Properties

Label 3600.3.c.g.449.2
Level $3600$
Weight $3$
Character 3600.449
Analytic conductor $98.093$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3600,3,Mod(449,3600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3600.449"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3600, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 3600.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-88,0,0,0,0,0,0,0,0,0,0, 0,152] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(31)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(98.0928951697\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.40960000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 7x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 1800)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 449.2
Root \(-1.14412 + 1.14412i\) of defining polynomial
Character \(\chi\) \(=\) 3600.449
Dual form 3600.3.c.g.449.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.32456i q^{7} +19.3028i q^{11} +19.6491i q^{13} -4.70163 q^{17} -29.9737 q^{19} -9.89949 q^{23} -24.5006i q^{29} +12.6754 q^{31} -37.9473i q^{37} +73.0056i q^{41} -33.3246i q^{43} -4.70163 q^{47} -37.9473 q^{49} +73.0056 q^{53} -24.5006i q^{59} -53.7018 q^{61} -101.974i q^{67} -111.686i q^{71} -48.5438i q^{73} +179.990 q^{77} +10.5964 q^{79} +44.2251 q^{83} -38.6800i q^{89} +183.219 q^{91} +183.491i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 88 q^{19} + 152 q^{31} - 632 q^{61} - 320 q^{79} + 808 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3600\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(2801\) \(3151\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 9.32456i − 1.33208i −0.745916 0.666040i \(-0.767988\pi\)
0.745916 0.666040i \(-0.232012\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 19.3028i 1.75480i 0.479763 + 0.877398i \(0.340723\pi\)
−0.479763 + 0.877398i \(0.659277\pi\)
\(12\) 0 0
\(13\) 19.6491i 1.51147i 0.654878 + 0.755735i \(0.272720\pi\)
−0.654878 + 0.755735i \(0.727280\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.70163 −0.276567 −0.138283 0.990393i \(-0.544158\pi\)
−0.138283 + 0.990393i \(0.544158\pi\)
\(18\) 0 0
\(19\) −29.9737 −1.57756 −0.788781 0.614675i \(-0.789287\pi\)
−0.788781 + 0.614675i \(0.789287\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −9.89949 −0.430413 −0.215206 0.976569i \(-0.569042\pi\)
−0.215206 + 0.976569i \(0.569042\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 24.5006i − 0.844849i −0.906398 0.422425i \(-0.861179\pi\)
0.906398 0.422425i \(-0.138821\pi\)
\(30\) 0 0
\(31\) 12.6754 0.408885 0.204443 0.978879i \(-0.434462\pi\)
0.204443 + 0.978879i \(0.434462\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 37.9473i − 1.02560i −0.858507 0.512802i \(-0.828608\pi\)
0.858507 0.512802i \(-0.171392\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 73.0056i 1.78063i 0.455350 + 0.890313i \(0.349514\pi\)
−0.455350 + 0.890313i \(0.650486\pi\)
\(42\) 0 0
\(43\) − 33.3246i − 0.774990i −0.921872 0.387495i \(-0.873341\pi\)
0.921872 0.387495i \(-0.126659\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.70163 −0.100035 −0.0500174 0.998748i \(-0.515928\pi\)
−0.0500174 + 0.998748i \(0.515928\pi\)
\(48\) 0 0
\(49\) −37.9473 −0.774435
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 73.0056 1.37746 0.688732 0.725016i \(-0.258168\pi\)
0.688732 + 0.725016i \(0.258168\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 24.5006i − 0.415265i −0.978207 0.207632i \(-0.933424\pi\)
0.978207 0.207632i \(-0.0665758\pi\)
\(60\) 0 0
\(61\) −53.7018 −0.880357 −0.440179 0.897910i \(-0.645085\pi\)
−0.440179 + 0.897910i \(0.645085\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 101.974i − 1.52200i −0.648755 0.760998i \(-0.724710\pi\)
0.648755 0.760998i \(-0.275290\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 111.686i − 1.57304i −0.617567 0.786519i \(-0.711881\pi\)
0.617567 0.786519i \(-0.288119\pi\)
\(72\) 0 0
\(73\) − 48.5438i − 0.664983i −0.943106 0.332492i \(-0.892111\pi\)
0.943106 0.332492i \(-0.107889\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 179.990 2.33753
\(78\) 0 0
\(79\) 10.5964 0.134132 0.0670661 0.997749i \(-0.478636\pi\)
0.0670661 + 0.997749i \(0.478636\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 44.2251 0.532833 0.266416 0.963858i \(-0.414160\pi\)
0.266416 + 0.963858i \(0.414160\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 38.6800i − 0.434607i −0.976104 0.217303i \(-0.930274\pi\)
0.976104 0.217303i \(-0.0697261\pi\)
\(90\) 0 0
\(91\) 183.219 2.01340
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 183.491i 1.89166i 0.324661 + 0.945830i \(0.394750\pi\)
−0.324661 + 0.945830i \(0.605250\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 87.9913i − 0.871201i −0.900140 0.435600i \(-0.856536\pi\)
0.900140 0.435600i \(-0.143464\pi\)
\(102\) 0 0
\(103\) − 26.0000i − 0.252427i −0.992003 0.126214i \(-0.959718\pi\)
0.992003 0.126214i \(-0.0402825\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 126.671 1.18384 0.591922 0.805995i \(-0.298369\pi\)
0.591922 + 0.805995i \(0.298369\pi\)
\(108\) 0 0
\(109\) 200.789 1.84210 0.921052 0.389440i \(-0.127331\pi\)
0.921052 + 0.389440i \(0.127331\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −160.997 −1.42475 −0.712376 0.701798i \(-0.752381\pi\)
−0.712376 + 0.701798i \(0.752381\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 43.8406i 0.368409i
\(120\) 0 0
\(121\) −251.596 −2.07931
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 71.4562i − 0.562647i −0.959613 0.281324i \(-0.909227\pi\)
0.959613 0.281324i \(-0.0907735\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 189.046i − 1.44310i −0.692364 0.721548i \(-0.743431\pi\)
0.692364 0.721548i \(-0.256569\pi\)
\(132\) 0 0
\(133\) 279.491i 2.10144i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 101.402 0.740158 0.370079 0.929000i \(-0.379331\pi\)
0.370079 + 0.929000i \(0.379331\pi\)
\(138\) 0 0
\(139\) −82.0527 −0.590307 −0.295153 0.955450i \(-0.595371\pi\)
−0.295153 + 0.955450i \(0.595371\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −379.282 −2.65232
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 33.5194i − 0.224962i −0.993654 0.112481i \(-0.964120\pi\)
0.993654 0.112481i \(-0.0358798\pi\)
\(150\) 0 0
\(151\) −6.51744 −0.0431619 −0.0215809 0.999767i \(-0.506870\pi\)
−0.0215809 + 0.999767i \(0.506870\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 98.8947i − 0.629902i −0.949108 0.314951i \(-0.898012\pi\)
0.949108 0.314951i \(-0.101988\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 92.3084i 0.573344i
\(162\) 0 0
\(163\) − 153.325i − 0.940641i −0.882496 0.470321i \(-0.844138\pi\)
0.882496 0.470321i \(-0.155862\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −87.9913 −0.526894 −0.263447 0.964674i \(-0.584859\pi\)
−0.263447 + 0.964674i \(0.584859\pi\)
\(168\) 0 0
\(169\) −217.088 −1.28454
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 224.103 1.29539 0.647697 0.761898i \(-0.275732\pi\)
0.647697 + 0.761898i \(0.275732\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 101.861i − 0.569054i −0.958668 0.284527i \(-0.908164\pi\)
0.958668 0.284527i \(-0.0918365\pi\)
\(180\) 0 0
\(181\) −203.053 −1.12184 −0.560919 0.827871i \(-0.689552\pi\)
−0.560919 + 0.827871i \(0.689552\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 90.7544i − 0.485318i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 335.020i − 1.75403i −0.480463 0.877015i \(-0.659532\pi\)
0.480463 0.877015i \(-0.340468\pi\)
\(192\) 0 0
\(193\) 335.544i 1.73857i 0.494312 + 0.869284i \(0.335420\pi\)
−0.494312 + 0.869284i \(0.664580\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 32.7504 0.166246 0.0831228 0.996539i \(-0.473511\pi\)
0.0831228 + 0.996539i \(0.473511\pi\)
\(198\) 0 0
\(199\) −307.114 −1.54329 −0.771643 0.636056i \(-0.780565\pi\)
−0.771643 + 0.636056i \(0.780565\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −228.457 −1.12541
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 578.574i − 2.76830i
\(210\) 0 0
\(211\) −240.359 −1.13914 −0.569572 0.821941i \(-0.692891\pi\)
−0.569572 + 0.821941i \(0.692891\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 118.193i − 0.544668i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 92.3829i − 0.418022i
\(222\) 0 0
\(223\) 174.517i 0.782589i 0.920265 + 0.391295i \(0.127973\pi\)
−0.920265 + 0.391295i \(0.872027\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −210.308 −0.926468 −0.463234 0.886236i \(-0.653311\pi\)
−0.463234 + 0.886236i \(0.653311\pi\)
\(228\) 0 0
\(229\) 81.5964 0.356316 0.178158 0.984002i \(-0.442986\pi\)
0.178158 + 0.984002i \(0.442986\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −126.671 −0.543653 −0.271827 0.962346i \(-0.587628\pi\)
−0.271827 + 0.962346i \(0.587628\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 4.35437i − 0.0182191i −0.999959 0.00910955i \(-0.997100\pi\)
0.999959 0.00910955i \(-0.00289970\pi\)
\(240\) 0 0
\(241\) −316.895 −1.31492 −0.657458 0.753491i \(-0.728368\pi\)
−0.657458 + 0.753491i \(0.728368\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 588.956i − 2.38444i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 247.066i − 0.984325i −0.870503 0.492163i \(-0.836207\pi\)
0.870503 0.492163i \(-0.163793\pi\)
\(252\) 0 0
\(253\) − 191.088i − 0.755287i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 285.746 1.11185 0.555925 0.831232i \(-0.312364\pi\)
0.555925 + 0.831232i \(0.312364\pi\)
\(258\) 0 0
\(259\) −353.842 −1.36619
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 317.639 1.20775 0.603877 0.797077i \(-0.293622\pi\)
0.603877 + 0.797077i \(0.293622\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 400.160i 1.48758i 0.668411 + 0.743792i \(0.266975\pi\)
−0.668411 + 0.743792i \(0.733025\pi\)
\(270\) 0 0
\(271\) 320.333 1.18204 0.591020 0.806657i \(-0.298725\pi\)
0.591020 + 0.806657i \(0.298725\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 6.24555i 0.0225471i 0.999936 + 0.0112736i \(0.00358856\pi\)
−0.999936 + 0.0112736i \(0.996411\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 145.974i − 0.519480i −0.965679 0.259740i \(-0.916363\pi\)
0.965679 0.259740i \(-0.0836369\pi\)
\(282\) 0 0
\(283\) − 4.62278i − 0.0163349i −0.999967 0.00816745i \(-0.997400\pi\)
0.999967 0.00816745i \(-0.00259981\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 680.745 2.37193
\(288\) 0 0
\(289\) −266.895 −0.923511
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −151.097 −0.515691 −0.257845 0.966186i \(-0.583013\pi\)
−0.257845 + 0.966186i \(0.583013\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 194.516i − 0.650556i
\(300\) 0 0
\(301\) −310.737 −1.03235
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 365.710i − 1.19124i −0.803267 0.595619i \(-0.796907\pi\)
0.803267 0.595619i \(-0.203093\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 506.722i 1.62933i 0.579930 + 0.814666i \(0.303080\pi\)
−0.579930 + 0.814666i \(0.696920\pi\)
\(312\) 0 0
\(313\) 121.544i 0.388319i 0.980970 + 0.194159i \(0.0621979\pi\)
−0.980970 + 0.194159i \(0.937802\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 569.059 1.79514 0.897570 0.440872i \(-0.145331\pi\)
0.897570 + 0.440872i \(0.145331\pi\)
\(318\) 0 0
\(319\) 472.930 1.48254
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 140.925 0.436301
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 43.8406i 0.133254i
\(330\) 0 0
\(331\) 90.9295 0.274712 0.137356 0.990522i \(-0.456140\pi\)
0.137356 + 0.990522i \(0.456140\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 420.947i − 1.24910i −0.780984 0.624551i \(-0.785282\pi\)
0.780984 0.624551i \(-0.214718\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 244.671i 0.717510i
\(342\) 0 0
\(343\) − 103.061i − 0.300470i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 588.747 1.69668 0.848338 0.529455i \(-0.177603\pi\)
0.848338 + 0.529455i \(0.177603\pi\)
\(348\) 0 0
\(349\) −250.596 −0.718041 −0.359021 0.933330i \(-0.616889\pi\)
−0.359021 + 0.933330i \(0.616889\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −7.97696 −0.0225976 −0.0112988 0.999936i \(-0.503597\pi\)
−0.0112988 + 0.999936i \(0.503597\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 296.377i − 0.825562i −0.910830 0.412781i \(-0.864557\pi\)
0.910830 0.412781i \(-0.135443\pi\)
\(360\) 0 0
\(361\) 537.421 1.48870
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 363.991i 0.991800i 0.868380 + 0.495900i \(0.165162\pi\)
−0.868380 + 0.495900i \(0.834838\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 680.745i − 1.83489i
\(372\) 0 0
\(373\) − 501.017i − 1.34321i −0.740910 0.671605i \(-0.765605\pi\)
0.740910 0.671605i \(-0.234395\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 481.415 1.27696
\(378\) 0 0
\(379\) 305.394 0.805790 0.402895 0.915246i \(-0.368004\pi\)
0.402895 + 0.915246i \(0.368004\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −646.419 −1.68778 −0.843890 0.536517i \(-0.819740\pi\)
−0.843890 + 0.536517i \(0.819740\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 719.425i − 1.84942i −0.380670 0.924711i \(-0.624307\pi\)
0.380670 0.924711i \(-0.375693\pi\)
\(390\) 0 0
\(391\) 46.5438 0.119038
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 258.562i − 0.651289i −0.945492 0.325644i \(-0.894419\pi\)
0.945492 0.325644i \(-0.105581\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 343.766i − 0.857271i −0.903478 0.428635i \(-0.858994\pi\)
0.903478 0.428635i \(-0.141006\pi\)
\(402\) 0 0
\(403\) 249.061i 0.618018i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 732.488 1.79973
\(408\) 0 0
\(409\) 716.105 1.75087 0.875434 0.483338i \(-0.160576\pi\)
0.875434 + 0.483338i \(0.160576\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −228.457 −0.553166
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 313.794i − 0.748913i −0.927245 0.374456i \(-0.877829\pi\)
0.927245 0.374456i \(-0.122171\pi\)
\(420\) 0 0
\(421\) 429.737 1.02075 0.510376 0.859951i \(-0.329506\pi\)
0.510376 + 0.859951i \(0.329506\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 500.745i 1.17271i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 305.123i 0.707942i 0.935256 + 0.353971i \(0.115169\pi\)
−0.935256 + 0.353971i \(0.884831\pi\)
\(432\) 0 0
\(433\) 185.122i 0.427534i 0.976885 + 0.213767i \(0.0685734\pi\)
−0.976885 + 0.213767i \(0.931427\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 296.724 0.679003
\(438\) 0 0
\(439\) −757.131 −1.72467 −0.862336 0.506337i \(-0.830999\pi\)
−0.862336 + 0.506337i \(0.830999\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 455.451 1.02811 0.514053 0.857758i \(-0.328143\pi\)
0.514053 + 0.857758i \(0.328143\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 414.339i − 0.922805i −0.887191 0.461402i \(-0.847346\pi\)
0.887191 0.461402i \(-0.152654\pi\)
\(450\) 0 0
\(451\) −1409.21 −3.12463
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 194.000i − 0.424508i −0.977215 0.212254i \(-0.931920\pi\)
0.977215 0.212254i \(-0.0680804\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 466.083i − 1.01102i −0.862819 0.505512i \(-0.831303\pi\)
0.862819 0.505512i \(-0.168697\pi\)
\(462\) 0 0
\(463\) 269.070i 0.581146i 0.956853 + 0.290573i \(0.0938459\pi\)
−0.956853 + 0.290573i \(0.906154\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −589.975 −1.26333 −0.631665 0.775242i \(-0.717628\pi\)
−0.631665 + 0.775242i \(0.717628\pi\)
\(468\) 0 0
\(469\) −950.859 −2.02742
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 643.256 1.35995
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 41.9181i 0.0875117i 0.999042 + 0.0437558i \(0.0139324\pi\)
−0.999042 + 0.0437558i \(0.986068\pi\)
\(480\) 0 0
\(481\) 745.631 1.55017
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 532.535i − 1.09350i −0.837296 0.546750i \(-0.815865\pi\)
0.837296 0.546750i \(-0.184135\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 238.357i 0.485452i 0.970095 + 0.242726i \(0.0780416\pi\)
−0.970095 + 0.242726i \(0.921958\pi\)
\(492\) 0 0
\(493\) 115.193i 0.233657i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1041.42 −2.09541
\(498\) 0 0
\(499\) −387.447 −0.776447 −0.388223 0.921565i \(-0.626911\pi\)
−0.388223 + 0.921565i \(0.626911\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −174.060 −0.346044 −0.173022 0.984918i \(-0.555353\pi\)
−0.173022 + 0.984918i \(0.555353\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 20.1463i − 0.0395801i −0.999804 0.0197900i \(-0.993700\pi\)
0.999804 0.0197900i \(-0.00629977\pi\)
\(510\) 0 0
\(511\) −452.649 −0.885810
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 90.7544i − 0.175541i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 992.070i − 1.90417i −0.305840 0.952083i \(-0.598937\pi\)
0.305840 0.952083i \(-0.401063\pi\)
\(522\) 0 0
\(523\) − 446.307i − 0.853359i −0.904403 0.426680i \(-0.859683\pi\)
0.904403 0.426680i \(-0.140317\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −59.5953 −0.113084
\(528\) 0 0
\(529\) −431.000 −0.814745
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −1434.50 −2.69136
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 732.488i − 1.35898i
\(540\) 0 0
\(541\) −665.298 −1.22976 −0.614878 0.788623i \(-0.710795\pi\)
−0.614878 + 0.788623i \(0.710795\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 353.018i 0.645371i 0.946506 + 0.322685i \(0.104586\pi\)
−0.946506 + 0.322685i \(0.895414\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 734.373i 1.33280i
\(552\) 0 0
\(553\) − 98.8071i − 0.178675i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −376.007 −0.675057 −0.337528 0.941315i \(-0.609591\pi\)
−0.337528 + 0.941315i \(0.609591\pi\)
\(558\) 0 0
\(559\) 654.798 1.17137
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 290.832 0.516575 0.258288 0.966068i \(-0.416842\pi\)
0.258288 + 0.966068i \(0.416842\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1029.16i 1.80872i 0.426770 + 0.904360i \(0.359651\pi\)
−0.426770 + 0.904360i \(0.640349\pi\)
\(570\) 0 0
\(571\) 129.236 0.226333 0.113167 0.993576i \(-0.463901\pi\)
0.113167 + 0.993576i \(0.463901\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 575.280i − 0.997020i −0.866884 0.498510i \(-0.833881\pi\)
0.866884 0.498510i \(-0.166119\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 412.380i − 0.709776i
\(582\) 0 0
\(583\) 1409.21i 2.41717i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 996.462 1.69755 0.848775 0.528754i \(-0.177341\pi\)
0.848775 + 0.528754i \(0.177341\pi\)
\(588\) 0 0
\(589\) −379.930 −0.645042
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −311.363 −0.525063 −0.262532 0.964923i \(-0.584557\pi\)
−0.262532 + 0.964923i \(0.584557\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 190.968i 0.318812i 0.987213 + 0.159406i \(0.0509578\pi\)
−0.987213 + 0.159406i \(0.949042\pi\)
\(600\) 0 0
\(601\) −393.508 −0.654756 −0.327378 0.944894i \(-0.606165\pi\)
−0.327378 + 0.944894i \(0.606165\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 195.895i 0.322726i 0.986895 + 0.161363i \(0.0515890\pi\)
−0.986895 + 0.161363i \(0.948411\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 92.3829i − 0.151199i
\(612\) 0 0
\(613\) 74.1751i 0.121003i 0.998168 + 0.0605017i \(0.0192701\pi\)
−0.998168 + 0.0605017i \(0.980730\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −180.337 −0.292280 −0.146140 0.989264i \(-0.546685\pi\)
−0.146140 + 0.989264i \(0.546685\pi\)
\(618\) 0 0
\(619\) −197.710 −0.319403 −0.159701 0.987165i \(-0.551053\pi\)
−0.159701 + 0.987165i \(0.551053\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −360.674 −0.578931
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 178.414i 0.283648i
\(630\) 0 0
\(631\) −775.342 −1.22875 −0.614375 0.789014i \(-0.710592\pi\)
−0.614375 + 0.789014i \(0.710592\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 745.631i − 1.17054i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 429.325i 0.669774i 0.942258 + 0.334887i \(0.108698\pi\)
−0.942258 + 0.334887i \(0.891302\pi\)
\(642\) 0 0
\(643\) 689.210i 1.07187i 0.844260 + 0.535933i \(0.180040\pi\)
−0.844260 + 0.535933i \(0.819960\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −420.616 −0.650103 −0.325051 0.945696i \(-0.605382\pi\)
−0.325051 + 0.945696i \(0.605382\pi\)
\(648\) 0 0
\(649\) 472.930 0.728705
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −325.616 −0.498647 −0.249323 0.968420i \(-0.580208\pi\)
−0.249323 + 0.968420i \(0.580208\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 749.396i 1.13717i 0.822624 + 0.568586i \(0.192509\pi\)
−0.822624 + 0.568586i \(0.807491\pi\)
\(660\) 0 0
\(661\) 730.596 1.10529 0.552645 0.833417i \(-0.313619\pi\)
0.552645 + 0.833417i \(0.313619\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 242.544i 0.363634i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 1036.59i − 1.54485i
\(672\) 0 0
\(673\) − 1114.51i − 1.65603i −0.560706 0.828015i \(-0.689470\pi\)
0.560706 0.828015i \(-0.310530\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −974.852 −1.43996 −0.719979 0.693995i \(-0.755849\pi\)
−0.719979 + 0.693995i \(0.755849\pi\)
\(678\) 0 0
\(679\) 1710.97 2.51984
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1170.52 1.71379 0.856897 0.515487i \(-0.172389\pi\)
0.856897 + 0.515487i \(0.172389\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1434.50i 2.08200i
\(690\) 0 0
\(691\) −654.982 −0.947876 −0.473938 0.880558i \(-0.657168\pi\)
−0.473938 + 0.880558i \(0.657168\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 343.246i − 0.492461i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 309.477i − 0.441480i −0.975333 0.220740i \(-0.929153\pi\)
0.975333 0.220740i \(-0.0708472\pi\)
\(702\) 0 0
\(703\) 1137.42i 1.61795i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −820.479 −1.16051
\(708\) 0 0
\(709\) −180.404 −0.254448 −0.127224 0.991874i \(-0.540607\pi\)
−0.127224 + 0.991874i \(0.540607\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −125.481 −0.175989
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1020.96i 1.41998i 0.704214 + 0.709988i \(0.251300\pi\)
−0.704214 + 0.709988i \(0.748700\pi\)
\(720\) 0 0
\(721\) −242.438 −0.336253
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 215.816i − 0.296858i −0.988923 0.148429i \(-0.952578\pi\)
0.988923 0.148429i \(-0.0474216\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 156.680i 0.214336i
\(732\) 0 0
\(733\) 86.4911i 0.117996i 0.998258 + 0.0589980i \(0.0187906\pi\)
−0.998258 + 0.0589980i \(0.981209\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1968.37 2.67079
\(738\) 0 0
\(739\) −33.5089 −0.0453436 −0.0226718 0.999743i \(-0.507217\pi\)
−0.0226718 + 0.999743i \(0.507217\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −526.534 −0.708660 −0.354330 0.935120i \(-0.615291\pi\)
−0.354330 + 0.935120i \(0.615291\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 1181.15i − 1.57697i
\(750\) 0 0
\(751\) −329.210 −0.438362 −0.219181 0.975684i \(-0.570339\pi\)
−0.219181 + 0.975684i \(0.570339\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1164.86i 1.53878i 0.638777 + 0.769392i \(0.279441\pi\)
−0.638777 + 0.769392i \(0.720559\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 184.691i − 0.242695i −0.992610 0.121348i \(-0.961278\pi\)
0.992610 0.121348i \(-0.0387216\pi\)
\(762\) 0 0
\(763\) − 1872.27i − 2.45383i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 481.415 0.627660
\(768\) 0 0
\(769\) 327.754 0.426209 0.213104 0.977029i \(-0.431643\pi\)
0.213104 + 0.977029i \(0.431643\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1333.44 1.72502 0.862511 0.506039i \(-0.168891\pi\)
0.862511 + 0.506039i \(0.168891\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 2188.25i − 2.80905i
\(780\) 0 0
\(781\) 2155.84 2.76036
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 209.483i 0.266179i 0.991104 + 0.133089i \(0.0424897\pi\)
−0.991104 + 0.133089i \(0.957510\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1501.22i 1.89788i
\(792\) 0 0
\(793\) − 1055.19i − 1.33063i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −292.023 −0.366402 −0.183201 0.983075i \(-0.558646\pi\)
−0.183201 + 0.983075i \(0.558646\pi\)
\(798\) 0 0
\(799\) 22.1053 0.0276663
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 937.029 1.16691
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 353.888i − 0.437438i −0.975788 0.218719i \(-0.929812\pi\)
0.975788 0.218719i \(-0.0701879\pi\)
\(810\) 0 0
\(811\) 196.535 0.242336 0.121168 0.992632i \(-0.461336\pi\)
0.121168 + 0.992632i \(0.461336\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 998.859i 1.22259i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 814.240i 0.991766i 0.868389 + 0.495883i \(0.165155\pi\)
−0.868389 + 0.495883i \(0.834845\pi\)
\(822\) 0 0
\(823\) − 659.955i − 0.801890i −0.916102 0.400945i \(-0.868682\pi\)
0.916102 0.400945i \(-0.131318\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −131.535 −0.159051 −0.0795254 0.996833i \(-0.525340\pi\)
−0.0795254 + 0.996833i \(0.525340\pi\)
\(828\) 0 0
\(829\) 909.929 1.09762 0.548811 0.835946i \(-0.315081\pi\)
0.548811 + 0.835946i \(0.315081\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 178.414 0.214183
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1429.84i 1.70422i 0.523359 + 0.852112i \(0.324679\pi\)
−0.523359 + 0.852112i \(0.675321\pi\)
\(840\) 0 0
\(841\) 240.720 0.286230
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 2346.02i 2.76981i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 375.659i 0.441433i
\(852\) 0 0
\(853\) 362.543i 0.425021i 0.977159 + 0.212511i \(0.0681640\pi\)
−0.977159 + 0.212511i \(0.931836\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −949.583 −1.10803 −0.554015 0.832506i \(-0.686905\pi\)
−0.554015 + 0.832506i \(0.686905\pi\)
\(858\) 0 0
\(859\) −794.982 −0.925474 −0.462737 0.886496i \(-0.653133\pi\)
−0.462737 + 0.886496i \(0.653133\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1363.92 −1.58044 −0.790221 0.612822i \(-0.790034\pi\)
−0.790221 + 0.612822i \(0.790034\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 204.541i 0.235375i
\(870\) 0 0
\(871\) 2003.69 2.30045
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 292.895i 0.333973i 0.985959 + 0.166987i \(0.0534037\pi\)
−0.985959 + 0.166987i \(0.946596\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 980.967i − 1.11347i −0.830690 0.556735i \(-0.812054\pi\)
0.830690 0.556735i \(-0.187946\pi\)
\(882\) 0 0
\(883\) − 882.570i − 0.999513i −0.866166 0.499757i \(-0.833423\pi\)
0.866166 0.499757i \(-0.166577\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 815.268 0.919130 0.459565 0.888144i \(-0.348005\pi\)
0.459565 + 0.888144i \(0.348005\pi\)
\(888\) 0 0
\(889\) −666.298 −0.749491
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 140.925 0.157811
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 310.556i − 0.345446i
\(900\) 0 0
\(901\) −343.246 −0.380961
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 197.614i 0.217877i 0.994049 + 0.108938i \(0.0347451\pi\)
−0.994049 + 0.108938i \(0.965255\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 160.960i 0.176685i 0.996090 + 0.0883423i \(0.0281569\pi\)
−0.996090 + 0.0883423i \(0.971843\pi\)
\(912\) 0 0
\(913\) 853.667i 0.935013i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1762.77 −1.92232
\(918\) 0 0
\(919\) −954.937 −1.03910 −0.519552 0.854439i \(-0.673901\pi\)
−0.519552 + 0.854439i \(0.673901\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 2194.52 2.37760
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 729.449i − 0.785198i −0.919710 0.392599i \(-0.871576\pi\)
0.919710 0.392599i \(-0.128424\pi\)
\(930\) 0 0
\(931\) 1137.42 1.22172
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 25.7189i − 0.0274481i −0.999906 0.0137241i \(-0.995631\pi\)
0.999906 0.0137241i \(-0.00436864\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 513.508i 0.545705i 0.962056 + 0.272853i \(0.0879671\pi\)
−0.962056 + 0.272853i \(0.912033\pi\)
\(942\) 0 0
\(943\) − 722.719i − 0.766404i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 136.955 0.144620 0.0723101 0.997382i \(-0.476963\pi\)
0.0723101 + 0.997382i \(0.476963\pi\)
\(948\) 0 0
\(949\) 953.842 1.00510
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −358.242 −0.375910 −0.187955 0.982178i \(-0.560186\pi\)
−0.187955 + 0.982178i \(0.560186\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 945.525i − 0.985949i
\(960\) 0 0
\(961\) −800.333 −0.832813
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 1316.56i − 1.36149i −0.732520 0.680745i \(-0.761656\pi\)
0.732520 0.680745i \(-0.238344\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 551.679i 0.568156i 0.958801 + 0.284078i \(0.0916874\pi\)
−0.958801 + 0.284078i \(0.908313\pi\)
\(972\) 0 0
\(973\) 765.105i 0.786336i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 294.107 0.301031 0.150515 0.988608i \(-0.451907\pi\)
0.150515 + 0.988608i \(0.451907\pi\)
\(978\) 0 0
\(979\) 746.631 0.762646
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −1528.76 −1.55520 −0.777601 0.628758i \(-0.783564\pi\)
−0.777601 + 0.628758i \(0.783564\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 329.896i 0.333565i
\(990\) 0 0
\(991\) 768.184 0.775161 0.387580 0.921836i \(-0.373311\pi\)
0.387580 + 0.921836i \(0.373311\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 234.841i − 0.235548i −0.993040 0.117774i \(-0.962424\pi\)
0.993040 0.117774i \(-0.0375758\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3600.3.c.g.449.2 8
3.2 odd 2 inner 3600.3.c.g.449.1 8
4.3 odd 2 1800.3.c.e.449.7 8
5.2 odd 4 3600.3.l.u.1601.4 4
5.3 odd 4 3600.3.l.o.1601.2 4
5.4 even 2 inner 3600.3.c.g.449.8 8
12.11 even 2 1800.3.c.e.449.8 8
15.2 even 4 3600.3.l.u.1601.3 4
15.8 even 4 3600.3.l.o.1601.1 4
15.14 odd 2 inner 3600.3.c.g.449.7 8
20.3 even 4 1800.3.l.f.1601.3 yes 4
20.7 even 4 1800.3.l.b.1601.1 4
20.19 odd 2 1800.3.c.e.449.1 8
60.23 odd 4 1800.3.l.f.1601.4 yes 4
60.47 odd 4 1800.3.l.b.1601.2 yes 4
60.59 even 2 1800.3.c.e.449.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1800.3.c.e.449.1 8 20.19 odd 2
1800.3.c.e.449.2 8 60.59 even 2
1800.3.c.e.449.7 8 4.3 odd 2
1800.3.c.e.449.8 8 12.11 even 2
1800.3.l.b.1601.1 4 20.7 even 4
1800.3.l.b.1601.2 yes 4 60.47 odd 4
1800.3.l.f.1601.3 yes 4 20.3 even 4
1800.3.l.f.1601.4 yes 4 60.23 odd 4
3600.3.c.g.449.1 8 3.2 odd 2 inner
3600.3.c.g.449.2 8 1.1 even 1 trivial
3600.3.c.g.449.7 8 15.14 odd 2 inner
3600.3.c.g.449.8 8 5.4 even 2 inner
3600.3.l.o.1601.1 4 15.8 even 4
3600.3.l.o.1601.2 4 5.3 odd 4
3600.3.l.u.1601.3 4 15.2 even 4
3600.3.l.u.1601.4 4 5.2 odd 4