Newspace parameters
Level: | \( N \) | \(=\) | \( 357 = 3 \cdot 7 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 357.bf (of order \(16\), degree \(8\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.85065935216\) |
Analytic rank: | \(0\) |
Dimension: | \(288\) |
Relative dimension: | \(36\) over \(\Q(\zeta_{16})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{16}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
29.1 | −2.48994 | + | 1.03137i | 1.58249 | + | 0.704079i | 3.72186 | − | 3.72186i | 0.718104 | − | 3.61015i | −4.66646 | − | 0.120987i | 0.980785 | − | 0.195090i | −3.36586 | + | 8.12591i | 2.00855 | + | 2.22840i | 1.93535 | + | 9.72968i |
29.2 | −2.38783 | + | 0.989070i | −0.945455 | − | 1.45125i | 3.30924 | − | 3.30924i | 0.133245 | − | 0.669869i | 3.69296 | + | 2.53020i | −0.980785 | + | 0.195090i | −2.65068 | + | 6.39930i | −1.21223 | + | 2.74418i | 0.344381 | + | 1.73132i |
29.3 | −2.36925 | + | 0.981377i | −0.983386 | + | 1.42582i | 3.23605 | − | 3.23605i | −0.206402 | + | 1.03765i | 0.930628 | − | 4.34319i | 0.980785 | − | 0.195090i | −2.52849 | + | 6.10430i | −1.06590 | − | 2.80426i | −0.529310 | − | 2.66102i |
29.4 | −2.15985 | + | 0.894639i | 0.732732 | + | 1.56943i | 2.45036 | − | 2.45036i | −0.423607 | + | 2.12961i | −2.98666 | − | 2.73420i | −0.980785 | + | 0.195090i | −1.31095 | + | 3.16490i | −1.92621 | + | 2.29994i | −0.990310 | − | 4.97862i |
29.5 | −2.13685 | + | 0.885113i | −1.63908 | + | 0.559851i | 2.36850 | − | 2.36850i | 0.750620 | − | 3.77362i | 3.00693 | − | 2.64709i | −0.980785 | + | 0.195090i | −1.19452 | + | 2.88382i | 2.37313 | − | 1.83528i | 1.73612 | + | 8.72806i |
29.6 | −2.09079 | + | 0.866034i | −1.45186 | − | 0.944517i | 2.20718 | − | 2.20718i | −0.342644 | + | 1.72259i | 3.85351 | + | 0.717430i | 0.980785 | − | 0.195090i | −0.971185 | + | 2.34465i | 1.21578 | + | 2.74261i | −0.775421 | − | 3.89831i |
29.7 | −1.98193 | + | 0.820944i | 1.72218 | − | 0.184679i | 1.83990 | − | 1.83990i | −0.0197905 | + | 0.0994937i | −3.26163 | + | 1.77983i | −0.980785 | + | 0.195090i | −0.494214 | + | 1.19314i | 2.93179 | − | 0.636101i | −0.0424552 | − | 0.213437i |
29.8 | −1.65580 | + | 0.685853i | 0.581390 | − | 1.63156i | 0.857051 | − | 0.857051i | 0.523196 | − | 2.63028i | 0.156347 | + | 3.10028i | 0.980785 | − | 0.195090i | 0.540415 | − | 1.30468i | −2.32397 | − | 1.89714i | 0.937683 | + | 4.71405i |
29.9 | −1.48790 | + | 0.616310i | 1.67664 | − | 0.434588i | 0.419805 | − | 0.419805i | −0.347854 | + | 1.74878i | −2.22684 | + | 1.67996i | 0.980785 | − | 0.195090i | 0.866720 | − | 2.09245i | 2.62227 | − | 1.45730i | −0.560218 | − | 2.81641i |
29.10 | −1.47181 | + | 0.609645i | 0.286314 | − | 1.70822i | 0.380353 | − | 0.380353i | −0.751337 | + | 3.77723i | 0.620008 | + | 2.68873i | −0.980785 | + | 0.195090i | 0.891362 | − | 2.15194i | −2.83605 | − | 0.978178i | −1.19694 | − | 6.01742i |
29.11 | −1.34674 | + | 0.557836i | −0.301109 | + | 1.70568i | 0.0883016 | − | 0.0883016i | 0.256673 | − | 1.29038i | −0.545974 | − | 2.46506i | 0.980785 | − | 0.195090i | 1.04601 | − | 2.52529i | −2.81867 | − | 1.02719i | 0.374152 | + | 1.88099i |
29.12 | −1.26033 | + | 0.522046i | 0.768461 | + | 1.55225i | −0.0983113 | + | 0.0983113i | 0.660437 | − | 3.32024i | −1.77886 | − | 1.55517i | −0.980785 | + | 0.195090i | 1.11667 | − | 2.69589i | −1.81893 | + | 2.38568i | 0.900949 | + | 4.52938i |
29.13 | −0.927040 | + | 0.383993i | −1.08976 | − | 1.34627i | −0.702260 | + | 0.702260i | 0.206206 | − | 1.03667i | 1.52720 | + | 0.829583i | −0.980785 | + | 0.195090i | 1.14935 | − | 2.77477i | −0.624860 | + | 2.93420i | 0.206911 | + | 1.04021i |
29.14 | −0.685253 | + | 0.283841i | 0.562722 | + | 1.63809i | −1.02521 | + | 1.02521i | −0.790762 | + | 3.97543i | −0.850565 | − | 0.962784i | 0.980785 | − | 0.195090i | 0.979213 | − | 2.36403i | −2.36669 | + | 1.84358i | −0.586518 | − | 2.94863i |
29.15 | −0.452544 | + | 0.187450i | 1.19594 | − | 1.25289i | −1.24456 | + | 1.24456i | 0.529229 | − | 2.66061i | −0.306359 | + | 0.791166i | −0.980785 | + | 0.195090i | 0.704823 | − | 1.70159i | −0.139473 | − | 2.99676i | 0.259232 | + | 1.30325i |
29.16 | −0.401587 | + | 0.166343i | −0.420869 | − | 1.68014i | −1.28061 | + | 1.28061i | −0.144922 | + | 0.728574i | 0.448495 | + | 0.604714i | 0.980785 | − | 0.195090i | 0.633942 | − | 1.53047i | −2.64574 | + | 1.41424i | −0.0629941 | − | 0.316693i |
29.17 | −0.338546 | + | 0.140230i | −1.31719 | + | 1.12473i | −1.31926 | + | 1.31926i | 0.566934 | − | 2.85017i | 0.288207 | − | 0.565482i | 0.980785 | − | 0.195090i | 0.542091 | − | 1.30872i | 0.469963 | − | 2.96296i | 0.207747 | + | 1.04441i |
29.18 | −0.139618 | + | 0.0578315i | −1.72945 | − | 0.0948153i | −1.39806 | + | 1.39806i | 0.140402 | − | 0.705848i | 0.246946 | − | 0.0867791i | −0.980785 | + | 0.195090i | 0.230005 | − | 0.555282i | 2.98202 | + | 0.327957i | 0.0212177 | + | 0.106668i |
29.19 | 0.139618 | − | 0.0578315i | −0.574235 | + | 1.63409i | −1.39806 | + | 1.39806i | −0.140402 | + | 0.705848i | 0.0143286 | + | 0.261357i | −0.980785 | + | 0.195090i | −0.230005 | + | 0.555282i | −2.34051 | − | 1.87671i | 0.0212177 | + | 0.106668i |
29.20 | 0.338546 | − | 0.140230i | −1.54318 | + | 0.786506i | −1.31926 | + | 1.31926i | −0.566934 | + | 2.85017i | −0.412145 | + | 0.482669i | 0.980785 | − | 0.195090i | −0.542091 | + | 1.30872i | 1.76282 | − | 2.42744i | 0.207747 | + | 1.04441i |
See next 80 embeddings (of 288 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
17.e | odd | 16 | 1 | inner |
51.i | even | 16 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 357.2.bf.a | ✓ | 288 |
3.b | odd | 2 | 1 | inner | 357.2.bf.a | ✓ | 288 |
17.e | odd | 16 | 1 | inner | 357.2.bf.a | ✓ | 288 |
51.i | even | 16 | 1 | inner | 357.2.bf.a | ✓ | 288 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
357.2.bf.a | ✓ | 288 | 1.a | even | 1 | 1 | trivial |
357.2.bf.a | ✓ | 288 | 3.b | odd | 2 | 1 | inner |
357.2.bf.a | ✓ | 288 | 17.e | odd | 16 | 1 | inner |
357.2.bf.a | ✓ | 288 | 51.i | even | 16 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(357, [\chi])\).