Newspace parameters
Level: | \( N \) | \(=\) | \( 357 = 3 \cdot 7 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 357.bj (of order \(24\), degree \(8\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.85065935216\) |
Analytic rank: | \(0\) |
Dimension: | \(352\) |
Relative dimension: | \(44\) over \(\Q(\zeta_{24})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{24}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
26.1 | −2.59415 | + | 0.695100i | −0.872841 | − | 1.49604i | 4.51440 | − | 2.60639i | −1.23237 | − | 1.60605i | 3.30418 | + | 3.27425i | −2.49253 | + | 0.887284i | −6.10122 | + | 6.10122i | −1.47630 | + | 2.61162i | 4.31331 | + | 3.30972i |
26.2 | −2.50767 | + | 0.671927i | −1.60705 | − | 0.646066i | 4.10485 | − | 2.36994i | 2.62512 | + | 3.42112i | 4.46404 | + | 0.540298i | 2.59707 | − | 0.505196i | −5.02969 | + | 5.02969i | 2.16520 | + | 2.07652i | −8.88165 | − | 6.81513i |
26.3 | −2.48935 | + | 0.667019i | −0.496682 | + | 1.65931i | 4.01990 | − | 2.32089i | −0.903833 | − | 1.17790i | 0.129623 | − | 4.46190i | 2.54176 | + | 0.734486i | −4.81420 | + | 4.81420i | −2.50661 | − | 1.64830i | 3.03564 | + | 2.32933i |
26.4 | −2.30329 | + | 0.617166i | 1.12053 | + | 1.32077i | 3.19222 | − | 1.84303i | −0.799891 | − | 1.04244i | −3.39603 | − | 2.35056i | −2.48892 | − | 0.897372i | −2.84291 | + | 2.84291i | −0.488846 | + | 2.95990i | 2.48574 | + | 1.90738i |
26.5 | −2.24242 | + | 0.600854i | −0.427208 | + | 1.67854i | 2.93536 | − | 1.69473i | 1.99584 | + | 2.60102i | −0.0505770 | − | 4.02067i | −2.05255 | + | 1.66944i | −2.28089 | + | 2.28089i | −2.63499 | − | 1.43417i | −6.03833 | − | 4.63338i |
26.6 | −2.18027 | + | 0.584202i | −1.66007 | + | 0.494138i | 2.68024 | − | 1.54744i | −1.33356 | − | 1.73794i | 3.33072 | − | 2.04717i | −0.287919 | − | 2.63004i | −1.74749 | + | 1.74749i | 2.51165 | − | 1.64061i | 3.92284 | + | 3.01010i |
26.7 | −2.15355 | + | 0.577042i | 0.879586 | − | 1.49209i | 2.57275 | − | 1.48538i | 0.469021 | + | 0.611240i | −1.03323 | + | 3.72084i | 0.376382 | − | 2.61884i | −1.53040 | + | 1.53040i | −1.45266 | − | 2.62484i | −1.36277 | − | 1.04569i |
26.8 | −1.97869 | + | 0.530188i | 1.67147 | + | 0.454087i | 1.90206 | − | 1.09815i | 0.977708 | + | 1.27417i | −3.54807 | − | 0.0123035i | 1.39179 | + | 2.25009i | −0.284351 | + | 0.284351i | 2.58761 | + | 1.51798i | −2.61013 | − | 2.00282i |
26.9 | −1.79777 | + | 0.481712i | −0.0502743 | − | 1.73132i | 1.26789 | − | 0.732016i | 0.344456 | + | 0.448903i | 0.924379 | + | 3.08830i | 1.62504 | + | 2.08788i | 0.705366 | − | 0.705366i | −2.99494 | + | 0.174082i | −0.835495 | − | 0.641098i |
26.10 | −1.61484 | + | 0.432695i | 1.70456 | − | 0.307393i | 0.688428 | − | 0.397464i | −1.64076 | − | 2.13829i | −2.61957 | + | 1.23394i | −2.63988 | − | 0.176109i | 1.42457 | − | 1.42457i | 2.81102 | − | 1.04794i | 3.57479 | + | 2.74304i |
26.11 | −1.50134 | + | 0.402282i | −1.59673 | + | 0.671159i | 0.360133 | − | 0.207923i | 1.05067 | + | 1.36926i | 2.12724 | − | 1.64997i | −2.10371 | − | 1.60449i | 1.74107 | − | 1.74107i | 2.09909 | − | 2.14332i | −2.12823 | − | 1.63305i |
26.12 | −1.33178 | + | 0.356849i | −1.46457 | − | 0.924684i | −0.0857553 | + | 0.0495108i | 0.477156 | + | 0.621842i | 2.28045 | + | 0.708845i | −1.52209 | + | 2.16408i | 2.04640 | − | 2.04640i | 1.28992 | + | 2.70852i | −0.857371 | − | 0.657884i |
26.13 | −1.30480 | + | 0.349620i | −1.14963 | − | 1.29551i | −0.151786 | + | 0.0876334i | −2.14653 | − | 2.79741i | 1.95297 | + | 1.28845i | 1.60809 | − | 2.10097i | 2.07777 | − | 2.07777i | −0.356717 | + | 2.97872i | 3.77882 | + | 2.89959i |
26.14 | −1.16177 | + | 0.311296i | −0.864243 | + | 1.50103i | −0.479242 | + | 0.276691i | −1.84223 | − | 2.40084i | 0.536790 | − | 2.01289i | −0.732066 | + | 2.54246i | 2.17159 | − | 2.17159i | −1.50617 | − | 2.59451i | 2.88763 | + | 2.21575i |
26.15 | −1.14393 | + | 0.306515i | 1.09234 | + | 1.34417i | −0.517430 | + | 0.298738i | −1.89391 | − | 2.46819i | −1.66156 | − | 1.20282i | 2.58352 | − | 0.570481i | 2.17516 | − | 2.17516i | −0.613608 | + | 2.93658i | 2.92304 | + | 2.24293i |
26.16 | −1.09272 | + | 0.292792i | 1.72364 | + | 0.170509i | −0.623749 | + | 0.360122i | 2.45108 | + | 3.19431i | −1.93337 | + | 0.318350i | −0.403386 | − | 2.61482i | 2.17599 | − | 2.17599i | 2.94185 | + | 0.587793i | −3.61361 | − | 2.77282i |
26.17 | −0.619501 | + | 0.165995i | 1.29832 | − | 1.14646i | −1.37582 | + | 0.794332i | 0.0203376 | + | 0.0265045i | −0.614001 | + | 0.925748i | −1.84272 | + | 1.89852i | 1.62748 | − | 1.62748i | 0.371250 | − | 2.97694i | −0.0169988 | − | 0.0130436i |
26.18 | −0.585485 | + | 0.156880i | −1.65492 | + | 0.511129i | −1.41387 | + | 0.816298i | 0.951646 | + | 1.24021i | 0.888742 | − | 0.558881i | 2.44542 | + | 1.00991i | 1.55695 | − | 1.55695i | 2.47750 | − | 1.69175i | −0.751738 | − | 0.576829i |
26.19 | −0.585455 | + | 0.156872i | 1.33711 | − | 1.10097i | −1.41390 | + | 0.816317i | −0.642183 | − | 0.836909i | −0.610106 | + | 0.854324i | 2.51007 | − | 0.836394i | 1.55688 | − | 1.55688i | 0.575727 | − | 2.94424i | 0.507256 | + | 0.389232i |
26.20 | −0.420640 | + | 0.112710i | 0.492071 | + | 1.66068i | −1.56782 | + | 0.905179i | 0.104105 | + | 0.135672i | −0.394161 | − | 0.643088i | −2.33635 | − | 1.24156i | 1.17332 | − | 1.17332i | −2.51573 | + | 1.63435i | −0.0590824 | − | 0.0453355i |
See next 80 embeddings (of 352 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
7.d | odd | 6 | 1 | inner |
17.d | even | 8 | 1 | inner |
21.g | even | 6 | 1 | inner |
51.g | odd | 8 | 1 | inner |
119.r | odd | 24 | 1 | inner |
357.bj | even | 24 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 357.2.bj.a | ✓ | 352 |
3.b | odd | 2 | 1 | inner | 357.2.bj.a | ✓ | 352 |
7.d | odd | 6 | 1 | inner | 357.2.bj.a | ✓ | 352 |
17.d | even | 8 | 1 | inner | 357.2.bj.a | ✓ | 352 |
21.g | even | 6 | 1 | inner | 357.2.bj.a | ✓ | 352 |
51.g | odd | 8 | 1 | inner | 357.2.bj.a | ✓ | 352 |
119.r | odd | 24 | 1 | inner | 357.2.bj.a | ✓ | 352 |
357.bj | even | 24 | 1 | inner | 357.2.bj.a | ✓ | 352 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
357.2.bj.a | ✓ | 352 | 1.a | even | 1 | 1 | trivial |
357.2.bj.a | ✓ | 352 | 3.b | odd | 2 | 1 | inner |
357.2.bj.a | ✓ | 352 | 7.d | odd | 6 | 1 | inner |
357.2.bj.a | ✓ | 352 | 17.d | even | 8 | 1 | inner |
357.2.bj.a | ✓ | 352 | 21.g | even | 6 | 1 | inner |
357.2.bj.a | ✓ | 352 | 51.g | odd | 8 | 1 | inner |
357.2.bj.a | ✓ | 352 | 119.r | odd | 24 | 1 | inner |
357.2.bj.a | ✓ | 352 | 357.bj | even | 24 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(357, [\chi])\).