Properties

Label 357.2.bb
Level $357$
Weight $2$
Character orbit 357.bb
Rep. character $\chi_{357}(4,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $96$
Newform subspaces $1$
Sturm bound $96$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 357 = 3 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 357.bb (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 119 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 1 \)
Sturm bound: \(96\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(357, [\chi])\).

Total New Old
Modular forms 208 96 112
Cusp forms 176 96 80
Eisenstein series 32 0 32

Trace form

\( 96 q + 48 q^{4} + 4 q^{5} + 4 q^{7} + 4 q^{11} - 32 q^{13} + 24 q^{14} - 48 q^{16} + 8 q^{17} + 64 q^{20} - 56 q^{22} - 16 q^{23} - 12 q^{24} + 8 q^{28} + 32 q^{29} + 32 q^{30} - 8 q^{31} - 16 q^{33} + 48 q^{34}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(357, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
357.2.bb.a 357.bb 119.n $96$ $2.851$ None 357.2.bb.a \(0\) \(0\) \(4\) \(4\) $\mathrm{SU}(2)[C_{12}]$

Decomposition of \(S_{2}^{\mathrm{old}}(357, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(357, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(119, [\chi])\)\(^{\oplus 2}\)