.671211\pi\)
\(840\) 0 0
\(841\) −57.0000 −0.0677765
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 377.587i − 0.445793i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 207.846i 0.244237i
\(852\) 0 0
\(853\) −1614.00 −1.89215 −0.946073 0.323954i \(-0.894988\pi\)
−0.946073 + 0.323954i \(0.894988\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1170.00 1.36523 0.682614 0.730779i \(-0.260843\pi\)
0.682614 + 0.730779i \(0.260843\pi\)
\(858\) 0 0
\(859\) 464.190i 0.540384i 0.962807 + 0.270192i \(0.0870871\pi\)
−0.962807 + 0.270192i \(0.912913\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 131.636i 0.152533i 0.997087 + 0.0762664i \(0.0243000\pi\)
−0.997087 + 0.0762664i \(0.975700\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −360.000 −0.414269
\(870\) 0 0
\(871\) 581.969i 0.668162i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −690.000 −0.786773 −0.393387 0.919373i \(-0.628697\pi\)
−0.393387 + 0.919373i \(0.628697\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −1310.00 −1.48695 −0.743473 0.668766i \(-0.766823\pi\)
−0.743473 + 0.668766i \(0.766823\pi\)
\(882\) 0 0
\(883\) 1108.51i 1.25539i 0.778458 + 0.627697i \(0.216002\pi\)
−0.778458 + 0.627697i \(0.783998\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 727.461i 0.820137i 0.912055 + 0.410068i \(0.134495\pi\)
−0.912055 + 0.410068i \(0.865505\pi\)
\(888\) 0 0
\(889\) −636.000 −0.715411
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 768.000 0.860022
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1357.93i 1.51049i
\(900\) 0 0
\(901\) 1836.00 2.03774
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 90.0666i − 0.0993017i −0.998767 0.0496509i \(-0.984189\pi\)
0.998767 0.0496509i \(-0.0158109\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 637.395i 0.699665i 0.936812 + 0.349832i \(0.113761\pi\)
−0.936812 + 0.349832i \(0.886239\pi\)
\(912\) 0 0
\(913\) 408.000 0.446878
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 156.000 0.170120
\(918\) 0 0
\(919\) 117.779i 0.128160i 0.997945 + 0.0640802i \(0.0204114\pi\)
−0.997945 + 0.0640802i \(0.979589\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 41.5692i 0.0450371i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1222.00 −1.31539 −0.657696 0.753283i \(-0.728469\pi\)
−0.657696 + 0.753283i \(0.728469\pi\)
\(930\) 0 0
\(931\) − 512.687i − 0.550684i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 984.000 1.05016 0.525080 0.851053i \(-0.324035\pi\)
0.525080 + 0.851053i \(0.324035\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 104.000 0.110521 0.0552604 0.998472i \(-0.482401\pi\)
0.0552604 + 0.998472i \(0.482401\pi\)
\(942\) 0 0
\(943\) 13.8564i 0.0146940i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 907.595i 0.958389i 0.877709 + 0.479195i \(0.159071\pi\)
−0.877709 + 0.479195i \(0.840929\pi\)
\(948\) 0 0
\(949\) −792.000 −0.834563
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1446.00 1.51731 0.758657 0.651490i \(-0.225856\pi\)
0.758657 + 0.651490i \(0.225856\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 353.338i − 0.368445i
\(960\) 0 0
\(961\) −1391.00 −1.44745
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 869.490i 0.899162i 0.893240 + 0.449581i \(0.148427\pi\)
−0.893240 + 0.449581i \(0.851573\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 723.997i 0.745620i 0.927908 + 0.372810i \(0.121606\pi\)
−0.927908 + 0.372810i \(0.878394\pi\)
\(972\) 0 0
\(973\) −312.000 −0.320658
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −294.000 −0.300921 −0.150461 0.988616i \(-0.548076\pi\)
−0.150461 + 0.988616i \(0.548076\pi\)
\(978\) 0 0
\(979\) 48.4974i 0.0495377i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 803.672i 0.817570i 0.912631 + 0.408785i \(0.134047\pi\)
−0.912631 + 0.408785i \(0.865953\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −432.000 −0.436805
\(990\) 0 0
\(991\) − 1822.12i − 1.83867i −0.393481 0.919333i \(-0.628729\pi\)
0.393481 0.919333i \(-0.371271\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 270.000 0.270812 0.135406 0.990790i \(-0.456766\pi\)
0.135406 + 0.990790i \(0.456766\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3600.3.e.q.3151.1 2
3.2 odd 2 1200.3.e.e.751.2 2
4.3 odd 2 inner 3600.3.e.q.3151.2 2
5.2 odd 4 720.3.j.d.559.4 4
5.3 odd 4 720.3.j.d.559.1 4
5.4 even 2 3600.3.e.m.3151.2 2
12.11 even 2 1200.3.e.e.751.1 2
15.2 even 4 240.3.j.c.79.3 yes 4
15.8 even 4 240.3.j.c.79.2 yes 4
15.14 odd 2 1200.3.e.d.751.1 2
20.3 even 4 720.3.j.d.559.2 4
20.7 even 4 720.3.j.d.559.3 4
20.19 odd 2 3600.3.e.m.3151.1 2
60.23 odd 4 240.3.j.c.79.4 yes 4
60.47 odd 4 240.3.j.c.79.1 4
60.59 even 2 1200.3.e.d.751.2 2
120.53 even 4 960.3.j.a.319.3 4
120.77 even 4 960.3.j.a.319.2 4
120.83 odd 4 960.3.j.a.319.1 4
120.107 odd 4 960.3.j.a.319.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.3.j.c.79.1 4 60.47 odd 4
240.3.j.c.79.2 yes 4 15.8 even 4
240.3.j.c.79.3 yes 4 15.2 even 4
240.3.j.c.79.4 yes 4 60.23 odd 4
720.3.j.d.559.1 4 5.3 odd 4
720.3.j.d.559.2 4 20.3 even 4
720.3.j.d.559.3 4 20.7 even 4
720.3.j.d.559.4 4 5.2 odd 4
960.3.j.a.319.1 4 120.83 odd 4
960.3.j.a.319.2 4 120.77 even 4
960.3.j.a.319.3 4 120.53 even 4
960.3.j.a.319.4 4 120.107 odd 4
1200.3.e.d.751.1 2 15.14 odd 2
1200.3.e.d.751.2 2 60.59 even 2
1200.3.e.e.751.1 2 12.11 even 2
1200.3.e.e.751.2 2 3.2 odd 2
3600.3.e.m.3151.1 2 20.19 odd 2
3600.3.e.m.3151.2 2 5.4 even 2
3600.3.e.q.3151.1 2 1.1 even 1 trivial
3600.3.e.q.3151.2 2 4.3 odd 2 inner