Properties

Label 3600.3.c.l.449.7
Level $3600$
Weight $3$
Character 3600.449
Analytic conductor $98.093$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3600,3,Mod(449,3600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3600.449"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3600, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 3600.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,192,0,0,0,0,0,0,0,0,0,0, 0,112] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(31)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(98.0928951697\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.40960000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 7x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{37}]\)
Coefficient ring index: \( 2^{11} \)
Twist minimal: no (minimal twist has level 360)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 449.7
Root \(-0.437016 - 0.437016i\) of defining polynomial
Character \(\chi\) \(=\) 3600.449
Dual form 3600.3.c.l.449.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+11.1623i q^{7} -12.0022i q^{11} -24.1359i q^{13} -29.2023 q^{17} +30.3246 q^{19} -19.5323 q^{23} +29.4690i q^{29} -4.97367 q^{31} +24.7851i q^{37} +21.2132i q^{41} -72.2719i q^{43} +29.6612 q^{47} -75.5964 q^{49} +42.4264 q^{53} +83.5564i q^{59} +50.2719 q^{61} +13.2982i q^{67} +37.2285i q^{71} +71.0263i q^{73} +133.972 q^{77} -19.5701 q^{79} -51.9042 q^{83} +133.742i q^{89} +269.412 q^{91} +46.3772i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 192 q^{19} + 112 q^{31} - 200 q^{49} + 48 q^{61} + 400 q^{79} + 688 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3600\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(2801\) \(3151\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 11.1623i 1.59461i 0.603576 + 0.797306i \(0.293742\pi\)
−0.603576 + 0.797306i \(0.706258\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 12.0022i − 1.09111i −0.838075 0.545554i \(-0.816319\pi\)
0.838075 0.545554i \(-0.183681\pi\)
\(12\) 0 0
\(13\) − 24.1359i − 1.85661i −0.371818 0.928306i \(-0.621266\pi\)
0.371818 0.928306i \(-0.378734\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −29.2023 −1.71778 −0.858890 0.512160i \(-0.828845\pi\)
−0.858890 + 0.512160i \(0.828845\pi\)
\(18\) 0 0
\(19\) 30.3246 1.59603 0.798015 0.602638i \(-0.205884\pi\)
0.798015 + 0.602638i \(0.205884\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −19.5323 −0.849228 −0.424614 0.905374i \(-0.639590\pi\)
−0.424614 + 0.905374i \(0.639590\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 29.4690i 1.01617i 0.861306 + 0.508086i \(0.169647\pi\)
−0.861306 + 0.508086i \(0.830353\pi\)
\(30\) 0 0
\(31\) −4.97367 −0.160441 −0.0802204 0.996777i \(-0.525562\pi\)
−0.0802204 + 0.996777i \(0.525562\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 24.7851i 0.669866i 0.942242 + 0.334933i \(0.108714\pi\)
−0.942242 + 0.334933i \(0.891286\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 21.2132i 0.517395i 0.965958 + 0.258698i \(0.0832933\pi\)
−0.965958 + 0.258698i \(0.916707\pi\)
\(42\) 0 0
\(43\) − 72.2719i − 1.68074i −0.542012 0.840371i \(-0.682337\pi\)
0.542012 0.840371i \(-0.317663\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 29.6612 0.631090 0.315545 0.948911i \(-0.397813\pi\)
0.315545 + 0.948911i \(0.397813\pi\)
\(48\) 0 0
\(49\) −75.5964 −1.54278
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 42.4264 0.800498 0.400249 0.916406i \(-0.368924\pi\)
0.400249 + 0.916406i \(0.368924\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 83.5564i 1.41621i 0.706107 + 0.708105i \(0.250450\pi\)
−0.706107 + 0.708105i \(0.749550\pi\)
\(60\) 0 0
\(61\) 50.2719 0.824129 0.412065 0.911155i \(-0.364808\pi\)
0.412065 + 0.911155i \(0.364808\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 13.2982i 0.198481i 0.995063 + 0.0992405i \(0.0316413\pi\)
−0.995063 + 0.0992405i \(0.968359\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 37.2285i 0.524346i 0.965021 + 0.262173i \(0.0844391\pi\)
−0.965021 + 0.262173i \(0.915561\pi\)
\(72\) 0 0
\(73\) 71.0263i 0.972963i 0.873691 + 0.486482i \(0.161720\pi\)
−0.873691 + 0.486482i \(0.838280\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 133.972 1.73989
\(78\) 0 0
\(79\) −19.5701 −0.247723 −0.123861 0.992300i \(-0.539528\pi\)
−0.123861 + 0.992300i \(0.539528\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −51.9042 −0.625351 −0.312676 0.949860i \(-0.601225\pi\)
−0.312676 + 0.949860i \(0.601225\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 133.742i 1.50272i 0.659891 + 0.751361i \(0.270602\pi\)
−0.659891 + 0.751361i \(0.729398\pi\)
\(90\) 0 0
\(91\) 269.412 2.96057
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 46.3772i 0.478116i 0.971005 + 0.239058i \(0.0768386\pi\)
−0.971005 + 0.239058i \(0.923161\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 113.863i 1.12735i 0.825995 + 0.563677i \(0.190614\pi\)
−0.825995 + 0.563677i \(0.809386\pi\)
\(102\) 0 0
\(103\) 15.0569i 0.146184i 0.997325 + 0.0730919i \(0.0232867\pi\)
−0.997325 + 0.0730919i \(0.976713\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −52.8221 −0.493665 −0.246832 0.969058i \(-0.579390\pi\)
−0.246832 + 0.969058i \(0.579390\pi\)
\(108\) 0 0
\(109\) 1.51744 0.0139215 0.00696074 0.999976i \(-0.497784\pi\)
0.00696074 + 0.999976i \(0.497784\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −96.0920 −0.850372 −0.425186 0.905106i \(-0.639791\pi\)
−0.425186 + 0.905106i \(0.639791\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 325.964i − 2.73919i
\(120\) 0 0
\(121\) −23.0527 −0.190518
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 43.1623i 0.339860i 0.985456 + 0.169930i \(0.0543542\pi\)
−0.985456 + 0.169930i \(0.945646\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 2.59893i − 0.0198392i −0.999951 0.00991959i \(-0.996842\pi\)
0.999951 0.00991959i \(-0.00315755\pi\)
\(132\) 0 0
\(133\) 338.491i 2.54505i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −199.367 −1.45523 −0.727616 0.685984i \(-0.759372\pi\)
−0.727616 + 0.685984i \(0.759372\pi\)
\(138\) 0 0
\(139\) 157.351 1.13202 0.566010 0.824398i \(-0.308486\pi\)
0.566010 + 0.824398i \(0.308486\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −289.684 −2.02576
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 44.1446i 0.296272i 0.988967 + 0.148136i \(0.0473274\pi\)
−0.988967 + 0.148136i \(0.952673\pi\)
\(150\) 0 0
\(151\) −98.4384 −0.651910 −0.325955 0.945385i \(-0.605686\pi\)
−0.325955 + 0.945385i \(0.605686\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 119.864i − 0.763465i −0.924273 0.381733i \(-0.875328\pi\)
0.924273 0.381733i \(-0.124672\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 218.024i − 1.35419i
\(162\) 0 0
\(163\) − 118.763i − 0.728607i −0.931280 0.364304i \(-0.881307\pi\)
0.931280 0.364304i \(-0.118693\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −94.7584 −0.567415 −0.283708 0.958911i \(-0.591565\pi\)
−0.283708 + 0.958911i \(0.591565\pi\)
\(168\) 0 0
\(169\) −413.544 −2.44700
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −186.217 −1.07640 −0.538200 0.842817i \(-0.680895\pi\)
−0.538200 + 0.842817i \(0.680895\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 197.835i − 1.10522i −0.833439 0.552611i \(-0.813631\pi\)
0.833439 0.552611i \(-0.186369\pi\)
\(180\) 0 0
\(181\) −36.7630 −0.203110 −0.101555 0.994830i \(-0.532382\pi\)
−0.101555 + 0.994830i \(0.532382\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 350.491i 1.87428i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 83.8603i 0.439059i 0.975606 + 0.219530i \(0.0704523\pi\)
−0.975606 + 0.219530i \(0.929548\pi\)
\(192\) 0 0
\(193\) 142.105i 0.736297i 0.929767 + 0.368149i \(0.120008\pi\)
−0.929767 + 0.368149i \(0.879992\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −81.1497 −0.411927 −0.205964 0.978560i \(-0.566033\pi\)
−0.205964 + 0.978560i \(0.566033\pi\)
\(198\) 0 0
\(199\) 358.982 1.80393 0.901965 0.431808i \(-0.142124\pi\)
0.901965 + 0.431808i \(0.142124\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −328.941 −1.62040
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 363.961i − 1.74144i
\(210\) 0 0
\(211\) −106.982 −0.507025 −0.253512 0.967332i \(-0.581586\pi\)
−0.253512 + 0.967332i \(0.581586\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 55.5174i − 0.255841i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 704.824i 3.18925i
\(222\) 0 0
\(223\) 362.092i 1.62373i 0.583845 + 0.811865i \(0.301548\pi\)
−0.583845 + 0.811865i \(0.698452\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 96.9355 0.427029 0.213514 0.976940i \(-0.431509\pi\)
0.213514 + 0.976940i \(0.431509\pi\)
\(228\) 0 0
\(229\) −275.193 −1.20172 −0.600858 0.799356i \(-0.705174\pi\)
−0.600858 + 0.799356i \(0.705174\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 128.123 0.549883 0.274941 0.961461i \(-0.411342\pi\)
0.274941 + 0.961461i \(0.411342\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 238.965i − 0.999853i −0.866068 0.499926i \(-0.833360\pi\)
0.866068 0.499926i \(-0.166640\pi\)
\(240\) 0 0
\(241\) −446.930 −1.85448 −0.927240 0.374468i \(-0.877825\pi\)
−0.927240 + 0.374468i \(0.877825\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 731.912i − 2.96321i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 21.7034i 0.0864677i 0.999065 + 0.0432338i \(0.0137661\pi\)
−0.999065 + 0.0432338i \(0.986234\pi\)
\(252\) 0 0
\(253\) 234.430i 0.926600i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −401.649 −1.56284 −0.781418 0.624008i \(-0.785503\pi\)
−0.781418 + 0.624008i \(0.785503\pi\)
\(258\) 0 0
\(259\) −276.658 −1.06818
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 158.820 0.603877 0.301939 0.953327i \(-0.402366\pi\)
0.301939 + 0.953327i \(0.402366\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 210.339i 0.781931i 0.920405 + 0.390965i \(0.127859\pi\)
−0.920405 + 0.390965i \(0.872141\pi\)
\(270\) 0 0
\(271\) 232.053 0.856283 0.428141 0.903712i \(-0.359169\pi\)
0.428141 + 0.903712i \(0.359169\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 111.320i 0.401878i 0.979604 + 0.200939i \(0.0643993\pi\)
−0.979604 + 0.200939i \(0.935601\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 320.580i 1.14085i 0.821349 + 0.570426i \(0.193222\pi\)
−0.821349 + 0.570426i \(0.806778\pi\)
\(282\) 0 0
\(283\) 197.737i 0.698716i 0.936989 + 0.349358i \(0.113600\pi\)
−0.936989 + 0.349358i \(0.886400\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −236.788 −0.825044
\(288\) 0 0
\(289\) 563.772 1.95077
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 5.62566 0.0192002 0.00960010 0.999954i \(-0.496944\pi\)
0.00960010 + 0.999954i \(0.496944\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 471.429i 1.57669i
\(300\) 0 0
\(301\) 806.719 2.68013
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 160.544i 0.522944i 0.965211 + 0.261472i \(0.0842079\pi\)
−0.965211 + 0.261472i \(0.915792\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 501.103i 1.61126i 0.592417 + 0.805631i \(0.298174\pi\)
−0.592417 + 0.805631i \(0.701826\pi\)
\(312\) 0 0
\(313\) 219.088i 0.699960i 0.936757 + 0.349980i \(0.113812\pi\)
−0.936757 + 0.349980i \(0.886188\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 95.6018 0.301583 0.150792 0.988566i \(-0.451818\pi\)
0.150792 + 0.988566i \(0.451818\pi\)
\(318\) 0 0
\(319\) 353.693 1.10875
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −885.545 −2.74163
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 331.087i 1.00634i
\(330\) 0 0
\(331\) 171.956 0.519504 0.259752 0.965675i \(-0.416359\pi\)
0.259752 + 0.965675i \(0.416359\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 349.956i 1.03844i 0.854639 + 0.519222i \(0.173778\pi\)
−0.854639 + 0.519222i \(0.826222\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 59.6949i 0.175058i
\(342\) 0 0
\(343\) − 296.877i − 0.865530i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −345.751 −0.996399 −0.498200 0.867062i \(-0.666005\pi\)
−0.498200 + 0.867062i \(0.666005\pi\)
\(348\) 0 0
\(349\) 356.325 1.02099 0.510494 0.859882i \(-0.329463\pi\)
0.510494 + 0.859882i \(0.329463\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −13.9811 −0.0396065 −0.0198032 0.999804i \(-0.506304\pi\)
−0.0198032 + 0.999804i \(0.506304\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 502.939i 1.40094i 0.713680 + 0.700472i \(0.247027\pi\)
−0.713680 + 0.700472i \(0.752973\pi\)
\(360\) 0 0
\(361\) 558.579 1.54731
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 275.601i 0.750956i 0.926831 + 0.375478i \(0.122521\pi\)
−0.926831 + 0.375478i \(0.877479\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 473.575i 1.27648i
\(372\) 0 0
\(373\) − 53.5395i − 0.143538i −0.997421 0.0717688i \(-0.977136\pi\)
0.997421 0.0717688i \(-0.0228644\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 711.262 1.88664
\(378\) 0 0
\(379\) 30.4213 0.0802674 0.0401337 0.999194i \(-0.487222\pi\)
0.0401337 + 0.999194i \(0.487222\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 659.581 1.72214 0.861072 0.508483i \(-0.169794\pi\)
0.861072 + 0.508483i \(0.169794\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 98.2692i − 0.252620i −0.991991 0.126310i \(-0.959687\pi\)
0.991991 0.126310i \(-0.0403134\pi\)
\(390\) 0 0
\(391\) 570.386 1.45879
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 209.767i − 0.528381i −0.964471 0.264191i \(-0.914895\pi\)
0.964471 0.264191i \(-0.0851048\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 49.0264i 0.122260i 0.998130 + 0.0611302i \(0.0194705\pi\)
−0.998130 + 0.0611302i \(0.980530\pi\)
\(402\) 0 0
\(403\) 120.044i 0.297876i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 297.475 0.730897
\(408\) 0 0
\(409\) −29.0349 −0.0709899 −0.0354950 0.999370i \(-0.511301\pi\)
−0.0354950 + 0.999370i \(0.511301\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −932.679 −2.25830
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 314.197i − 0.749873i −0.927050 0.374937i \(-0.877664\pi\)
0.927050 0.374937i \(-0.122336\pi\)
\(420\) 0 0
\(421\) −612.719 −1.45539 −0.727695 0.685901i \(-0.759408\pi\)
−0.727695 + 0.685901i \(0.759408\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 561.149i 1.31417i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 22.4664i 0.0521261i 0.999660 + 0.0260631i \(0.00829707\pi\)
−0.999660 + 0.0260631i \(0.991703\pi\)
\(432\) 0 0
\(433\) 5.41210i 0.0124991i 0.999980 + 0.00624954i \(0.00198930\pi\)
−0.999980 + 0.00624954i \(0.998011\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −592.307 −1.35539
\(438\) 0 0
\(439\) −401.895 −0.915478 −0.457739 0.889087i \(-0.651341\pi\)
−0.457739 + 0.889087i \(0.651341\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 412.888 0.932027 0.466014 0.884778i \(-0.345690\pi\)
0.466014 + 0.884778i \(0.345690\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 14.3283i − 0.0319117i −0.999873 0.0159558i \(-0.994921\pi\)
0.999873 0.0159558i \(-0.00507912\pi\)
\(450\) 0 0
\(451\) 254.605 0.564534
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 281.851i 0.616741i 0.951266 + 0.308370i \(0.0997836\pi\)
−0.951266 + 0.308370i \(0.900216\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 812.496i − 1.76247i −0.472683 0.881233i \(-0.656714\pi\)
0.472683 0.881233i \(-0.343286\pi\)
\(462\) 0 0
\(463\) 652.899i 1.41015i 0.709133 + 0.705074i \(0.249086\pi\)
−0.709133 + 0.705074i \(0.750914\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −27.9742 −0.0599020 −0.0299510 0.999551i \(-0.509535\pi\)
−0.0299510 + 0.999551i \(0.509535\pi\)
\(468\) 0 0
\(469\) −148.438 −0.316500
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −867.421 −1.83387
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 596.959i − 1.24626i −0.782118 0.623131i \(-0.785860\pi\)
0.782118 0.623131i \(-0.214140\pi\)
\(480\) 0 0
\(481\) 598.211 1.24368
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 452.749i 0.929670i 0.885397 + 0.464835i \(0.153886\pi\)
−0.885397 + 0.464835i \(0.846114\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 602.473i − 1.22703i −0.789682 0.613516i \(-0.789754\pi\)
0.789682 0.613516i \(-0.210246\pi\)
\(492\) 0 0
\(493\) − 860.561i − 1.74556i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −415.555 −0.836127
\(498\) 0 0
\(499\) −873.903 −1.75131 −0.875655 0.482938i \(-0.839570\pi\)
−0.875655 + 0.482938i \(0.839570\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −10.2588 −0.0203953 −0.0101977 0.999948i \(-0.503246\pi\)
−0.0101977 + 0.999948i \(0.503246\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 226.913i − 0.445802i −0.974841 0.222901i \(-0.928447\pi\)
0.974841 0.222901i \(-0.0715527\pi\)
\(510\) 0 0
\(511\) −792.816 −1.55150
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 356.000i − 0.688588i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 395.174i 0.758490i 0.925296 + 0.379245i \(0.123816\pi\)
−0.925296 + 0.379245i \(0.876184\pi\)
\(522\) 0 0
\(523\) 694.219i 1.32738i 0.748008 + 0.663690i \(0.231010\pi\)
−0.748008 + 0.663690i \(0.768990\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 145.242 0.275602
\(528\) 0 0
\(529\) −147.491 −0.278811
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 512.001 0.960602
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 907.323i 1.68335i
\(540\) 0 0
\(541\) 105.307 0.194652 0.0973260 0.995253i \(-0.468971\pi\)
0.0973260 + 0.995253i \(0.468971\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 3.85054i − 0.00703938i −0.999994 0.00351969i \(-0.998880\pi\)
0.999994 0.00351969i \(-0.00112035\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 893.634i 1.62184i
\(552\) 0 0
\(553\) − 218.447i − 0.395022i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 174.221 0.312785 0.156392 0.987695i \(-0.450014\pi\)
0.156392 + 0.987695i \(0.450014\pi\)
\(558\) 0 0
\(559\) −1744.35 −3.12048
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −872.631 −1.54997 −0.774983 0.631982i \(-0.782242\pi\)
−0.774983 + 0.631982i \(0.782242\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 590.496i − 1.03778i −0.854841 0.518889i \(-0.826346\pi\)
0.854841 0.518889i \(-0.173654\pi\)
\(570\) 0 0
\(571\) 180.588 0.316266 0.158133 0.987418i \(-0.449453\pi\)
0.158133 + 0.987418i \(0.449453\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 103.026i 0.178555i 0.996007 + 0.0892776i \(0.0284558\pi\)
−0.996007 + 0.0892776i \(0.971544\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 579.369i − 0.997192i
\(582\) 0 0
\(583\) − 509.210i − 0.873430i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −937.598 −1.59727 −0.798636 0.601815i \(-0.794445\pi\)
−0.798636 + 0.601815i \(0.794445\pi\)
\(588\) 0 0
\(589\) −150.824 −0.256068
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −1002.64 −1.69079 −0.845396 0.534139i \(-0.820636\pi\)
−0.845396 + 0.534139i \(0.820636\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 335.900i 0.560769i 0.959888 + 0.280384i \(0.0904619\pi\)
−0.959888 + 0.280384i \(0.909538\pi\)
\(600\) 0 0
\(601\) 592.561 0.985958 0.492979 0.870041i \(-0.335908\pi\)
0.492979 + 0.870041i \(0.335908\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 1163.50i − 1.91680i −0.285435 0.958398i \(-0.592138\pi\)
0.285435 0.958398i \(-0.407862\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 715.902i − 1.17169i
\(612\) 0 0
\(613\) 19.8199i 0.0323327i 0.999869 + 0.0161663i \(0.00514613\pi\)
−0.999869 + 0.0161663i \(0.994854\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1069.23 1.73295 0.866477 0.499218i \(-0.166379\pi\)
0.866477 + 0.499218i \(0.166379\pi\)
\(618\) 0 0
\(619\) 762.894 1.23246 0.616231 0.787565i \(-0.288659\pi\)
0.616231 + 0.787565i \(0.288659\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −1492.87 −2.39626
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 723.779i − 1.15068i
\(630\) 0 0
\(631\) −973.324 −1.54251 −0.771255 0.636526i \(-0.780371\pi\)
−0.771255 + 0.636526i \(0.780371\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 1824.59i 2.86435i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 694.564i 1.08356i 0.840519 + 0.541782i \(0.182250\pi\)
−0.840519 + 0.541782i \(0.817750\pi\)
\(642\) 0 0
\(643\) 578.641i 0.899908i 0.893052 + 0.449954i \(0.148560\pi\)
−0.893052 + 0.449954i \(0.851440\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1227.42 1.89710 0.948551 0.316625i \(-0.102550\pi\)
0.948551 + 0.316625i \(0.102550\pi\)
\(648\) 0 0
\(649\) 1002.86 1.54524
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 3.78969 0.00580351 0.00290176 0.999996i \(-0.499076\pi\)
0.00290176 + 0.999996i \(0.499076\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 822.470i 1.24806i 0.781401 + 0.624029i \(0.214505\pi\)
−0.781401 + 0.624029i \(0.785495\pi\)
\(660\) 0 0
\(661\) −412.552 −0.624134 −0.312067 0.950060i \(-0.601021\pi\)
−0.312067 + 0.950060i \(0.601021\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 575.596i − 0.862962i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 603.373i − 0.899215i
\(672\) 0 0
\(673\) 177.517i 0.263770i 0.991265 + 0.131885i \(0.0421030\pi\)
−0.991265 + 0.131885i \(0.957897\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −997.113 −1.47284 −0.736420 0.676524i \(-0.763485\pi\)
−0.736420 + 0.676524i \(0.763485\pi\)
\(678\) 0 0
\(679\) −517.675 −0.762409
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1296.82 1.89871 0.949356 0.314201i \(-0.101737\pi\)
0.949356 + 0.314201i \(0.101737\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 1024.00i − 1.48621i
\(690\) 0 0
\(691\) −343.623 −0.497283 −0.248642 0.968596i \(-0.579984\pi\)
−0.248642 + 0.968596i \(0.579984\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 619.473i − 0.888771i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 255.904i 0.365056i 0.983201 + 0.182528i \(0.0584280\pi\)
−0.983201 + 0.182528i \(0.941572\pi\)
\(702\) 0 0
\(703\) 751.596i 1.06913i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1270.97 −1.79769
\(708\) 0 0
\(709\) 1105.26 1.55890 0.779452 0.626462i \(-0.215498\pi\)
0.779452 + 0.626462i \(0.215498\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 97.1469 0.136251
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 801.363i − 1.11455i −0.830327 0.557276i \(-0.811847\pi\)
0.830327 0.557276i \(-0.188153\pi\)
\(720\) 0 0
\(721\) −168.070 −0.233106
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 57.6534i 0.0793031i 0.999214 + 0.0396516i \(0.0126248\pi\)
−0.999214 + 0.0396516i \(0.987375\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 2110.50i 2.88714i
\(732\) 0 0
\(733\) − 330.943i − 0.451491i −0.974186 0.225746i \(-0.927518\pi\)
0.974186 0.225746i \(-0.0724818\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 159.608 0.216564
\(738\) 0 0
\(739\) 1200.31 1.62423 0.812115 0.583497i \(-0.198316\pi\)
0.812115 + 0.583497i \(0.198316\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 896.996 1.20726 0.603631 0.797264i \(-0.293720\pi\)
0.603631 + 0.797264i \(0.293720\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 589.615i − 0.787203i
\(750\) 0 0
\(751\) 1226.53 1.63320 0.816600 0.577203i \(-0.195856\pi\)
0.816600 + 0.577203i \(0.195856\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 286.627i − 0.378635i −0.981916 0.189318i \(-0.939372\pi\)
0.981916 0.189318i \(-0.0606276\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 176.169i 0.231496i 0.993279 + 0.115748i \(0.0369266\pi\)
−0.993279 + 0.115748i \(0.963073\pi\)
\(762\) 0 0
\(763\) 16.9381i 0.0221993i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 2016.71 2.62935
\(768\) 0 0
\(769\) 787.929 1.02461 0.512307 0.858802i \(-0.328791\pi\)
0.512307 + 0.858802i \(0.328791\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −563.136 −0.728507 −0.364253 0.931300i \(-0.618676\pi\)
−0.364253 + 0.931300i \(0.618676\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 643.281i 0.825778i
\(780\) 0 0
\(781\) 446.824 0.572118
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 364.061i 0.462594i 0.972883 + 0.231297i \(0.0742969\pi\)
−0.972883 + 0.231297i \(0.925703\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 1072.61i − 1.35601i
\(792\) 0 0
\(793\) − 1213.36i − 1.53009i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 863.848 1.08387 0.541937 0.840419i \(-0.317691\pi\)
0.541937 + 0.840419i \(0.317691\pi\)
\(798\) 0 0
\(799\) −866.175 −1.08407
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 852.472 1.06161
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1514.44i 1.87198i 0.352020 + 0.935992i \(0.385495\pi\)
−0.352020 + 0.935992i \(0.614505\pi\)
\(810\) 0 0
\(811\) −449.895 −0.554741 −0.277370 0.960763i \(-0.589463\pi\)
−0.277370 + 0.960763i \(0.589463\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 2191.61i − 2.68251i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 1277.65i − 1.55621i −0.628134 0.778105i \(-0.716181\pi\)
0.628134 0.778105i \(-0.283819\pi\)
\(822\) 0 0
\(823\) − 795.601i − 0.966708i −0.875425 0.483354i \(-0.839418\pi\)
0.875425 0.483354i \(-0.160582\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −89.2072 −0.107868 −0.0539342 0.998544i \(-0.517176\pi\)
−0.0539342 + 0.998544i \(0.517176\pi\)
\(828\) 0 0
\(829\) −1535.81 −1.85261 −0.926306 0.376773i \(-0.877034\pi\)
−0.926306 + 0.376773i \(0.877034\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 2207.59 2.65016
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) − 479.864i − 0.571948i −0.958237 0.285974i \(-0.907683\pi\)
0.958237 0.285974i \(-0.0923171\pi\)
\(840\) 0 0
\(841\) −27.4213 −0.0326056
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 257.320i − 0.303802i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 484.108i − 0.568869i
\(852\) 0 0
\(853\) 446.328i 0.523245i 0.965170 + 0.261623i \(0.0842576\pi\)
−0.965170 + 0.261623i \(0.915742\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −660.425 −0.770624 −0.385312 0.922786i \(-0.625906\pi\)
−0.385312 + 0.922786i \(0.625906\pi\)
\(858\) 0 0
\(859\) 804.491 0.936544 0.468272 0.883584i \(-0.344877\pi\)
0.468272 + 0.883584i \(0.344877\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1343.39 1.55665 0.778323 0.627864i \(-0.216071\pi\)
0.778323 + 0.627864i \(0.216071\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 234.884i 0.270293i
\(870\) 0 0
\(871\) 320.965 0.368502
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 737.645i − 0.841100i −0.907269 0.420550i \(-0.861837\pi\)
0.907269 0.420550i \(-0.138163\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 66.0332i − 0.0749526i −0.999298 0.0374763i \(-0.988068\pi\)
0.999298 0.0374763i \(-0.0119319\pi\)
\(882\) 0 0
\(883\) 652.411i 0.738858i 0.929259 + 0.369429i \(0.120447\pi\)
−0.929259 + 0.369429i \(0.879553\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1377.37 −1.55285 −0.776423 0.630212i \(-0.782968\pi\)
−0.776423 + 0.630212i \(0.782968\pi\)
\(888\) 0 0
\(889\) −481.789 −0.541945
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 899.464 1.00724
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 146.569i − 0.163035i
\(900\) 0 0
\(901\) −1238.95 −1.37508
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 709.570i 0.782326i 0.920321 + 0.391163i \(0.127927\pi\)
−0.920321 + 0.391163i \(0.872073\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 145.117i − 0.159295i −0.996823 0.0796473i \(-0.974621\pi\)
0.996823 0.0796473i \(-0.0253794\pi\)
\(912\) 0 0
\(913\) 622.964i 0.682326i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 29.0100 0.0316358
\(918\) 0 0
\(919\) 343.974 0.374292 0.187146 0.982332i \(-0.440076\pi\)
0.187146 + 0.982332i \(0.440076\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 898.546 0.973506
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1572.07i 1.69222i 0.533009 + 0.846109i \(0.321061\pi\)
−0.533009 + 0.846109i \(0.678939\pi\)
\(930\) 0 0
\(931\) −2292.43 −2.46233
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1273.70i 1.35934i 0.733518 + 0.679670i \(0.237877\pi\)
−0.733518 + 0.679670i \(0.762123\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 220.475i 0.234299i 0.993114 + 0.117150i \(0.0373757\pi\)
−0.993114 + 0.117150i \(0.962624\pi\)
\(942\) 0 0
\(943\) − 414.342i − 0.439387i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1513.72 −1.59843 −0.799216 0.601043i \(-0.794752\pi\)
−0.799216 + 0.601043i \(0.794752\pi\)
\(948\) 0 0
\(949\) 1714.29 1.80641
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1075.41 1.12845 0.564224 0.825622i \(-0.309176\pi\)
0.564224 + 0.825622i \(0.309176\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 2225.39i − 2.32053i
\(960\) 0 0
\(961\) −936.263 −0.974259
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 201.303i − 0.208173i −0.994568 0.104086i \(-0.966808\pi\)
0.994568 0.104086i \(-0.0331919\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 164.019i − 0.168917i −0.996427 0.0844586i \(-0.973084\pi\)
0.996427 0.0844586i \(-0.0269161\pi\)
\(972\) 0 0
\(973\) 1756.39i 1.80513i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 4.65230 0.00476182 0.00238091 0.999997i \(-0.499242\pi\)
0.00238091 + 0.999997i \(0.499242\pi\)
\(978\) 0 0
\(979\) 1605.20 1.63963
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 798.373 0.812180 0.406090 0.913833i \(-0.366892\pi\)
0.406090 + 0.913833i \(0.366892\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1411.63i 1.42733i
\(990\) 0 0
\(991\) 135.404 0.136633 0.0683166 0.997664i \(-0.478237\pi\)
0.0683166 + 0.997664i \(0.478237\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 405.645i 0.406865i 0.979089 + 0.203433i \(0.0652098\pi\)
−0.979089 + 0.203433i \(0.934790\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3600.3.c.l.449.7 8
3.2 odd 2 inner 3600.3.c.l.449.8 8
4.3 odd 2 1800.3.c.b.449.2 8
5.2 odd 4 3600.3.l.m.1601.1 4
5.3 odd 4 720.3.l.d.161.2 4
5.4 even 2 inner 3600.3.c.l.449.1 8
12.11 even 2 1800.3.c.b.449.1 8
15.2 even 4 3600.3.l.m.1601.2 4
15.8 even 4 720.3.l.d.161.4 4
15.14 odd 2 inner 3600.3.c.l.449.2 8
20.3 even 4 360.3.l.a.161.1 4
20.7 even 4 1800.3.l.g.1601.4 4
20.19 odd 2 1800.3.c.b.449.8 8
40.3 even 4 2880.3.l.a.1601.3 4
40.13 odd 4 2880.3.l.h.1601.4 4
60.23 odd 4 360.3.l.a.161.3 yes 4
60.47 odd 4 1800.3.l.g.1601.3 4
60.59 even 2 1800.3.c.b.449.7 8
120.53 even 4 2880.3.l.h.1601.2 4
120.83 odd 4 2880.3.l.a.1601.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
360.3.l.a.161.1 4 20.3 even 4
360.3.l.a.161.3 yes 4 60.23 odd 4
720.3.l.d.161.2 4 5.3 odd 4
720.3.l.d.161.4 4 15.8 even 4
1800.3.c.b.449.1 8 12.11 even 2
1800.3.c.b.449.2 8 4.3 odd 2
1800.3.c.b.449.7 8 60.59 even 2
1800.3.c.b.449.8 8 20.19 odd 2
1800.3.l.g.1601.3 4 60.47 odd 4
1800.3.l.g.1601.4 4 20.7 even 4
2880.3.l.a.1601.1 4 120.83 odd 4
2880.3.l.a.1601.3 4 40.3 even 4
2880.3.l.h.1601.2 4 120.53 even 4
2880.3.l.h.1601.4 4 40.13 odd 4
3600.3.c.l.449.1 8 5.4 even 2 inner
3600.3.c.l.449.2 8 15.14 odd 2 inner
3600.3.c.l.449.7 8 1.1 even 1 trivial
3600.3.c.l.449.8 8 3.2 odd 2 inner
3600.3.l.m.1601.1 4 5.2 odd 4
3600.3.l.m.1601.2 4 15.2 even 4