Properties

Label 3600.2.x.m.2143.1
Level $3600$
Weight $2$
Character 3600.2143
Analytic conductor $28.746$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3600,2,Mod(2143,3600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3600.2143"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3600, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 0, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3600.x (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-32,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(101)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.7461447277\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 400)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 2143.1
Root \(0.258819 - 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 3600.2143
Dual form 3600.2.x.m.3007.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.82843 - 2.82843i) q^{7} -5.19615i q^{11} +(2.44949 + 2.44949i) q^{13} +(3.67423 - 3.67423i) q^{17} -1.73205 q^{19} +(4.24264 - 4.24264i) q^{23} +6.00000i q^{29} +3.46410i q^{31} +3.00000 q^{41} +(2.82843 - 2.82843i) q^{43} +(-4.24264 - 4.24264i) q^{47} +9.00000i q^{49} +(-7.34847 - 7.34847i) q^{53} -10.3923 q^{59} -4.00000 q^{61} +(4.94975 + 4.94975i) q^{67} +10.3923i q^{71} +(-11.0227 - 11.0227i) q^{73} +(-14.6969 + 14.6969i) q^{77} +(2.12132 - 2.12132i) q^{83} -3.00000i q^{89} -13.8564i q^{91} +(-4.89898 + 4.89898i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 24 q^{41} - 32 q^{61}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3600\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(2801\) \(3151\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −2.82843 2.82843i −1.06904 1.06904i −0.997433 0.0716124i \(-0.977186\pi\)
−0.0716124 0.997433i \(-0.522814\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.19615i 1.56670i −0.621582 0.783349i \(-0.713510\pi\)
0.621582 0.783349i \(-0.286490\pi\)
\(12\) 0 0
\(13\) 2.44949 + 2.44949i 0.679366 + 0.679366i 0.959857 0.280491i \(-0.0904971\pi\)
−0.280491 + 0.959857i \(0.590497\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.67423 3.67423i 0.891133 0.891133i −0.103497 0.994630i \(-0.533003\pi\)
0.994630 + 0.103497i \(0.0330032\pi\)
\(18\) 0 0
\(19\) −1.73205 −0.397360 −0.198680 0.980064i \(-0.563665\pi\)
−0.198680 + 0.980064i \(0.563665\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.24264 4.24264i 0.884652 0.884652i −0.109351 0.994003i \(-0.534877\pi\)
0.994003 + 0.109351i \(0.0348774\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.00000i 1.11417i 0.830455 + 0.557086i \(0.188081\pi\)
−0.830455 + 0.557086i \(0.811919\pi\)
\(30\) 0 0
\(31\) 3.46410i 0.622171i 0.950382 + 0.311086i \(0.100693\pi\)
−0.950382 + 0.311086i \(0.899307\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.00000 0.468521 0.234261 0.972174i \(-0.424733\pi\)
0.234261 + 0.972174i \(0.424733\pi\)
\(42\) 0 0
\(43\) 2.82843 2.82843i 0.431331 0.431331i −0.457750 0.889081i \(-0.651344\pi\)
0.889081 + 0.457750i \(0.151344\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.24264 4.24264i −0.618853 0.618853i 0.326384 0.945237i \(-0.394170\pi\)
−0.945237 + 0.326384i \(0.894170\pi\)
\(48\) 0 0
\(49\) 9.00000i 1.28571i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −7.34847 7.34847i −1.00939 1.00939i −0.999955 0.00943438i \(-0.996997\pi\)
−0.00943438 0.999955i \(-0.503003\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −10.3923 −1.35296 −0.676481 0.736460i \(-0.736496\pi\)
−0.676481 + 0.736460i \(0.736496\pi\)
\(60\) 0 0
\(61\) −4.00000 −0.512148 −0.256074 0.966657i \(-0.582429\pi\)
−0.256074 + 0.966657i \(0.582429\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 4.94975 + 4.94975i 0.604708 + 0.604708i 0.941558 0.336850i \(-0.109362\pi\)
−0.336850 + 0.941558i \(0.609362\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 10.3923i 1.23334i 0.787222 + 0.616670i \(0.211519\pi\)
−0.787222 + 0.616670i \(0.788481\pi\)
\(72\) 0 0
\(73\) −11.0227 11.0227i −1.29011 1.29011i −0.934717 0.355393i \(-0.884347\pi\)
−0.355393 0.934717i \(-0.615653\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −14.6969 + 14.6969i −1.67487 + 1.67487i
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.12132 2.12132i 0.232845 0.232845i −0.581034 0.813879i \(-0.697352\pi\)
0.813879 + 0.581034i \(0.197352\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.00000i 0.317999i −0.987279 0.159000i \(-0.949173\pi\)
0.987279 0.159000i \(-0.0508269\pi\)
\(90\) 0 0
\(91\) 13.8564i 1.45255i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −4.89898 + 4.89898i −0.497416 + 0.497416i −0.910633 0.413217i \(-0.864405\pi\)
0.413217 + 0.910633i \(0.364405\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 9.89949 9.89949i 0.975426 0.975426i −0.0242790 0.999705i \(-0.507729\pi\)
0.999705 + 0.0242790i \(0.00772901\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −10.6066 10.6066i −1.02538 1.02538i −0.999669 0.0257094i \(-0.991816\pi\)
−0.0257094 0.999669i \(-0.508184\pi\)
\(108\) 0 0
\(109\) 8.00000i 0.766261i −0.923694 0.383131i \(-0.874846\pi\)
0.923694 0.383131i \(-0.125154\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −3.67423 3.67423i −0.345643 0.345643i 0.512841 0.858484i \(-0.328593\pi\)
−0.858484 + 0.512841i \(0.828593\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −20.7846 −1.90532
\(120\) 0 0
\(121\) −16.0000 −1.45455
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −1.41421 1.41421i −0.125491 0.125491i 0.641572 0.767063i \(-0.278283\pi\)
−0.767063 + 0.641572i \(0.778283\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 10.3923i 0.907980i −0.891007 0.453990i \(-0.850000\pi\)
0.891007 0.453990i \(-0.150000\pi\)
\(132\) 0 0
\(133\) 4.89898 + 4.89898i 0.424795 + 0.424795i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −3.67423 + 3.67423i −0.313911 + 0.313911i −0.846423 0.532512i \(-0.821248\pi\)
0.532512 + 0.846423i \(0.321248\pi\)
\(138\) 0 0
\(139\) −15.5885 −1.32220 −0.661098 0.750300i \(-0.729909\pi\)
−0.661098 + 0.750300i \(0.729909\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 12.7279 12.7279i 1.06436 1.06436i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 6.00000i 0.491539i 0.969328 + 0.245770i \(0.0790407\pi\)
−0.969328 + 0.245770i \(0.920959\pi\)
\(150\) 0 0
\(151\) 6.92820i 0.563809i 0.959442 + 0.281905i \(0.0909662\pi\)
−0.959442 + 0.281905i \(0.909034\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −2.44949 + 2.44949i −0.195491 + 0.195491i −0.798064 0.602573i \(-0.794142\pi\)
0.602573 + 0.798064i \(0.294142\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −24.0000 −1.89146
\(162\) 0 0
\(163\) −0.707107 + 0.707107i −0.0553849 + 0.0553849i −0.734257 0.678872i \(-0.762469\pi\)
0.678872 + 0.734257i \(0.262469\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.24264 + 4.24264i 0.328305 + 0.328305i 0.851942 0.523636i \(-0.175425\pi\)
−0.523636 + 0.851942i \(0.675425\pi\)
\(168\) 0 0
\(169\) 1.00000i 0.0769231i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −15.5885 −1.16514 −0.582568 0.812782i \(-0.697952\pi\)
−0.582568 + 0.812782i \(0.697952\pi\)
\(180\) 0 0
\(181\) 26.0000 1.93256 0.966282 0.257485i \(-0.0828937\pi\)
0.966282 + 0.257485i \(0.0828937\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −19.0919 19.0919i −1.39614 1.39614i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 10.3923i 0.751961i −0.926628 0.375980i \(-0.877306\pi\)
0.926628 0.375980i \(-0.122694\pi\)
\(192\) 0 0
\(193\) 8.57321 + 8.57321i 0.617113 + 0.617113i 0.944790 0.327677i \(-0.106266\pi\)
−0.327677 + 0.944790i \(0.606266\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 7.34847 7.34847i 0.523557 0.523557i −0.395087 0.918644i \(-0.629286\pi\)
0.918644 + 0.395087i \(0.129286\pi\)
\(198\) 0 0
\(199\) −13.8564 −0.982255 −0.491127 0.871088i \(-0.663415\pi\)
−0.491127 + 0.871088i \(0.663415\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 16.9706 16.9706i 1.19110 1.19110i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 9.00000i 0.622543i
\(210\) 0 0
\(211\) 19.0526i 1.31163i 0.754921 + 0.655816i \(0.227675\pi\)
−0.754921 + 0.655816i \(0.772325\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 9.79796 9.79796i 0.665129 0.665129i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 18.0000 1.21081
\(222\) 0 0
\(223\) −2.82843 + 2.82843i −0.189405 + 0.189405i −0.795439 0.606034i \(-0.792760\pi\)
0.606034 + 0.795439i \(0.292760\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(228\) 0 0
\(229\) 20.0000i 1.32164i 0.750546 + 0.660819i \(0.229791\pi\)
−0.750546 + 0.660819i \(0.770209\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −14.6969 14.6969i −0.962828 0.962828i 0.0365050 0.999333i \(-0.488378\pi\)
−0.999333 + 0.0365050i \(0.988378\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 10.3923 0.672222 0.336111 0.941822i \(-0.390888\pi\)
0.336111 + 0.941822i \(0.390888\pi\)
\(240\) 0 0
\(241\) 13.0000 0.837404 0.418702 0.908124i \(-0.362485\pi\)
0.418702 + 0.908124i \(0.362485\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −4.24264 4.24264i −0.269953 0.269953i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 5.19615i 0.327978i −0.986462 0.163989i \(-0.947564\pi\)
0.986462 0.163989i \(-0.0524362\pi\)
\(252\) 0 0
\(253\) −22.0454 22.0454i −1.38598 1.38598i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 14.6969 14.6969i 0.916770 0.916770i −0.0800232 0.996793i \(-0.525499\pi\)
0.996793 + 0.0800232i \(0.0254994\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 12.7279 12.7279i 0.784837 0.784837i −0.195805 0.980643i \(-0.562732\pi\)
0.980643 + 0.195805i \(0.0627321\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 24.0000i 1.46331i 0.681677 + 0.731653i \(0.261251\pi\)
−0.681677 + 0.731653i \(0.738749\pi\)
\(270\) 0 0
\(271\) 31.1769i 1.89386i −0.321436 0.946931i \(-0.604165\pi\)
0.321436 0.946931i \(-0.395835\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −17.1464 + 17.1464i −1.03023 + 1.03023i −0.0307004 + 0.999529i \(0.509774\pi\)
−0.999529 + 0.0307004i \(0.990226\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) 4.94975 4.94975i 0.294232 0.294232i −0.544518 0.838749i \(-0.683287\pi\)
0.838749 + 0.544518i \(0.183287\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −8.48528 8.48528i −0.500870 0.500870i
\(288\) 0 0
\(289\) 10.0000i 0.588235i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 14.6969 + 14.6969i 0.858604 + 0.858604i 0.991174 0.132569i \(-0.0423227\pi\)
−0.132569 + 0.991174i \(0.542323\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 20.7846 1.20201
\(300\) 0 0
\(301\) −16.0000 −0.922225
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 12.0208 + 12.0208i 0.686064 + 0.686064i 0.961360 0.275295i \(-0.0887757\pi\)
−0.275295 + 0.961360i \(0.588776\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) −4.89898 4.89898i −0.276907 0.276907i 0.554966 0.831873i \(-0.312731\pi\)
−0.831873 + 0.554966i \(0.812731\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −14.6969 + 14.6969i −0.825462 + 0.825462i −0.986885 0.161423i \(-0.948392\pi\)
0.161423 + 0.986885i \(0.448392\pi\)
\(318\) 0 0
\(319\) 31.1769 1.74557
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −6.36396 + 6.36396i −0.354100 + 0.354100i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 24.0000i 1.32316i
\(330\) 0 0
\(331\) 15.5885i 0.856819i 0.903585 + 0.428410i \(0.140926\pi\)
−0.903585 + 0.428410i \(0.859074\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 8.57321 8.57321i 0.467013 0.467013i −0.433933 0.900945i \(-0.642874\pi\)
0.900945 + 0.433933i \(0.142874\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 18.0000 0.974755
\(342\) 0 0
\(343\) 5.65685 5.65685i 0.305441 0.305441i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −19.0919 19.0919i −1.02491 1.02491i −0.999682 0.0252242i \(-0.991970\pi\)
−0.0252242 0.999682i \(-0.508030\pi\)
\(348\) 0 0
\(349\) 28.0000i 1.49881i 0.662114 + 0.749403i \(0.269659\pi\)
−0.662114 + 0.749403i \(0.730341\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −14.6969 14.6969i −0.782239 0.782239i 0.197969 0.980208i \(-0.436565\pi\)
−0.980208 + 0.197969i \(0.936565\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −20.7846 −1.09697 −0.548485 0.836160i \(-0.684795\pi\)
−0.548485 + 0.836160i \(0.684795\pi\)
\(360\) 0 0
\(361\) −16.0000 −0.842105
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 2.82843 + 2.82843i 0.147643 + 0.147643i 0.777064 0.629421i \(-0.216708\pi\)
−0.629421 + 0.777064i \(0.716708\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 41.5692i 2.15817i
\(372\) 0 0
\(373\) 2.44949 + 2.44949i 0.126830 + 0.126830i 0.767672 0.640843i \(-0.221415\pi\)
−0.640843 + 0.767672i \(0.721415\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −14.6969 + 14.6969i −0.756931 + 0.756931i
\(378\) 0 0
\(379\) 1.73205 0.0889695 0.0444847 0.999010i \(-0.485835\pi\)
0.0444847 + 0.999010i \(0.485835\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −25.4558 + 25.4558i −1.30073 + 1.30073i −0.372835 + 0.927898i \(0.621614\pi\)
−0.927898 + 0.372835i \(0.878386\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 30.0000i 1.52106i −0.649303 0.760530i \(-0.724939\pi\)
0.649303 0.760530i \(-0.275061\pi\)
\(390\) 0 0
\(391\) 31.1769i 1.57668i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 9.79796 9.79796i 0.491745 0.491745i −0.417110 0.908856i \(-0.636957\pi\)
0.908856 + 0.417110i \(0.136957\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −27.0000 −1.34832 −0.674158 0.738587i \(-0.735493\pi\)
−0.674158 + 0.738587i \(0.735493\pi\)
\(402\) 0 0
\(403\) −8.48528 + 8.48528i −0.422682 + 0.422682i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 25.0000i 1.23617i −0.786111 0.618085i \(-0.787909\pi\)
0.786111 0.618085i \(-0.212091\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 29.3939 + 29.3939i 1.44638 + 1.44638i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −15.5885 −0.761546 −0.380773 0.924669i \(-0.624342\pi\)
−0.380773 + 0.924669i \(0.624342\pi\)
\(420\) 0 0
\(421\) 8.00000 0.389896 0.194948 0.980814i \(-0.437546\pi\)
0.194948 + 0.980814i \(0.437546\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 11.3137 + 11.3137i 0.547509 + 0.547509i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 20.7846i 1.00116i −0.865690 0.500580i \(-0.833120\pi\)
0.865690 0.500580i \(-0.166880\pi\)
\(432\) 0 0
\(433\) 1.22474 + 1.22474i 0.0588575 + 0.0588575i 0.735923 0.677065i \(-0.236749\pi\)
−0.677065 + 0.735923i \(0.736749\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −7.34847 + 7.34847i −0.351525 + 0.351525i
\(438\) 0 0
\(439\) −38.1051 −1.81866 −0.909329 0.416078i \(-0.863404\pi\)
−0.909329 + 0.416078i \(0.863404\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.12132 2.12132i 0.100787 0.100787i −0.654915 0.755702i \(-0.727296\pi\)
0.755702 + 0.654915i \(0.227296\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 27.0000i 1.27421i −0.770778 0.637104i \(-0.780132\pi\)
0.770778 0.637104i \(-0.219868\pi\)
\(450\) 0 0
\(451\) 15.5885i 0.734032i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 11.0227 11.0227i 0.515620 0.515620i −0.400623 0.916243i \(-0.631206\pi\)
0.916243 + 0.400623i \(0.131206\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 12.0000 0.558896 0.279448 0.960161i \(-0.409849\pi\)
0.279448 + 0.960161i \(0.409849\pi\)
\(462\) 0 0
\(463\) 2.82843 2.82843i 0.131448 0.131448i −0.638322 0.769770i \(-0.720371\pi\)
0.769770 + 0.638322i \(0.220371\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 25.4558 + 25.4558i 1.17796 + 1.17796i 0.980264 + 0.197692i \(0.0633445\pi\)
0.197692 + 0.980264i \(0.436655\pi\)
\(468\) 0 0
\(469\) 28.0000i 1.29292i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −14.6969 14.6969i −0.675766 0.675766i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −10.3923 −0.474837 −0.237418 0.971408i \(-0.576301\pi\)
−0.237418 + 0.971408i \(0.576301\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 18.3848 + 18.3848i 0.833094 + 0.833094i 0.987939 0.154845i \(-0.0494878\pi\)
−0.154845 + 0.987939i \(0.549488\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 10.3923i 0.468998i 0.972116 + 0.234499i \(0.0753450\pi\)
−0.972116 + 0.234499i \(0.924655\pi\)
\(492\) 0 0
\(493\) 22.0454 + 22.0454i 0.992875 + 0.992875i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 29.3939 29.3939i 1.31850 1.31850i
\(498\) 0 0
\(499\) −3.46410 −0.155074 −0.0775372 0.996989i \(-0.524706\pi\)
−0.0775372 + 0.996989i \(0.524706\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −16.9706 + 16.9706i −0.756680 + 0.756680i −0.975717 0.219037i \(-0.929709\pi\)
0.219037 + 0.975717i \(0.429709\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 30.0000i 1.32973i −0.746965 0.664863i \(-0.768490\pi\)
0.746965 0.664863i \(-0.231510\pi\)
\(510\) 0 0
\(511\) 62.3538i 2.75837i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −22.0454 + 22.0454i −0.969556 + 0.969556i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 3.00000 0.131432 0.0657162 0.997838i \(-0.479067\pi\)
0.0657162 + 0.997838i \(0.479067\pi\)
\(522\) 0 0
\(523\) 12.0208 12.0208i 0.525634 0.525634i −0.393634 0.919267i \(-0.628782\pi\)
0.919267 + 0.393634i \(0.128782\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 12.7279 + 12.7279i 0.554437 + 0.554437i
\(528\) 0 0
\(529\) 13.0000i 0.565217i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 7.34847 + 7.34847i 0.318298 + 0.318298i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 46.7654 2.01433
\(540\) 0 0
\(541\) −8.00000 −0.343947 −0.171973 0.985102i \(-0.555014\pi\)
−0.171973 + 0.985102i \(0.555014\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −24.7487 24.7487i −1.05818 1.05818i −0.998200 0.0599800i \(-0.980896\pi\)
−0.0599800 0.998200i \(-0.519104\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 10.3923i 0.442727i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −22.0454 + 22.0454i −0.934094 + 0.934094i −0.997959 0.0638647i \(-0.979657\pi\)
0.0638647 + 0.997959i \(0.479657\pi\)
\(558\) 0 0
\(559\) 13.8564 0.586064
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 8.48528 8.48528i 0.357612 0.357612i −0.505320 0.862932i \(-0.668626\pi\)
0.862932 + 0.505320i \(0.168626\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 9.00000i 0.377300i −0.982044 0.188650i \(-0.939589\pi\)
0.982044 0.188650i \(-0.0604111\pi\)
\(570\) 0 0
\(571\) 3.46410i 0.144968i 0.997370 + 0.0724841i \(0.0230926\pi\)
−0.997370 + 0.0724841i \(0.976907\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 1.22474 1.22474i 0.0509868 0.0509868i −0.681154 0.732140i \(-0.738521\pi\)
0.732140 + 0.681154i \(0.238521\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −12.0000 −0.497844
\(582\) 0 0
\(583\) −38.1838 + 38.1838i −1.58141 + 1.58141i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 23.3345 + 23.3345i 0.963119 + 0.963119i 0.999344 0.0362248i \(-0.0115332\pi\)
−0.0362248 + 0.999344i \(0.511533\pi\)
\(588\) 0 0
\(589\) 6.00000i 0.247226i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 11.0227 + 11.0227i 0.452648 + 0.452648i 0.896233 0.443584i \(-0.146293\pi\)
−0.443584 + 0.896233i \(0.646293\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 20.7846 0.849236 0.424618 0.905373i \(-0.360408\pi\)
0.424618 + 0.905373i \(0.360408\pi\)
\(600\) 0 0
\(601\) 13.0000 0.530281 0.265141 0.964210i \(-0.414582\pi\)
0.265141 + 0.964210i \(0.414582\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −28.2843 28.2843i −1.14802 1.14802i −0.986941 0.161082i \(-0.948502\pi\)
−0.161082 0.986941i \(-0.551498\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 20.7846i 0.840855i
\(612\) 0 0
\(613\) 22.0454 + 22.0454i 0.890406 + 0.890406i 0.994561 0.104155i \(-0.0332139\pi\)
−0.104155 + 0.994561i \(0.533214\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 29.3939 29.3939i 1.18335 1.18335i 0.204483 0.978870i \(-0.434449\pi\)
0.978870 0.204483i \(-0.0655512\pi\)
\(618\) 0 0
\(619\) 38.1051 1.53157 0.765787 0.643094i \(-0.222350\pi\)
0.765787 + 0.643094i \(0.222350\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −8.48528 + 8.48528i −0.339956 + 0.339956i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 17.3205i 0.689519i 0.938691 + 0.344759i \(0.112039\pi\)
−0.938691 + 0.344759i \(0.887961\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −22.0454 + 22.0454i −0.873471 + 0.873471i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −6.00000 −0.236986 −0.118493 0.992955i \(-0.537806\pi\)
−0.118493 + 0.992955i \(0.537806\pi\)
\(642\) 0 0
\(643\) −2.82843 + 2.82843i −0.111542 + 0.111542i −0.760675 0.649133i \(-0.775132\pi\)
0.649133 + 0.760675i \(0.275132\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 16.9706 + 16.9706i 0.667182 + 0.667182i 0.957063 0.289881i \(-0.0936157\pi\)
−0.289881 + 0.957063i \(0.593616\pi\)
\(648\) 0 0
\(649\) 54.0000i 2.11969i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −29.3939 29.3939i −1.15027 1.15027i −0.986498 0.163773i \(-0.947633\pi\)
−0.163773 0.986498i \(-0.552367\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 25.9808 1.01207 0.506033 0.862514i \(-0.331111\pi\)
0.506033 + 0.862514i \(0.331111\pi\)
\(660\) 0 0
\(661\) 22.0000 0.855701 0.427850 0.903850i \(-0.359271\pi\)
0.427850 + 0.903850i \(0.359271\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 25.4558 + 25.4558i 0.985654 + 0.985654i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 20.7846i 0.802381i
\(672\) 0 0
\(673\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(678\) 0 0
\(679\) 27.7128 1.06352
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −6.36396 + 6.36396i −0.243510 + 0.243510i −0.818301 0.574790i \(-0.805084\pi\)
0.574790 + 0.818301i \(0.305084\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 36.0000i 1.37149i
\(690\) 0 0
\(691\) 15.5885i 0.593013i 0.955031 + 0.296506i \(0.0958216\pi\)
−0.955031 + 0.296506i \(0.904178\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 11.0227 11.0227i 0.417515 0.417515i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 42.0000 1.58632 0.793159 0.609015i \(-0.208435\pi\)
0.793159 + 0.609015i \(0.208435\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 4.00000i 0.150223i −0.997175 0.0751116i \(-0.976069\pi\)
0.997175 0.0751116i \(-0.0239313\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 14.6969 + 14.6969i 0.550405 + 0.550405i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 41.5692 1.55027 0.775135 0.631795i \(-0.217682\pi\)
0.775135 + 0.631795i \(0.217682\pi\)
\(720\) 0 0
\(721\) −56.0000 −2.08555
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −9.89949 9.89949i −0.367152 0.367152i 0.499286 0.866437i \(-0.333596\pi\)
−0.866437 + 0.499286i \(0.833596\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 20.7846i 0.768747i
\(732\) 0 0
\(733\) −22.0454 22.0454i −0.814266 0.814266i 0.171005 0.985270i \(-0.445299\pi\)
−0.985270 + 0.171005i \(0.945299\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 25.7196 25.7196i 0.947395 0.947395i
\(738\) 0 0
\(739\) 31.1769 1.14686 0.573431 0.819254i \(-0.305612\pi\)
0.573431 + 0.819254i \(0.305612\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −29.6985 + 29.6985i −1.08953 + 1.08953i −0.0939553 + 0.995576i \(0.529951\pi\)
−0.995576 + 0.0939553i \(0.970049\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 60.0000i 2.19235i
\(750\) 0 0
\(751\) 31.1769i 1.13766i −0.822455 0.568831i \(-0.807396\pi\)
0.822455 0.568831i \(-0.192604\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 34.2929 34.2929i 1.24640 1.24640i 0.289095 0.957301i \(-0.406646\pi\)
0.957301 0.289095i \(-0.0933542\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −15.0000 −0.543750 −0.271875 0.962333i \(-0.587644\pi\)
−0.271875 + 0.962333i \(0.587644\pi\)
\(762\) 0 0
\(763\) −22.6274 + 22.6274i −0.819167 + 0.819167i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −25.4558 25.4558i −0.919157 0.919157i
\(768\) 0 0
\(769\) 7.00000i 0.252426i −0.992003 0.126213i \(-0.959718\pi\)
0.992003 0.126213i \(-0.0402824\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 22.0454 + 22.0454i 0.792918 + 0.792918i 0.981968 0.189049i \(-0.0605406\pi\)
−0.189049 + 0.981968i \(0.560541\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −5.19615 −0.186171
\(780\) 0 0
\(781\) 54.0000 1.93227
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 36.7696 + 36.7696i 1.31069 + 1.31069i 0.920904 + 0.389789i \(0.127452\pi\)
0.389789 + 0.920904i \(0.372548\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 20.7846i 0.739016i
\(792\) 0 0
\(793\) −9.79796 9.79796i −0.347936 0.347936i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 7.34847 7.34847i 0.260296 0.260296i −0.564878 0.825174i \(-0.691077\pi\)
0.825174 + 0.564878i \(0.191077\pi\)
\(798\) 0 0
\(799\) −31.1769 −1.10296
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −57.2756 + 57.2756i −2.02121 + 2.02121i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 18.0000i 0.632846i 0.948618 + 0.316423i \(0.102482\pi\)
−0.948618 + 0.316423i \(0.897518\pi\)
\(810\) 0 0
\(811\) 45.0333i 1.58133i −0.612247 0.790667i \(-0.709734\pi\)
0.612247 0.790667i \(-0.290266\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −4.89898 + 4.89898i −0.171394 + 0.171394i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 42.0000 1.46581 0.732905 0.680331i \(-0.238164\pi\)
0.732905 + 0.680331i \(0.238164\pi\)
\(822\) 0 0
\(823\) −14.1421 + 14.1421i −0.492964 + 0.492964i −0.909239 0.416275i \(-0.863335\pi\)
0.416275 + 0.909239i \(0.363335\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 2.12132 + 2.12132i 0.0737655 + 0.0737655i 0.743027 0.669261i \(-0.233389\pi\)
−0.669261 + 0.743027i \(0.733389\pi\)
\(828\) 0 0
\(829\) 2.00000i 0.0694629i 0.999397 + 0.0347314i \(0.0110576\pi\)
−0.999397 + 0.0347314i \(0.988942\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 33.0681 + 33.0681i 1.14574 + 1.14574i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 41.5692 1.43513 0.717564 0.696492i \(-0.245257\pi\)
0.717564 + 0.696492i \(0.245257\pi\)
\(840\) 0 0
\(841\) −7.00000 −0.241379
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 45.2548 + 45.2548i 1.55497 + 1.55497i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 26.9444 + 26.9444i 0.922558 + 0.922558i 0.997210 0.0746514i \(-0.0237844\pi\)
−0.0746514 + 0.997210i \(0.523784\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 18.3712 18.3712i 0.627547 0.627547i −0.319903 0.947450i \(-0.603650\pi\)
0.947450 + 0.319903i \(0.103650\pi\)
\(858\) 0 0
\(859\) −15.5885 −0.531871 −0.265936 0.963991i \(-0.585681\pi\)
−0.265936 + 0.963991i \(0.585681\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 4.24264 4.24264i 0.144421 0.144421i −0.631199 0.775621i \(-0.717437\pi\)
0.775621 + 0.631199i \(0.217437\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 24.2487i 0.821636i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 24.4949 24.4949i 0.827134 0.827134i −0.159985 0.987119i \(-0.551145\pi\)
0.987119 + 0.159985i \(0.0511447\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 30.0000 1.01073 0.505363 0.862907i \(-0.331359\pi\)
0.505363 + 0.862907i \(0.331359\pi\)
\(882\) 0 0
\(883\) 38.8909 38.8909i 1.30878 1.30878i 0.386487 0.922295i \(-0.373688\pi\)
0.922295 0.386487i \(-0.126312\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(888\) 0 0
\(889\) 8.00000i 0.268311i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 7.34847 + 7.34847i 0.245907 + 0.245907i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −20.7846 −0.693206
\(900\) 0 0
\(901\) −54.0000 −1.79900
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −31.1127 31.1127i −1.03308 1.03308i −0.999434 0.0336464i \(-0.989288\pi\)
−0.0336464 0.999434i \(-0.510712\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 20.7846i 0.688625i 0.938855 + 0.344312i \(0.111888\pi\)
−0.938855 + 0.344312i \(0.888112\pi\)
\(912\) 0 0
\(913\) −11.0227 11.0227i −0.364798 0.364798i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −29.3939 + 29.3939i −0.970671 + 0.970671i
\(918\) 0 0
\(919\) 45.0333 1.48551 0.742756 0.669562i \(-0.233518\pi\)
0.742756 + 0.669562i \(0.233518\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −25.4558 + 25.4558i −0.837889 + 0.837889i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 54.0000i 1.77168i −0.463988 0.885841i \(-0.653582\pi\)
0.463988 0.885841i \(-0.346418\pi\)
\(930\) 0 0
\(931\) 15.5885i 0.510891i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −1.22474 + 1.22474i −0.0400107 + 0.0400107i −0.726829 0.686818i \(-0.759007\pi\)
0.686818 + 0.726829i \(0.259007\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −6.00000 −0.195594 −0.0977972 0.995206i \(-0.531180\pi\)
−0.0977972 + 0.995206i \(0.531180\pi\)
\(942\) 0 0
\(943\) 12.7279 12.7279i 0.414478 0.414478i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −8.48528 8.48528i −0.275735 0.275735i 0.555669 0.831404i \(-0.312462\pi\)
−0.831404 + 0.555669i \(0.812462\pi\)
\(948\) 0 0
\(949\) 54.0000i 1.75291i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −3.67423 3.67423i −0.119020 0.119020i 0.645088 0.764108i \(-0.276821\pi\)
−0.764108 + 0.645088i \(0.776821\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 20.7846 0.671170
\(960\) 0 0
\(961\) 19.0000 0.612903
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 2.82843 + 2.82843i 0.0909561 + 0.0909561i 0.751121 0.660165i \(-0.229514\pi\)
−0.660165 + 0.751121i \(0.729514\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 46.7654i 1.50077i 0.661000 + 0.750386i \(0.270132\pi\)
−0.661000 + 0.750386i \(0.729868\pi\)
\(972\) 0 0
\(973\) 44.0908 + 44.0908i 1.41349 + 1.41349i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −11.0227 + 11.0227i −0.352648 + 0.352648i −0.861094 0.508446i \(-0.830220\pi\)
0.508446 + 0.861094i \(0.330220\pi\)
\(978\) 0 0
\(979\) −15.5885 −0.498209
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 16.9706 16.9706i 0.541277 0.541277i −0.382626 0.923903i \(-0.624980\pi\)
0.923903 + 0.382626i \(0.124980\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 24.0000i 0.763156i
\(990\) 0 0
\(991\) 13.8564i 0.440163i −0.975481 0.220082i \(-0.929368\pi\)
0.975481 0.220082i \(-0.0706324\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3600.2.x.m.2143.1 8
3.2 odd 2 400.2.n.d.143.2 yes 8
4.3 odd 2 inner 3600.2.x.m.2143.4 8
5.2 odd 4 inner 3600.2.x.m.3007.3 8
5.3 odd 4 inner 3600.2.x.m.3007.1 8
5.4 even 2 inner 3600.2.x.m.2143.3 8
12.11 even 2 400.2.n.d.143.3 yes 8
15.2 even 4 400.2.n.d.207.4 yes 8
15.8 even 4 400.2.n.d.207.2 yes 8
15.14 odd 2 400.2.n.d.143.4 yes 8
20.3 even 4 inner 3600.2.x.m.3007.4 8
20.7 even 4 inner 3600.2.x.m.3007.2 8
20.19 odd 2 inner 3600.2.x.m.2143.2 8
24.5 odd 2 1600.2.n.u.1343.3 8
24.11 even 2 1600.2.n.u.1343.2 8
60.23 odd 4 400.2.n.d.207.3 yes 8
60.47 odd 4 400.2.n.d.207.1 yes 8
60.59 even 2 400.2.n.d.143.1 8
120.29 odd 2 1600.2.n.u.1343.1 8
120.53 even 4 1600.2.n.u.1407.3 8
120.59 even 2 1600.2.n.u.1343.4 8
120.77 even 4 1600.2.n.u.1407.1 8
120.83 odd 4 1600.2.n.u.1407.2 8
120.107 odd 4 1600.2.n.u.1407.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
400.2.n.d.143.1 8 60.59 even 2
400.2.n.d.143.2 yes 8 3.2 odd 2
400.2.n.d.143.3 yes 8 12.11 even 2
400.2.n.d.143.4 yes 8 15.14 odd 2
400.2.n.d.207.1 yes 8 60.47 odd 4
400.2.n.d.207.2 yes 8 15.8 even 4
400.2.n.d.207.3 yes 8 60.23 odd 4
400.2.n.d.207.4 yes 8 15.2 even 4
1600.2.n.u.1343.1 8 120.29 odd 2
1600.2.n.u.1343.2 8 24.11 even 2
1600.2.n.u.1343.3 8 24.5 odd 2
1600.2.n.u.1343.4 8 120.59 even 2
1600.2.n.u.1407.1 8 120.77 even 4
1600.2.n.u.1407.2 8 120.83 odd 4
1600.2.n.u.1407.3 8 120.53 even 4
1600.2.n.u.1407.4 8 120.107 odd 4
3600.2.x.m.2143.1 8 1.1 even 1 trivial
3600.2.x.m.2143.2 8 20.19 odd 2 inner
3600.2.x.m.2143.3 8 5.4 even 2 inner
3600.2.x.m.2143.4 8 4.3 odd 2 inner
3600.2.x.m.3007.1 8 5.3 odd 4 inner
3600.2.x.m.3007.2 8 20.7 even 4 inner
3600.2.x.m.3007.3 8 5.2 odd 4 inner
3600.2.x.m.3007.4 8 20.3 even 4 inner