Properties

Label 357.2.bf.a
Level $357$
Weight $2$
Character orbit 357.bf
Analytic conductor $2.851$
Analytic rank $0$
Dimension $288$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [357,2,Mod(29,357)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(357, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([8, 0, 13])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("357.29"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 357 = 3 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 357.bf (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.85065935216\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(36\) over \(\Q(\zeta_{16})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 288 q - 48 q^{12} - 48 q^{24} - 64 q^{25} - 64 q^{31} - 224 q^{34} + 16 q^{39} + 64 q^{40} - 64 q^{43} + 64 q^{45} + 32 q^{51} + 128 q^{52} + 112 q^{54} - 32 q^{57} + 32 q^{58} - 144 q^{60} + 32 q^{61}+ \cdots + 304 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
29.1 −2.48994 + 1.03137i 1.58249 + 0.704079i 3.72186 3.72186i 0.718104 3.61015i −4.66646 0.120987i 0.980785 0.195090i −3.36586 + 8.12591i 2.00855 + 2.22840i 1.93535 + 9.72968i
29.2 −2.38783 + 0.989070i −0.945455 1.45125i 3.30924 3.30924i 0.133245 0.669869i 3.69296 + 2.53020i −0.980785 + 0.195090i −2.65068 + 6.39930i −1.21223 + 2.74418i 0.344381 + 1.73132i
29.3 −2.36925 + 0.981377i −0.983386 + 1.42582i 3.23605 3.23605i −0.206402 + 1.03765i 0.930628 4.34319i 0.980785 0.195090i −2.52849 + 6.10430i −1.06590 2.80426i −0.529310 2.66102i
29.4 −2.15985 + 0.894639i 0.732732 + 1.56943i 2.45036 2.45036i −0.423607 + 2.12961i −2.98666 2.73420i −0.980785 + 0.195090i −1.31095 + 3.16490i −1.92621 + 2.29994i −0.990310 4.97862i
29.5 −2.13685 + 0.885113i −1.63908 + 0.559851i 2.36850 2.36850i 0.750620 3.77362i 3.00693 2.64709i −0.980785 + 0.195090i −1.19452 + 2.88382i 2.37313 1.83528i 1.73612 + 8.72806i
29.6 −2.09079 + 0.866034i −1.45186 0.944517i 2.20718 2.20718i −0.342644 + 1.72259i 3.85351 + 0.717430i 0.980785 0.195090i −0.971185 + 2.34465i 1.21578 + 2.74261i −0.775421 3.89831i
29.7 −1.98193 + 0.820944i 1.72218 0.184679i 1.83990 1.83990i −0.0197905 + 0.0994937i −3.26163 + 1.77983i −0.980785 + 0.195090i −0.494214 + 1.19314i 2.93179 0.636101i −0.0424552 0.213437i
29.8 −1.65580 + 0.685853i 0.581390 1.63156i 0.857051 0.857051i 0.523196 2.63028i 0.156347 + 3.10028i 0.980785 0.195090i 0.540415 1.30468i −2.32397 1.89714i 0.937683 + 4.71405i
29.9 −1.48790 + 0.616310i 1.67664 0.434588i 0.419805 0.419805i −0.347854 + 1.74878i −2.22684 + 1.67996i 0.980785 0.195090i 0.866720 2.09245i 2.62227 1.45730i −0.560218 2.81641i
29.10 −1.47181 + 0.609645i 0.286314 1.70822i 0.380353 0.380353i −0.751337 + 3.77723i 0.620008 + 2.68873i −0.980785 + 0.195090i 0.891362 2.15194i −2.83605 0.978178i −1.19694 6.01742i
29.11 −1.34674 + 0.557836i −0.301109 + 1.70568i 0.0883016 0.0883016i 0.256673 1.29038i −0.545974 2.46506i 0.980785 0.195090i 1.04601 2.52529i −2.81867 1.02719i 0.374152 + 1.88099i
29.12 −1.26033 + 0.522046i 0.768461 + 1.55225i −0.0983113 + 0.0983113i 0.660437 3.32024i −1.77886 1.55517i −0.980785 + 0.195090i 1.11667 2.69589i −1.81893 + 2.38568i 0.900949 + 4.52938i
29.13 −0.927040 + 0.383993i −1.08976 1.34627i −0.702260 + 0.702260i 0.206206 1.03667i 1.52720 + 0.829583i −0.980785 + 0.195090i 1.14935 2.77477i −0.624860 + 2.93420i 0.206911 + 1.04021i
29.14 −0.685253 + 0.283841i 0.562722 + 1.63809i −1.02521 + 1.02521i −0.790762 + 3.97543i −0.850565 0.962784i 0.980785 0.195090i 0.979213 2.36403i −2.36669 + 1.84358i −0.586518 2.94863i
29.15 −0.452544 + 0.187450i 1.19594 1.25289i −1.24456 + 1.24456i 0.529229 2.66061i −0.306359 + 0.791166i −0.980785 + 0.195090i 0.704823 1.70159i −0.139473 2.99676i 0.259232 + 1.30325i
29.16 −0.401587 + 0.166343i −0.420869 1.68014i −1.28061 + 1.28061i −0.144922 + 0.728574i 0.448495 + 0.604714i 0.980785 0.195090i 0.633942 1.53047i −2.64574 + 1.41424i −0.0629941 0.316693i
29.17 −0.338546 + 0.140230i −1.31719 + 1.12473i −1.31926 + 1.31926i 0.566934 2.85017i 0.288207 0.565482i 0.980785 0.195090i 0.542091 1.30872i 0.469963 2.96296i 0.207747 + 1.04441i
29.18 −0.139618 + 0.0578315i −1.72945 0.0948153i −1.39806 + 1.39806i 0.140402 0.705848i 0.246946 0.0867791i −0.980785 + 0.195090i 0.230005 0.555282i 2.98202 + 0.327957i 0.0212177 + 0.106668i
29.19 0.139618 0.0578315i −0.574235 + 1.63409i −1.39806 + 1.39806i −0.140402 + 0.705848i 0.0143286 + 0.261357i −0.980785 + 0.195090i −0.230005 + 0.555282i −2.34051 1.87671i 0.0212177 + 0.106668i
29.20 0.338546 0.140230i −1.54318 + 0.786506i −1.31926 + 1.31926i −0.566934 + 2.85017i −0.412145 + 0.482669i 0.980785 0.195090i −0.542091 + 1.30872i 1.76282 2.42744i 0.207747 + 1.04441i
See next 80 embeddings (of 288 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 29.36
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
17.e odd 16 1 inner
51.i even 16 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 357.2.bf.a 288
3.b odd 2 1 inner 357.2.bf.a 288
17.e odd 16 1 inner 357.2.bf.a 288
51.i even 16 1 inner 357.2.bf.a 288
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
357.2.bf.a 288 1.a even 1 1 trivial
357.2.bf.a 288 3.b odd 2 1 inner
357.2.bf.a 288 17.e odd 16 1 inner
357.2.bf.a 288 51.i even 16 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(357, [\chi])\).