Properties

Label 357.2.a.h.1.4
Level $357$
Weight $2$
Character 357.1
Self dual yes
Analytic conductor $2.851$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [357,2,Mod(1,357)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("357.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(357, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 357 = 3 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 357.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,-4,6,-2,-2,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.85065935216\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.7232.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 5x^{2} + 4x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.22219\) of defining polynomial
Character \(\chi\) \(=\) 357.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.63640 q^{2} -1.00000 q^{3} +4.95063 q^{4} -1.19202 q^{5} -2.63640 q^{6} +1.00000 q^{7} +7.77906 q^{8} +1.00000 q^{9} -3.14265 q^{10} +1.32218 q^{11} -4.95063 q^{12} +1.19202 q^{13} +2.63640 q^{14} +1.19202 q^{15} +10.6075 q^{16} -1.00000 q^{17} +2.63640 q^{18} -2.46483 q^{19} -5.90126 q^{20} -1.00000 q^{21} +3.48580 q^{22} -7.60749 q^{23} -7.77906 q^{24} -3.57908 q^{25} +3.14265 q^{26} -1.00000 q^{27} +4.95063 q^{28} -5.27281 q^{29} +3.14265 q^{30} +5.77111 q^{31} +12.4075 q^{32} -1.32218 q^{33} -2.63640 q^{34} -1.19202 q^{35} +4.95063 q^{36} -0.130157 q^{37} -6.49830 q^{38} -1.19202 q^{39} -9.27281 q^{40} -10.7092 q^{41} -2.63640 q^{42} -1.22344 q^{43} +6.54562 q^{44} -1.19202 q^{45} -20.0564 q^{46} +5.77111 q^{47} -10.6075 q^{48} +1.00000 q^{49} -9.43591 q^{50} +1.00000 q^{51} +5.90126 q^{52} +11.7711 q^{53} -2.63640 q^{54} -1.57607 q^{55} +7.77906 q^{56} +2.46483 q^{57} -13.9013 q^{58} +10.7995 q^{59} +5.90126 q^{60} -2.37456 q^{61} +15.2150 q^{62} +1.00000 q^{63} +11.4963 q^{64} -1.42092 q^{65} -3.48580 q^{66} +0.0987380 q^{67} -4.95063 q^{68} +7.60749 q^{69} -3.14265 q^{70} -14.4469 q^{71} +7.77906 q^{72} +7.91717 q^{73} -0.343146 q^{74} +3.57908 q^{75} -12.2025 q^{76} +1.32218 q^{77} -3.14265 q^{78} +14.9611 q^{79} -12.6444 q^{80} +1.00000 q^{81} -28.2339 q^{82} +0.0987380 q^{83} -4.95063 q^{84} +1.19202 q^{85} -3.22549 q^{86} +5.27281 q^{87} +10.2853 q^{88} -8.38404 q^{89} -3.14265 q^{90} +1.19202 q^{91} -37.6619 q^{92} -5.77111 q^{93} +15.2150 q^{94} +2.93813 q^{95} -12.4075 q^{96} +10.7900 q^{97} +2.63640 q^{98} +1.32218 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 4 q^{3} + 6 q^{4} - 2 q^{5} - 2 q^{6} + 4 q^{7} + 6 q^{8} + 4 q^{9} + 4 q^{10} + 2 q^{11} - 6 q^{12} + 2 q^{13} + 2 q^{14} + 2 q^{15} + 6 q^{16} - 4 q^{17} + 2 q^{18} + 10 q^{19} + 4 q^{20}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.63640 1.86422 0.932110 0.362176i \(-0.117966\pi\)
0.932110 + 0.362176i \(0.117966\pi\)
\(3\) −1.00000 −0.577350
\(4\) 4.95063 2.47532
\(5\) −1.19202 −0.533089 −0.266544 0.963823i \(-0.585882\pi\)
−0.266544 + 0.963823i \(0.585882\pi\)
\(6\) −2.63640 −1.07631
\(7\) 1.00000 0.377964
\(8\) 7.77906 2.75031
\(9\) 1.00000 0.333333
\(10\) −3.14265 −0.993794
\(11\) 1.32218 0.398652 0.199326 0.979933i \(-0.436125\pi\)
0.199326 + 0.979933i \(0.436125\pi\)
\(12\) −4.95063 −1.42912
\(13\) 1.19202 0.330607 0.165304 0.986243i \(-0.447140\pi\)
0.165304 + 0.986243i \(0.447140\pi\)
\(14\) 2.63640 0.704609
\(15\) 1.19202 0.307779
\(16\) 10.6075 2.65187
\(17\) −1.00000 −0.242536
\(18\) 2.63640 0.621407
\(19\) −2.46483 −0.565471 −0.282736 0.959198i \(-0.591242\pi\)
−0.282736 + 0.959198i \(0.591242\pi\)
\(20\) −5.90126 −1.31956
\(21\) −1.00000 −0.218218
\(22\) 3.48580 0.743175
\(23\) −7.60749 −1.58627 −0.793135 0.609046i \(-0.791553\pi\)
−0.793135 + 0.609046i \(0.791553\pi\)
\(24\) −7.77906 −1.58789
\(25\) −3.57908 −0.715817
\(26\) 3.14265 0.616325
\(27\) −1.00000 −0.192450
\(28\) 4.95063 0.935581
\(29\) −5.27281 −0.979136 −0.489568 0.871965i \(-0.662846\pi\)
−0.489568 + 0.871965i \(0.662846\pi\)
\(30\) 3.14265 0.573767
\(31\) 5.77111 1.03652 0.518261 0.855223i \(-0.326580\pi\)
0.518261 + 0.855223i \(0.326580\pi\)
\(32\) 12.4075 2.19336
\(33\) −1.32218 −0.230162
\(34\) −2.63640 −0.452140
\(35\) −1.19202 −0.201489
\(36\) 4.95063 0.825105
\(37\) −0.130157 −0.0213976 −0.0106988 0.999943i \(-0.503406\pi\)
−0.0106988 + 0.999943i \(0.503406\pi\)
\(38\) −6.49830 −1.05416
\(39\) −1.19202 −0.190876
\(40\) −9.27281 −1.46616
\(41\) −10.7092 −1.67250 −0.836251 0.548347i \(-0.815257\pi\)
−0.836251 + 0.548347i \(0.815257\pi\)
\(42\) −2.63640 −0.406806
\(43\) −1.22344 −0.186573 −0.0932865 0.995639i \(-0.529737\pi\)
−0.0932865 + 0.995639i \(0.529737\pi\)
\(44\) 6.54562 0.986789
\(45\) −1.19202 −0.177696
\(46\) −20.0564 −2.95716
\(47\) 5.77111 0.841802 0.420901 0.907107i \(-0.361714\pi\)
0.420901 + 0.907107i \(0.361714\pi\)
\(48\) −10.6075 −1.53106
\(49\) 1.00000 0.142857
\(50\) −9.43591 −1.33444
\(51\) 1.00000 0.140028
\(52\) 5.90126 0.818358
\(53\) 11.7711 1.61689 0.808443 0.588575i \(-0.200311\pi\)
0.808443 + 0.588575i \(0.200311\pi\)
\(54\) −2.63640 −0.358769
\(55\) −1.57607 −0.212517
\(56\) 7.77906 1.03952
\(57\) 2.46483 0.326475
\(58\) −13.9013 −1.82533
\(59\) 10.7995 1.40598 0.702988 0.711202i \(-0.251849\pi\)
0.702988 + 0.711202i \(0.251849\pi\)
\(60\) 5.90126 0.761850
\(61\) −2.37456 −0.304032 −0.152016 0.988378i \(-0.548576\pi\)
−0.152016 + 0.988378i \(0.548576\pi\)
\(62\) 15.2150 1.93230
\(63\) 1.00000 0.125988
\(64\) 11.4963 1.43703
\(65\) −1.42092 −0.176243
\(66\) −3.48580 −0.429072
\(67\) 0.0987380 0.0120628 0.00603138 0.999982i \(-0.498080\pi\)
0.00603138 + 0.999982i \(0.498080\pi\)
\(68\) −4.95063 −0.600352
\(69\) 7.60749 0.915834
\(70\) −3.14265 −0.375619
\(71\) −14.4469 −1.71453 −0.857265 0.514876i \(-0.827838\pi\)
−0.857265 + 0.514876i \(0.827838\pi\)
\(72\) 7.77906 0.916771
\(73\) 7.91717 0.926634 0.463317 0.886193i \(-0.346659\pi\)
0.463317 + 0.886193i \(0.346659\pi\)
\(74\) −0.343146 −0.0398899
\(75\) 3.57908 0.413277
\(76\) −12.2025 −1.39972
\(77\) 1.32218 0.150676
\(78\) −3.14265 −0.355835
\(79\) 14.9611 1.68325 0.841627 0.540060i \(-0.181598\pi\)
0.841627 + 0.540060i \(0.181598\pi\)
\(80\) −12.6444 −1.41368
\(81\) 1.00000 0.111111
\(82\) −28.2339 −3.11791
\(83\) 0.0987380 0.0108379 0.00541895 0.999985i \(-0.498275\pi\)
0.00541895 + 0.999985i \(0.498275\pi\)
\(84\) −4.95063 −0.540158
\(85\) 1.19202 0.129293
\(86\) −3.22549 −0.347813
\(87\) 5.27281 0.565305
\(88\) 10.2853 1.09642
\(89\) −8.38404 −0.888707 −0.444353 0.895852i \(-0.646567\pi\)
−0.444353 + 0.895852i \(0.646567\pi\)
\(90\) −3.14265 −0.331265
\(91\) 1.19202 0.124958
\(92\) −37.6619 −3.92652
\(93\) −5.77111 −0.598436
\(94\) 15.2150 1.56930
\(95\) 2.93813 0.301446
\(96\) −12.4075 −1.26634
\(97\) 10.7900 1.09556 0.547781 0.836622i \(-0.315473\pi\)
0.547781 + 0.836622i \(0.315473\pi\)
\(98\) 2.63640 0.266317
\(99\) 1.32218 0.132884
\(100\) −17.7187 −1.77187
\(101\) −17.0598 −1.69752 −0.848758 0.528782i \(-0.822649\pi\)
−0.848758 + 0.528782i \(0.822649\pi\)
\(102\) 2.63640 0.261043
\(103\) −18.0070 −1.77429 −0.887143 0.461494i \(-0.847314\pi\)
−0.887143 + 0.461494i \(0.847314\pi\)
\(104\) 9.27281 0.909274
\(105\) 1.19202 0.116329
\(106\) 31.0334 3.01423
\(107\) 12.1950 1.17894 0.589469 0.807791i \(-0.299337\pi\)
0.589469 + 0.807791i \(0.299337\pi\)
\(108\) −4.95063 −0.476375
\(109\) 14.4155 1.38075 0.690375 0.723451i \(-0.257445\pi\)
0.690375 + 0.723451i \(0.257445\pi\)
\(110\) −4.15515 −0.396178
\(111\) 0.130157 0.0123539
\(112\) 10.6075 1.00231
\(113\) 5.20754 0.489884 0.244942 0.969538i \(-0.421231\pi\)
0.244942 + 0.969538i \(0.421231\pi\)
\(114\) 6.49830 0.608621
\(115\) 9.06829 0.845623
\(116\) −26.1037 −2.42367
\(117\) 1.19202 0.110202
\(118\) 28.4719 2.62105
\(119\) −1.00000 −0.0916698
\(120\) 9.27281 0.846488
\(121\) −9.25184 −0.841077
\(122\) −6.26031 −0.566782
\(123\) 10.7092 0.965620
\(124\) 28.5706 2.56572
\(125\) 10.2265 0.914682
\(126\) 2.63640 0.234870
\(127\) 11.6075 1.03000 0.514999 0.857191i \(-0.327792\pi\)
0.514999 + 0.857191i \(0.327792\pi\)
\(128\) 5.49375 0.485584
\(129\) 1.22344 0.107718
\(130\) −3.74611 −0.328556
\(131\) 10.5057 0.917890 0.458945 0.888465i \(-0.348228\pi\)
0.458945 + 0.888465i \(0.348228\pi\)
\(132\) −6.54562 −0.569723
\(133\) −2.46483 −0.213728
\(134\) 0.260313 0.0224877
\(135\) 1.19202 0.102593
\(136\) −7.77906 −0.667049
\(137\) −9.28832 −0.793555 −0.396777 0.917915i \(-0.629872\pi\)
−0.396777 + 0.917915i \(0.629872\pi\)
\(138\) 20.0564 1.70732
\(139\) 21.4185 1.81669 0.908346 0.418220i \(-0.137346\pi\)
0.908346 + 0.418220i \(0.137346\pi\)
\(140\) −5.90126 −0.498748
\(141\) −5.77111 −0.486015
\(142\) −38.0878 −3.19626
\(143\) 1.57607 0.131797
\(144\) 10.6075 0.883957
\(145\) 6.28531 0.521966
\(146\) 20.8729 1.72745
\(147\) −1.00000 −0.0824786
\(148\) −0.644358 −0.0529659
\(149\) −20.0878 −1.64566 −0.822830 0.568288i \(-0.807606\pi\)
−0.822830 + 0.568288i \(0.807606\pi\)
\(150\) 9.43591 0.770439
\(151\) 17.4185 1.41750 0.708748 0.705462i \(-0.249260\pi\)
0.708748 + 0.705462i \(0.249260\pi\)
\(152\) −19.1741 −1.55522
\(153\) −1.00000 −0.0808452
\(154\) 3.48580 0.280894
\(155\) −6.87929 −0.552558
\(156\) −5.90126 −0.472479
\(157\) 4.06488 0.324413 0.162206 0.986757i \(-0.448139\pi\)
0.162206 + 0.986757i \(0.448139\pi\)
\(158\) 39.4435 3.13795
\(159\) −11.7711 −0.933509
\(160\) −14.7900 −1.16925
\(161\) −7.60749 −0.599554
\(162\) 2.63640 0.207136
\(163\) −7.90126 −0.618875 −0.309437 0.950920i \(-0.600141\pi\)
−0.309437 + 0.950920i \(0.600141\pi\)
\(164\) −53.0175 −4.13997
\(165\) 1.57607 0.122697
\(166\) 0.260313 0.0202042
\(167\) −3.35360 −0.259509 −0.129755 0.991546i \(-0.541419\pi\)
−0.129755 + 0.991546i \(0.541419\pi\)
\(168\) −7.77906 −0.600167
\(169\) −11.5791 −0.890699
\(170\) 3.14265 0.241030
\(171\) −2.46483 −0.188490
\(172\) −6.05680 −0.461827
\(173\) −2.44893 −0.186188 −0.0930942 0.995657i \(-0.529676\pi\)
−0.0930942 + 0.995657i \(0.529676\pi\)
\(174\) 13.9013 1.05385
\(175\) −3.57908 −0.270553
\(176\) 14.0250 1.05717
\(177\) −10.7995 −0.811741
\(178\) −22.1037 −1.65675
\(179\) 17.8184 1.33181 0.665906 0.746036i \(-0.268045\pi\)
0.665906 + 0.746036i \(0.268045\pi\)
\(180\) −5.90126 −0.439854
\(181\) 3.91717 0.291161 0.145580 0.989346i \(-0.453495\pi\)
0.145580 + 0.989346i \(0.453495\pi\)
\(182\) 3.14265 0.232949
\(183\) 2.37456 0.175533
\(184\) −59.1791 −4.36274
\(185\) 0.155150 0.0114068
\(186\) −15.2150 −1.11562
\(187\) −1.32218 −0.0966873
\(188\) 28.5706 2.08373
\(189\) −1.00000 −0.0727393
\(190\) 7.74611 0.561962
\(191\) −1.47632 −0.106823 −0.0534113 0.998573i \(-0.517009\pi\)
−0.0534113 + 0.998573i \(0.517009\pi\)
\(192\) −11.4963 −0.829670
\(193\) −8.03142 −0.578114 −0.289057 0.957312i \(-0.593342\pi\)
−0.289057 + 0.957312i \(0.593342\pi\)
\(194\) 28.4469 2.04237
\(195\) 1.42092 0.101754
\(196\) 4.95063 0.353616
\(197\) −16.8803 −1.20267 −0.601336 0.798997i \(-0.705365\pi\)
−0.601336 + 0.798997i \(0.705365\pi\)
\(198\) 3.48580 0.247725
\(199\) −1.86984 −0.132550 −0.0662748 0.997801i \(-0.521111\pi\)
−0.0662748 + 0.997801i \(0.521111\pi\)
\(200\) −27.8419 −1.96872
\(201\) −0.0987380 −0.00696444
\(202\) −44.9766 −3.16454
\(203\) −5.27281 −0.370079
\(204\) 4.95063 0.346613
\(205\) 12.7657 0.891592
\(206\) −47.4739 −3.30766
\(207\) −7.60749 −0.528757
\(208\) 12.6444 0.876728
\(209\) −3.25895 −0.225426
\(210\) 3.14265 0.216864
\(211\) −4.61294 −0.317568 −0.158784 0.987313i \(-0.550757\pi\)
−0.158784 + 0.987313i \(0.550757\pi\)
\(212\) 58.2744 4.00230
\(213\) 14.4469 0.989884
\(214\) 32.1511 2.19780
\(215\) 1.45837 0.0994599
\(216\) −7.77906 −0.529298
\(217\) 5.77111 0.391768
\(218\) 38.0050 2.57402
\(219\) −7.91717 −0.534993
\(220\) −7.80252 −0.526046
\(221\) −1.19202 −0.0801841
\(222\) 0.343146 0.0230304
\(223\) 12.2613 0.821079 0.410539 0.911843i \(-0.365340\pi\)
0.410539 + 0.911843i \(0.365340\pi\)
\(224\) 12.4075 0.829012
\(225\) −3.57908 −0.238606
\(226\) 13.7292 0.913251
\(227\) 19.0933 1.26727 0.633633 0.773634i \(-0.281563\pi\)
0.633633 + 0.773634i \(0.281563\pi\)
\(228\) 12.2025 0.808129
\(229\) 8.87286 0.586335 0.293168 0.956061i \(-0.405291\pi\)
0.293168 + 0.956061i \(0.405291\pi\)
\(230\) 23.9077 1.57643
\(231\) −1.32218 −0.0869930
\(232\) −41.0175 −2.69293
\(233\) 20.0324 1.31237 0.656184 0.754601i \(-0.272170\pi\)
0.656184 + 0.754601i \(0.272170\pi\)
\(234\) 3.14265 0.205442
\(235\) −6.87929 −0.448755
\(236\) 53.4644 3.48023
\(237\) −14.9611 −0.971827
\(238\) −2.63640 −0.170893
\(239\) −2.17106 −0.140434 −0.0702169 0.997532i \(-0.522369\pi\)
−0.0702169 + 0.997532i \(0.522369\pi\)
\(240\) 12.6444 0.816190
\(241\) −9.78059 −0.630023 −0.315011 0.949088i \(-0.602008\pi\)
−0.315011 + 0.949088i \(0.602008\pi\)
\(242\) −24.3916 −1.56795
\(243\) −1.00000 −0.0641500
\(244\) −11.7556 −0.752575
\(245\) −1.19202 −0.0761555
\(246\) 28.2339 1.80013
\(247\) −2.93813 −0.186949
\(248\) 44.8938 2.85076
\(249\) −0.0987380 −0.00625727
\(250\) 26.9611 1.70517
\(251\) 6.89825 0.435413 0.217707 0.976014i \(-0.430142\pi\)
0.217707 + 0.976014i \(0.430142\pi\)
\(252\) 4.95063 0.311860
\(253\) −10.0585 −0.632370
\(254\) 30.6020 1.92014
\(255\) −1.19202 −0.0746473
\(256\) −8.50875 −0.531797
\(257\) −19.3133 −1.20473 −0.602366 0.798220i \(-0.705775\pi\)
−0.602366 + 0.798220i \(0.705775\pi\)
\(258\) 3.22549 0.200810
\(259\) −0.130157 −0.00808754
\(260\) −7.03444 −0.436257
\(261\) −5.27281 −0.326379
\(262\) 27.6974 1.71115
\(263\) 22.4060 1.38161 0.690806 0.723040i \(-0.257256\pi\)
0.690806 + 0.723040i \(0.257256\pi\)
\(264\) −10.2853 −0.633017
\(265\) −14.0314 −0.861943
\(266\) −6.49830 −0.398436
\(267\) 8.38404 0.513095
\(268\) 0.488815 0.0298592
\(269\) −12.9317 −0.788460 −0.394230 0.919012i \(-0.628989\pi\)
−0.394230 + 0.919012i \(0.628989\pi\)
\(270\) 3.14265 0.191256
\(271\) −24.3242 −1.47759 −0.738794 0.673932i \(-0.764604\pi\)
−0.738794 + 0.673932i \(0.764604\pi\)
\(272\) −10.6075 −0.643173
\(273\) −1.19202 −0.0721445
\(274\) −24.4878 −1.47936
\(275\) −4.73219 −0.285362
\(276\) 37.6619 2.26698
\(277\) 16.2853 0.978489 0.489245 0.872147i \(-0.337273\pi\)
0.489245 + 0.872147i \(0.337273\pi\)
\(278\) 56.4678 3.38671
\(279\) 5.77111 0.345507
\(280\) −9.27281 −0.554156
\(281\) −10.9297 −0.652009 −0.326005 0.945368i \(-0.605702\pi\)
−0.326005 + 0.945368i \(0.605702\pi\)
\(282\) −15.2150 −0.906038
\(283\) 2.79951 0.166413 0.0832067 0.996532i \(-0.473484\pi\)
0.0832067 + 0.996532i \(0.473484\pi\)
\(284\) −71.5212 −4.24400
\(285\) −2.93813 −0.174040
\(286\) 4.15515 0.245699
\(287\) −10.7092 −0.632146
\(288\) 12.4075 0.731120
\(289\) 1.00000 0.0588235
\(290\) 16.5706 0.973060
\(291\) −10.7900 −0.632523
\(292\) 39.1950 2.29371
\(293\) −3.55312 −0.207575 −0.103788 0.994599i \(-0.533096\pi\)
−0.103788 + 0.994599i \(0.533096\pi\)
\(294\) −2.63640 −0.153758
\(295\) −12.8733 −0.749510
\(296\) −1.01250 −0.0588502
\(297\) −1.32218 −0.0767206
\(298\) −52.9597 −3.06787
\(299\) −9.06829 −0.524433
\(300\) 17.7187 1.02299
\(301\) −1.22344 −0.0705180
\(302\) 45.9222 2.64252
\(303\) 17.0598 0.980061
\(304\) −26.1457 −1.49956
\(305\) 2.83053 0.162076
\(306\) −2.63640 −0.150713
\(307\) 18.4249 1.05157 0.525784 0.850618i \(-0.323772\pi\)
0.525784 + 0.850618i \(0.323772\pi\)
\(308\) 6.54562 0.372971
\(309\) 18.0070 1.02438
\(310\) −18.1366 −1.03009
\(311\) −22.3481 −1.26725 −0.633623 0.773642i \(-0.718433\pi\)
−0.633623 + 0.773642i \(0.718433\pi\)
\(312\) −9.27281 −0.524969
\(313\) 18.9770 1.07264 0.536321 0.844014i \(-0.319813\pi\)
0.536321 + 0.844014i \(0.319813\pi\)
\(314\) 10.7167 0.604777
\(315\) −1.19202 −0.0671628
\(316\) 74.0668 4.16658
\(317\) 9.43439 0.529888 0.264944 0.964264i \(-0.414647\pi\)
0.264944 + 0.964264i \(0.414647\pi\)
\(318\) −31.0334 −1.74027
\(319\) −6.97160 −0.390335
\(320\) −13.7038 −0.766065
\(321\) −12.1950 −0.680661
\(322\) −20.0564 −1.11770
\(323\) 2.46483 0.137147
\(324\) 4.95063 0.275035
\(325\) −4.26635 −0.236654
\(326\) −20.8309 −1.15372
\(327\) −14.4155 −0.797177
\(328\) −83.3078 −4.59990
\(329\) 5.77111 0.318171
\(330\) 4.15515 0.228733
\(331\) −4.53715 −0.249384 −0.124692 0.992195i \(-0.539794\pi\)
−0.124692 + 0.992195i \(0.539794\pi\)
\(332\) 0.488815 0.0268272
\(333\) −0.130157 −0.00713254
\(334\) −8.84144 −0.483782
\(335\) −0.117698 −0.00643052
\(336\) −10.6075 −0.578686
\(337\) −29.8279 −1.62483 −0.812415 0.583080i \(-0.801847\pi\)
−0.812415 + 0.583080i \(0.801847\pi\)
\(338\) −30.5272 −1.66046
\(339\) −5.20754 −0.282834
\(340\) 5.90126 0.320041
\(341\) 7.63043 0.413211
\(342\) −6.49830 −0.351388
\(343\) 1.00000 0.0539949
\(344\) −9.51722 −0.513134
\(345\) −9.06829 −0.488220
\(346\) −6.45636 −0.347096
\(347\) 0.359051 0.0192749 0.00963744 0.999954i \(-0.496932\pi\)
0.00963744 + 0.999954i \(0.496932\pi\)
\(348\) 26.1037 1.39931
\(349\) −33.1751 −1.77582 −0.887911 0.460016i \(-0.847844\pi\)
−0.887911 + 0.460016i \(0.847844\pi\)
\(350\) −9.43591 −0.504371
\(351\) −1.19202 −0.0636254
\(352\) 16.4049 0.874387
\(353\) 14.4155 0.767258 0.383629 0.923487i \(-0.374674\pi\)
0.383629 + 0.923487i \(0.374674\pi\)
\(354\) −28.4719 −1.51326
\(355\) 17.2210 0.913996
\(356\) −41.5063 −2.19983
\(357\) 1.00000 0.0529256
\(358\) 46.9766 2.48279
\(359\) 8.94518 0.472108 0.236054 0.971740i \(-0.424146\pi\)
0.236054 + 0.971740i \(0.424146\pi\)
\(360\) −9.27281 −0.488720
\(361\) −12.9246 −0.680242
\(362\) 10.3272 0.542788
\(363\) 9.25184 0.485596
\(364\) 5.90126 0.309310
\(365\) −9.43744 −0.493978
\(366\) 6.26031 0.327232
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) −80.6963 −4.20658
\(369\) −10.7092 −0.557501
\(370\) 0.409037 0.0212648
\(371\) 11.7711 0.611125
\(372\) −28.5706 −1.48132
\(373\) 3.35564 0.173749 0.0868743 0.996219i \(-0.472312\pi\)
0.0868743 + 0.996219i \(0.472312\pi\)
\(374\) −3.48580 −0.180246
\(375\) −10.2265 −0.528092
\(376\) 44.8938 2.31522
\(377\) −6.28531 −0.323710
\(378\) −2.63640 −0.135602
\(379\) 0.570613 0.0293104 0.0146552 0.999893i \(-0.495335\pi\)
0.0146552 + 0.999893i \(0.495335\pi\)
\(380\) 14.5456 0.746175
\(381\) −11.6075 −0.594669
\(382\) −3.89217 −0.199141
\(383\) −20.9043 −1.06816 −0.534079 0.845434i \(-0.679342\pi\)
−0.534079 + 0.845434i \(0.679342\pi\)
\(384\) −5.49375 −0.280352
\(385\) −1.57607 −0.0803238
\(386\) −21.1741 −1.07773
\(387\) −1.22344 −0.0621910
\(388\) 53.4174 2.71186
\(389\) 13.6409 0.691624 0.345812 0.938304i \(-0.387604\pi\)
0.345812 + 0.938304i \(0.387604\pi\)
\(390\) 3.74611 0.189692
\(391\) 7.60749 0.384727
\(392\) 7.77906 0.392902
\(393\) −10.5057 −0.529944
\(394\) −44.5033 −2.24204
\(395\) −17.8339 −0.897323
\(396\) 6.54562 0.328930
\(397\) −22.0114 −1.10472 −0.552361 0.833605i \(-0.686273\pi\)
−0.552361 + 0.833605i \(0.686273\pi\)
\(398\) −4.92966 −0.247102
\(399\) 2.46483 0.123396
\(400\) −37.9651 −1.89825
\(401\) −7.44286 −0.371678 −0.185839 0.982580i \(-0.559500\pi\)
−0.185839 + 0.982580i \(0.559500\pi\)
\(402\) −0.260313 −0.0129833
\(403\) 6.87929 0.342682
\(404\) −84.4569 −4.20189
\(405\) −1.19202 −0.0592321
\(406\) −13.9013 −0.689908
\(407\) −0.172090 −0.00853021
\(408\) 7.77906 0.385121
\(409\) −14.0858 −0.696497 −0.348249 0.937402i \(-0.613224\pi\)
−0.348249 + 0.937402i \(0.613224\pi\)
\(410\) 33.6554 1.66212
\(411\) 9.28832 0.458159
\(412\) −89.1462 −4.39192
\(413\) 10.7995 0.531409
\(414\) −20.0564 −0.985719
\(415\) −0.117698 −0.00577756
\(416\) 14.7900 0.725141
\(417\) −21.4185 −1.04887
\(418\) −8.59191 −0.420244
\(419\) 33.7606 1.64931 0.824656 0.565634i \(-0.191369\pi\)
0.824656 + 0.565634i \(0.191369\pi\)
\(420\) 5.90126 0.287952
\(421\) 36.5750 1.78256 0.891278 0.453457i \(-0.149810\pi\)
0.891278 + 0.453457i \(0.149810\pi\)
\(422\) −12.1616 −0.592016
\(423\) 5.77111 0.280601
\(424\) 91.5681 4.44694
\(425\) 3.57908 0.173611
\(426\) 38.0878 1.84536
\(427\) −2.37456 −0.114913
\(428\) 60.3731 2.91825
\(429\) −1.57607 −0.0760932
\(430\) 3.84485 0.185415
\(431\) −18.5456 −0.893311 −0.446656 0.894706i \(-0.647385\pi\)
−0.446656 + 0.894706i \(0.647385\pi\)
\(432\) −10.6075 −0.510353
\(433\) 7.31575 0.351573 0.175786 0.984428i \(-0.443753\pi\)
0.175786 + 0.984428i \(0.443753\pi\)
\(434\) 15.2150 0.730342
\(435\) −6.28531 −0.301357
\(436\) 71.3656 3.41779
\(437\) 18.7512 0.896990
\(438\) −20.8729 −0.997344
\(439\) −28.4783 −1.35920 −0.679598 0.733585i \(-0.737846\pi\)
−0.679598 + 0.733585i \(0.737846\pi\)
\(440\) −12.2603 −0.584488
\(441\) 1.00000 0.0476190
\(442\) −3.14265 −0.149481
\(443\) −6.84041 −0.324997 −0.162499 0.986709i \(-0.551955\pi\)
−0.162499 + 0.986709i \(0.551955\pi\)
\(444\) 0.644358 0.0305799
\(445\) 9.99397 0.473759
\(446\) 32.3258 1.53067
\(447\) 20.0878 0.950122
\(448\) 11.4963 0.543147
\(449\) −5.73060 −0.270444 −0.135222 0.990815i \(-0.543175\pi\)
−0.135222 + 0.990815i \(0.543175\pi\)
\(450\) −9.43591 −0.444813
\(451\) −14.1595 −0.666746
\(452\) 25.7806 1.21262
\(453\) −17.4185 −0.818392
\(454\) 50.3376 2.36246
\(455\) −1.42092 −0.0666136
\(456\) 19.1741 0.897908
\(457\) 29.4100 1.37574 0.687871 0.725833i \(-0.258545\pi\)
0.687871 + 0.725833i \(0.258545\pi\)
\(458\) 23.3925 1.09306
\(459\) 1.00000 0.0466760
\(460\) 44.8938 2.09318
\(461\) −15.4439 −0.719293 −0.359646 0.933089i \(-0.617103\pi\)
−0.359646 + 0.933089i \(0.617103\pi\)
\(462\) −3.48580 −0.162174
\(463\) −20.4090 −0.948488 −0.474244 0.880393i \(-0.657279\pi\)
−0.474244 + 0.880393i \(0.657279\pi\)
\(464\) −55.9313 −2.59654
\(465\) 6.87929 0.319019
\(466\) 52.8136 2.44654
\(467\) 10.9865 0.508393 0.254197 0.967153i \(-0.418189\pi\)
0.254197 + 0.967153i \(0.418189\pi\)
\(468\) 5.90126 0.272786
\(469\) 0.0987380 0.00455930
\(470\) −18.1366 −0.836578
\(471\) −4.06488 −0.187300
\(472\) 84.0100 3.86687
\(473\) −1.61761 −0.0743777
\(474\) −39.4435 −1.81170
\(475\) 8.82184 0.404774
\(476\) −4.95063 −0.226912
\(477\) 11.7711 0.538962
\(478\) −5.72378 −0.261800
\(479\) 18.9945 0.867883 0.433941 0.900941i \(-0.357122\pi\)
0.433941 + 0.900941i \(0.357122\pi\)
\(480\) 14.7900 0.675069
\(481\) −0.155150 −0.00707422
\(482\) −25.7856 −1.17450
\(483\) 7.60749 0.346153
\(484\) −45.8025 −2.08193
\(485\) −12.8620 −0.584031
\(486\) −2.63640 −0.119590
\(487\) −21.7606 −0.986066 −0.493033 0.870010i \(-0.664112\pi\)
−0.493033 + 0.870010i \(0.664112\pi\)
\(488\) −18.4719 −0.836182
\(489\) 7.90126 0.357307
\(490\) −3.14265 −0.141971
\(491\) 6.93070 0.312778 0.156389 0.987696i \(-0.450015\pi\)
0.156389 + 0.987696i \(0.450015\pi\)
\(492\) 53.0175 2.39021
\(493\) 5.27281 0.237475
\(494\) −7.74611 −0.348514
\(495\) −1.57607 −0.0708389
\(496\) 61.2169 2.74872
\(497\) −14.4469 −0.648031
\(498\) −0.260313 −0.0116649
\(499\) −18.4533 −0.826083 −0.413042 0.910712i \(-0.635534\pi\)
−0.413042 + 0.910712i \(0.635534\pi\)
\(500\) 50.6274 2.26413
\(501\) 3.35360 0.149828
\(502\) 18.1866 0.811706
\(503\) −35.9560 −1.60320 −0.801600 0.597861i \(-0.796018\pi\)
−0.801600 + 0.597861i \(0.796018\pi\)
\(504\) 7.77906 0.346507
\(505\) 20.3357 0.904926
\(506\) −26.5182 −1.17888
\(507\) 11.5791 0.514245
\(508\) 57.4644 2.54957
\(509\) −16.6444 −0.737748 −0.368874 0.929479i \(-0.620257\pi\)
−0.368874 + 0.929479i \(0.620257\pi\)
\(510\) −3.14265 −0.139159
\(511\) 7.91717 0.350235
\(512\) −33.4200 −1.47697
\(513\) 2.46483 0.108825
\(514\) −50.9177 −2.24588
\(515\) 21.4648 0.945852
\(516\) 6.05680 0.266636
\(517\) 7.63043 0.335586
\(518\) −0.343146 −0.0150770
\(519\) 2.44893 0.107496
\(520\) −11.0534 −0.484723
\(521\) −0.944560 −0.0413819 −0.0206910 0.999786i \(-0.506587\pi\)
−0.0206910 + 0.999786i \(0.506587\pi\)
\(522\) −13.9013 −0.608442
\(523\) −18.9766 −0.829789 −0.414894 0.909870i \(-0.636181\pi\)
−0.414894 + 0.909870i \(0.636181\pi\)
\(524\) 52.0100 2.27207
\(525\) 3.57908 0.156204
\(526\) 59.0712 2.57563
\(527\) −5.77111 −0.251393
\(528\) −14.0250 −0.610359
\(529\) 34.8738 1.51625
\(530\) −36.9925 −1.60685
\(531\) 10.7995 0.468659
\(532\) −12.2025 −0.529044
\(533\) −12.7657 −0.552942
\(534\) 22.1037 0.956522
\(535\) −14.5368 −0.628479
\(536\) 0.768089 0.0331764
\(537\) −17.8184 −0.768922
\(538\) −34.0932 −1.46986
\(539\) 1.32218 0.0569503
\(540\) 5.90126 0.253950
\(541\) −19.1771 −0.824489 −0.412245 0.911073i \(-0.635255\pi\)
−0.412245 + 0.911073i \(0.635255\pi\)
\(542\) −64.1283 −2.75455
\(543\) −3.91717 −0.168102
\(544\) −12.4075 −0.531968
\(545\) −17.1836 −0.736062
\(546\) −3.14265 −0.134493
\(547\) −25.5736 −1.09345 −0.546725 0.837312i \(-0.684126\pi\)
−0.546725 + 0.837312i \(0.684126\pi\)
\(548\) −45.9831 −1.96430
\(549\) −2.37456 −0.101344
\(550\) −12.4760 −0.531977
\(551\) 12.9966 0.553673
\(552\) 59.1791 2.51883
\(553\) 14.9611 0.636210
\(554\) 42.9347 1.82412
\(555\) −0.155150 −0.00658574
\(556\) 106.035 4.49689
\(557\) 34.9191 1.47957 0.739786 0.672842i \(-0.234927\pi\)
0.739786 + 0.672842i \(0.234927\pi\)
\(558\) 15.2150 0.644101
\(559\) −1.45837 −0.0616824
\(560\) −12.6444 −0.534322
\(561\) 1.32218 0.0558224
\(562\) −28.8150 −1.21549
\(563\) −14.9547 −0.630264 −0.315132 0.949048i \(-0.602049\pi\)
−0.315132 + 0.949048i \(0.602049\pi\)
\(564\) −28.5706 −1.20304
\(565\) −6.20750 −0.261151
\(566\) 7.38064 0.310231
\(567\) 1.00000 0.0419961
\(568\) −112.383 −4.71549
\(569\) 35.5003 1.48825 0.744125 0.668041i \(-0.232867\pi\)
0.744125 + 0.668041i \(0.232867\pi\)
\(570\) −7.74611 −0.324449
\(571\) −22.7931 −0.953861 −0.476930 0.878941i \(-0.658251\pi\)
−0.476930 + 0.878941i \(0.658251\pi\)
\(572\) 7.80252 0.326240
\(573\) 1.47632 0.0616741
\(574\) −28.2339 −1.17846
\(575\) 27.2278 1.13548
\(576\) 11.4963 0.479010
\(577\) −7.21702 −0.300448 −0.150224 0.988652i \(-0.548000\pi\)
−0.150224 + 0.988652i \(0.548000\pi\)
\(578\) 2.63640 0.109660
\(579\) 8.03142 0.333774
\(580\) 31.1162 1.29203
\(581\) 0.0987380 0.00409634
\(582\) −28.4469 −1.17916
\(583\) 15.5635 0.644575
\(584\) 61.5881 2.54853
\(585\) −1.42092 −0.0587477
\(586\) −9.36746 −0.386966
\(587\) 30.3776 1.25382 0.626909 0.779092i \(-0.284320\pi\)
0.626909 + 0.779092i \(0.284320\pi\)
\(588\) −4.95063 −0.204161
\(589\) −14.2248 −0.586123
\(590\) −33.9391 −1.39725
\(591\) 16.8803 0.694363
\(592\) −1.38064 −0.0567438
\(593\) 16.0983 0.661080 0.330540 0.943792i \(-0.392769\pi\)
0.330540 + 0.943792i \(0.392769\pi\)
\(594\) −3.48580 −0.143024
\(595\) 1.19202 0.0488681
\(596\) −99.4474 −4.07353
\(597\) 1.86984 0.0765276
\(598\) −23.9077 −0.977658
\(599\) 35.1382 1.43571 0.717853 0.696194i \(-0.245125\pi\)
0.717853 + 0.696194i \(0.245125\pi\)
\(600\) 27.8419 1.13664
\(601\) 38.1601 1.55658 0.778292 0.627902i \(-0.216086\pi\)
0.778292 + 0.627902i \(0.216086\pi\)
\(602\) −3.22549 −0.131461
\(603\) 0.0987380 0.00402092
\(604\) 86.2325 3.50875
\(605\) 11.0284 0.448368
\(606\) 44.9766 1.82705
\(607\) −7.73326 −0.313883 −0.156942 0.987608i \(-0.550163\pi\)
−0.156942 + 0.987608i \(0.550163\pi\)
\(608\) −30.5824 −1.24028
\(609\) 5.27281 0.213665
\(610\) 7.46243 0.302145
\(611\) 6.87929 0.278306
\(612\) −4.95063 −0.200117
\(613\) −43.0888 −1.74034 −0.870170 0.492751i \(-0.835991\pi\)
−0.870170 + 0.492751i \(0.835991\pi\)
\(614\) 48.5756 1.96035
\(615\) −12.7657 −0.514761
\(616\) 10.2853 0.414407
\(617\) 2.04090 0.0821635 0.0410817 0.999156i \(-0.486920\pi\)
0.0410817 + 0.999156i \(0.486920\pi\)
\(618\) 47.4739 1.90968
\(619\) −35.3383 −1.42037 −0.710183 0.704017i \(-0.751388\pi\)
−0.710183 + 0.704017i \(0.751388\pi\)
\(620\) −34.0568 −1.36775
\(621\) 7.60749 0.305278
\(622\) −58.9188 −2.36243
\(623\) −8.38404 −0.335900
\(624\) −12.6444 −0.506179
\(625\) 5.70525 0.228210
\(626\) 50.0310 1.99964
\(627\) 3.25895 0.130150
\(628\) 20.1237 0.803024
\(629\) 0.130157 0.00518969
\(630\) −3.14265 −0.125206
\(631\) −35.9306 −1.43038 −0.715188 0.698932i \(-0.753659\pi\)
−0.715188 + 0.698932i \(0.753659\pi\)
\(632\) 116.383 4.62947
\(633\) 4.61294 0.183348
\(634\) 24.8729 0.987827
\(635\) −13.8364 −0.549080
\(636\) −58.2744 −2.31073
\(637\) 1.19202 0.0472296
\(638\) −18.3800 −0.727669
\(639\) −14.4469 −0.571510
\(640\) −6.54867 −0.258859
\(641\) 13.4199 0.530053 0.265027 0.964241i \(-0.414619\pi\)
0.265027 + 0.964241i \(0.414619\pi\)
\(642\) −32.1511 −1.26890
\(643\) 43.0844 1.69908 0.849542 0.527521i \(-0.176878\pi\)
0.849542 + 0.527521i \(0.176878\pi\)
\(644\) −37.6619 −1.48408
\(645\) −1.45837 −0.0574232
\(646\) 6.49830 0.255672
\(647\) 41.3028 1.62378 0.811890 0.583810i \(-0.198439\pi\)
0.811890 + 0.583810i \(0.198439\pi\)
\(648\) 7.77906 0.305590
\(649\) 14.2789 0.560495
\(650\) −11.2478 −0.441176
\(651\) −5.77111 −0.226187
\(652\) −39.1162 −1.53191
\(653\) 25.9715 1.01634 0.508172 0.861255i \(-0.330321\pi\)
0.508172 + 0.861255i \(0.330321\pi\)
\(654\) −38.0050 −1.48611
\(655\) −12.5231 −0.489317
\(656\) −113.598 −4.43526
\(657\) 7.91717 0.308878
\(658\) 15.2150 0.593141
\(659\) 12.3705 0.481885 0.240943 0.970539i \(-0.422543\pi\)
0.240943 + 0.970539i \(0.422543\pi\)
\(660\) 7.80252 0.303713
\(661\) 19.2488 0.748693 0.374346 0.927289i \(-0.377867\pi\)
0.374346 + 0.927289i \(0.377867\pi\)
\(662\) −11.9618 −0.464907
\(663\) 1.19202 0.0462943
\(664\) 0.768089 0.0298076
\(665\) 2.93813 0.113936
\(666\) −0.343146 −0.0132966
\(667\) 40.1128 1.55317
\(668\) −16.6024 −0.642367
\(669\) −12.2613 −0.474050
\(670\) −0.310299 −0.0119879
\(671\) −3.13960 −0.121203
\(672\) −12.4075 −0.478630
\(673\) 27.0594 1.04306 0.521532 0.853232i \(-0.325361\pi\)
0.521532 + 0.853232i \(0.325361\pi\)
\(674\) −78.6384 −3.02904
\(675\) 3.57908 0.137759
\(676\) −57.3238 −2.20476
\(677\) 24.3880 0.937308 0.468654 0.883382i \(-0.344739\pi\)
0.468654 + 0.883382i \(0.344739\pi\)
\(678\) −13.7292 −0.527266
\(679\) 10.7900 0.414083
\(680\) 9.27281 0.355596
\(681\) −19.0933 −0.731656
\(682\) 20.1169 0.770316
\(683\) 24.2579 0.928202 0.464101 0.885782i \(-0.346377\pi\)
0.464101 + 0.885782i \(0.346377\pi\)
\(684\) −12.2025 −0.466573
\(685\) 11.0719 0.423035
\(686\) 2.63640 0.100658
\(687\) −8.87286 −0.338521
\(688\) −12.9776 −0.494768
\(689\) 14.0314 0.534554
\(690\) −23.9077 −0.910150
\(691\) 0.955050 0.0363318 0.0181659 0.999835i \(-0.494217\pi\)
0.0181659 + 0.999835i \(0.494217\pi\)
\(692\) −12.1237 −0.460875
\(693\) 1.32218 0.0502254
\(694\) 0.946605 0.0359326
\(695\) −25.5313 −0.968458
\(696\) 41.0175 1.55476
\(697\) 10.7092 0.405641
\(698\) −87.4629 −3.31052
\(699\) −20.0324 −0.757696
\(700\) −17.7187 −0.669705
\(701\) 23.2210 0.877045 0.438523 0.898720i \(-0.355502\pi\)
0.438523 + 0.898720i \(0.355502\pi\)
\(702\) −3.14265 −0.118612
\(703\) 0.320814 0.0120997
\(704\) 15.2001 0.572875
\(705\) 6.87929 0.259089
\(706\) 38.0050 1.43034
\(707\) −17.0598 −0.641601
\(708\) −53.4644 −2.00931
\(709\) 1.42939 0.0536818 0.0268409 0.999640i \(-0.491455\pi\)
0.0268409 + 0.999640i \(0.491455\pi\)
\(710\) 45.4015 1.70389
\(711\) 14.9611 0.561084
\(712\) −65.2200 −2.44422
\(713\) −43.9036 −1.64420
\(714\) 2.63640 0.0986650
\(715\) −1.87871 −0.0702596
\(716\) 88.2125 3.29665
\(717\) 2.17106 0.0810795
\(718\) 23.5831 0.880114
\(719\) −14.8140 −0.552469 −0.276235 0.961090i \(-0.589087\pi\)
−0.276235 + 0.961090i \(0.589087\pi\)
\(720\) −12.6444 −0.471227
\(721\) −18.0070 −0.670617
\(722\) −34.0745 −1.26812
\(723\) 9.78059 0.363744
\(724\) 19.3925 0.720715
\(725\) 18.8718 0.700882
\(726\) 24.3916 0.905257
\(727\) 5.31474 0.197113 0.0985565 0.995131i \(-0.468577\pi\)
0.0985565 + 0.995131i \(0.468577\pi\)
\(728\) 9.27281 0.343673
\(729\) 1.00000 0.0370370
\(730\) −24.8809 −0.920884
\(731\) 1.22344 0.0452506
\(732\) 11.7556 0.434499
\(733\) 42.3860 1.56556 0.782781 0.622297i \(-0.213800\pi\)
0.782781 + 0.622297i \(0.213800\pi\)
\(734\) 0 0
\(735\) 1.19202 0.0439684
\(736\) −94.3900 −3.47926
\(737\) 0.130549 0.00480885
\(738\) −28.2339 −1.03930
\(739\) −8.35661 −0.307403 −0.153702 0.988117i \(-0.549119\pi\)
−0.153702 + 0.988117i \(0.549119\pi\)
\(740\) 0.768089 0.0282355
\(741\) 2.93813 0.107935
\(742\) 31.0334 1.13927
\(743\) 37.3028 1.36851 0.684254 0.729244i \(-0.260128\pi\)
0.684254 + 0.729244i \(0.260128\pi\)
\(744\) −44.8938 −1.64589
\(745\) 23.9451 0.877282
\(746\) 8.84683 0.323906
\(747\) 0.0987380 0.00361264
\(748\) −6.54562 −0.239332
\(749\) 12.1950 0.445597
\(750\) −26.9611 −0.984480
\(751\) −1.67237 −0.0610255 −0.0305128 0.999534i \(-0.509714\pi\)
−0.0305128 + 0.999534i \(0.509714\pi\)
\(752\) 61.2169 2.23235
\(753\) −6.89825 −0.251386
\(754\) −16.5706 −0.603466
\(755\) −20.7632 −0.755651
\(756\) −4.95063 −0.180053
\(757\) −16.4493 −0.597861 −0.298930 0.954275i \(-0.596630\pi\)
−0.298930 + 0.954275i \(0.596630\pi\)
\(758\) 1.50437 0.0546410
\(759\) 10.0585 0.365099
\(760\) 22.8559 0.829071
\(761\) −27.8593 −1.00990 −0.504950 0.863149i \(-0.668489\pi\)
−0.504950 + 0.863149i \(0.668489\pi\)
\(762\) −30.6020 −1.10859
\(763\) 14.4155 0.521875
\(764\) −7.30871 −0.264420
\(765\) 1.19202 0.0430977
\(766\) −55.1121 −1.99128
\(767\) 12.8733 0.464826
\(768\) 8.50875 0.307033
\(769\) −41.5970 −1.50003 −0.750013 0.661424i \(-0.769953\pi\)
−0.750013 + 0.661424i \(0.769953\pi\)
\(770\) −4.15515 −0.149741
\(771\) 19.3133 0.695552
\(772\) −39.7606 −1.43101
\(773\) −15.5108 −0.557884 −0.278942 0.960308i \(-0.589984\pi\)
−0.278942 + 0.960308i \(0.589984\pi\)
\(774\) −3.22549 −0.115938
\(775\) −20.6553 −0.741959
\(776\) 83.9363 3.01314
\(777\) 0.130157 0.00466935
\(778\) 35.9631 1.28934
\(779\) 26.3965 0.945752
\(780\) 7.03444 0.251873
\(781\) −19.1014 −0.683500
\(782\) 20.0564 0.717216
\(783\) 5.27281 0.188435
\(784\) 10.6075 0.378839
\(785\) −4.84543 −0.172941
\(786\) −27.6974 −0.987932
\(787\) 55.3471 1.97291 0.986455 0.164032i \(-0.0524501\pi\)
0.986455 + 0.164032i \(0.0524501\pi\)
\(788\) −83.5681 −2.97699
\(789\) −22.4060 −0.797674
\(790\) −47.0175 −1.67281
\(791\) 5.20754 0.185159
\(792\) 10.2853 0.365472
\(793\) −2.83053 −0.100515
\(794\) −58.0310 −2.05944
\(795\) 14.0314 0.497643
\(796\) −9.25690 −0.328102
\(797\) −43.4813 −1.54019 −0.770094 0.637931i \(-0.779791\pi\)
−0.770094 + 0.637931i \(0.779791\pi\)
\(798\) 6.49830 0.230037
\(799\) −5.77111 −0.204167
\(800\) −44.4075 −1.57004
\(801\) −8.38404 −0.296236
\(802\) −19.6224 −0.692890
\(803\) 10.4679 0.369405
\(804\) −0.488815 −0.0172392
\(805\) 9.06829 0.319615
\(806\) 18.1366 0.638834
\(807\) 12.9317 0.455218
\(808\) −132.709 −4.66870
\(809\) −16.6869 −0.586680 −0.293340 0.956008i \(-0.594767\pi\)
−0.293340 + 0.956008i \(0.594767\pi\)
\(810\) −3.14265 −0.110422
\(811\) −27.0175 −0.948713 −0.474356 0.880333i \(-0.657319\pi\)
−0.474356 + 0.880333i \(0.657319\pi\)
\(812\) −26.1037 −0.916062
\(813\) 24.3242 0.853086
\(814\) −0.453700 −0.0159022
\(815\) 9.41848 0.329915
\(816\) 10.6075 0.371336
\(817\) 3.01558 0.105502
\(818\) −37.1358 −1.29842
\(819\) 1.19202 0.0416526
\(820\) 63.1980 2.20697
\(821\) 11.3623 0.396547 0.198273 0.980147i \(-0.436467\pi\)
0.198273 + 0.980147i \(0.436467\pi\)
\(822\) 24.4878 0.854109
\(823\) −20.2857 −0.707115 −0.353558 0.935413i \(-0.615028\pi\)
−0.353558 + 0.935413i \(0.615028\pi\)
\(824\) −140.078 −4.87984
\(825\) 4.73219 0.164754
\(826\) 28.4719 0.990663
\(827\) −32.5012 −1.13018 −0.565090 0.825030i \(-0.691158\pi\)
−0.565090 + 0.825030i \(0.691158\pi\)
\(828\) −37.6619 −1.30884
\(829\) 22.4049 0.778156 0.389078 0.921205i \(-0.372794\pi\)
0.389078 + 0.921205i \(0.372794\pi\)
\(830\) −0.310299 −0.0107706
\(831\) −16.2853 −0.564931
\(832\) 13.7038 0.475093
\(833\) −1.00000 −0.0346479
\(834\) −56.4678 −1.95532
\(835\) 3.99756 0.138341
\(836\) −16.1339 −0.558001
\(837\) −5.77111 −0.199479
\(838\) 89.0066 3.07468
\(839\) 27.9560 0.965149 0.482575 0.875855i \(-0.339702\pi\)
0.482575 + 0.875855i \(0.339702\pi\)
\(840\) 9.27281 0.319942
\(841\) −1.19748 −0.0412923
\(842\) 96.4265 3.32308
\(843\) 10.9297 0.376438
\(844\) −22.8370 −0.786081
\(845\) 13.8025 0.474821
\(846\) 15.2150 0.523101
\(847\) −9.25184 −0.317897
\(848\) 124.862 4.28777
\(849\) −2.79951 −0.0960788
\(850\) 9.43591 0.323649
\(851\) 0.990165 0.0339424
\(852\) 71.5212 2.45028
\(853\) 0.467269 0.0159990 0.00799950 0.999968i \(-0.497454\pi\)
0.00799950 + 0.999968i \(0.497454\pi\)
\(854\) −6.26031 −0.214224
\(855\) 2.93813 0.100482
\(856\) 94.8659 3.24245
\(857\) −37.7497 −1.28950 −0.644752 0.764392i \(-0.723039\pi\)
−0.644752 + 0.764392i \(0.723039\pi\)
\(858\) −4.15515 −0.141854
\(859\) −29.6440 −1.01144 −0.505720 0.862698i \(-0.668773\pi\)
−0.505720 + 0.862698i \(0.668773\pi\)
\(860\) 7.21985 0.246195
\(861\) 10.7092 0.364970
\(862\) −48.8938 −1.66533
\(863\) 41.0580 1.39763 0.698815 0.715302i \(-0.253711\pi\)
0.698815 + 0.715302i \(0.253711\pi\)
\(864\) −12.4075 −0.422112
\(865\) 2.91917 0.0992549
\(866\) 19.2873 0.655409
\(867\) −1.00000 −0.0339618
\(868\) 28.5706 0.969750
\(869\) 19.7812 0.671032
\(870\) −16.5706 −0.561796
\(871\) 0.117698 0.00398804
\(872\) 112.139 3.79750
\(873\) 10.7900 0.365187
\(874\) 49.4357 1.67219
\(875\) 10.2265 0.345717
\(876\) −39.1950 −1.32428
\(877\) −8.71771 −0.294376 −0.147188 0.989109i \(-0.547022\pi\)
−0.147188 + 0.989109i \(0.547022\pi\)
\(878\) −75.0803 −2.53384
\(879\) 3.55312 0.119844
\(880\) −16.7181 −0.563567
\(881\) −35.1541 −1.18437 −0.592185 0.805802i \(-0.701735\pi\)
−0.592185 + 0.805802i \(0.701735\pi\)
\(882\) 2.63640 0.0887724
\(883\) 29.6764 0.998689 0.499344 0.866404i \(-0.333574\pi\)
0.499344 + 0.866404i \(0.333574\pi\)
\(884\) −5.90126 −0.198481
\(885\) 12.8733 0.432730
\(886\) −18.0341 −0.605867
\(887\) 1.67072 0.0560971 0.0280486 0.999607i \(-0.491071\pi\)
0.0280486 + 0.999607i \(0.491071\pi\)
\(888\) 1.01250 0.0339772
\(889\) 11.6075 0.389303
\(890\) 26.3481 0.883192
\(891\) 1.32218 0.0442947
\(892\) 60.7013 2.03243
\(893\) −14.2248 −0.476015
\(894\) 52.9597 1.77124
\(895\) −21.2400 −0.709974
\(896\) 5.49375 0.183533
\(897\) 9.06829 0.302781
\(898\) −15.1082 −0.504167
\(899\) −30.4299 −1.01490
\(900\) −17.7187 −0.590624
\(901\) −11.7711 −0.392152
\(902\) −37.3303 −1.24296
\(903\) 1.22344 0.0407136
\(904\) 40.5097 1.34733
\(905\) −4.66935 −0.155214
\(906\) −45.9222 −1.52566
\(907\) −31.1960 −1.03585 −0.517923 0.855427i \(-0.673295\pi\)
−0.517923 + 0.855427i \(0.673295\pi\)
\(908\) 94.5238 3.13688
\(909\) −17.0598 −0.565839
\(910\) −3.74611 −0.124182
\(911\) −37.5019 −1.24249 −0.621247 0.783615i \(-0.713374\pi\)
−0.621247 + 0.783615i \(0.713374\pi\)
\(912\) 26.1457 0.865770
\(913\) 0.130549 0.00432055
\(914\) 77.5367 2.56469
\(915\) −2.83053 −0.0935746
\(916\) 43.9263 1.45136
\(917\) 10.5057 0.346930
\(918\) 2.63640 0.0870143
\(919\) −57.1247 −1.88437 −0.942185 0.335093i \(-0.891232\pi\)
−0.942185 + 0.335093i \(0.891232\pi\)
\(920\) 70.5428 2.32573
\(921\) −18.4249 −0.607123
\(922\) −40.7163 −1.34092
\(923\) −17.2210 −0.566836
\(924\) −6.54562 −0.215335
\(925\) 0.465842 0.0153168
\(926\) −53.8065 −1.76819
\(927\) −18.0070 −0.591429
\(928\) −65.4224 −2.14760
\(929\) 54.8349 1.79908 0.899538 0.436843i \(-0.143904\pi\)
0.899538 + 0.436843i \(0.143904\pi\)
\(930\) 18.1366 0.594722
\(931\) −2.46483 −0.0807816
\(932\) 99.1732 3.24852
\(933\) 22.3481 0.731645
\(934\) 28.9648 0.947757
\(935\) 1.57607 0.0515429
\(936\) 9.27281 0.303091
\(937\) 4.41586 0.144260 0.0721299 0.997395i \(-0.477020\pi\)
0.0721299 + 0.997395i \(0.477020\pi\)
\(938\) 0.260313 0.00849953
\(939\) −18.9770 −0.619291
\(940\) −34.0568 −1.11081
\(941\) −57.9782 −1.89003 −0.945017 0.327020i \(-0.893956\pi\)
−0.945017 + 0.327020i \(0.893956\pi\)
\(942\) −10.7167 −0.349168
\(943\) 81.4704 2.65304
\(944\) 114.556 3.72847
\(945\) 1.19202 0.0387765
\(946\) −4.26467 −0.138656
\(947\) 8.07978 0.262558 0.131279 0.991345i \(-0.458092\pi\)
0.131279 + 0.991345i \(0.458092\pi\)
\(948\) −74.0668 −2.40558
\(949\) 9.43744 0.306352
\(950\) 23.2579 0.754587
\(951\) −9.43439 −0.305931
\(952\) −7.77906 −0.252121
\(953\) 38.2498 1.23903 0.619516 0.784984i \(-0.287329\pi\)
0.619516 + 0.784984i \(0.287329\pi\)
\(954\) 31.0334 1.00474
\(955\) 1.75980 0.0569460
\(956\) −10.7481 −0.347618
\(957\) 6.97160 0.225360
\(958\) 50.0773 1.61792
\(959\) −9.28832 −0.299936
\(960\) 13.7038 0.442288
\(961\) 2.30566 0.0743760
\(962\) −0.409037 −0.0131879
\(963\) 12.1950 0.392980
\(964\) −48.4201 −1.55951
\(965\) 9.57363 0.308186
\(966\) 20.0564 0.645304
\(967\) 44.3715 1.42689 0.713445 0.700711i \(-0.247134\pi\)
0.713445 + 0.700711i \(0.247134\pi\)
\(968\) −71.9706 −2.31322
\(969\) −2.46483 −0.0791818
\(970\) −33.9093 −1.08876
\(971\) −36.7511 −1.17940 −0.589700 0.807622i \(-0.700754\pi\)
−0.589700 + 0.807622i \(0.700754\pi\)
\(972\) −4.95063 −0.158792
\(973\) 21.4185 0.686645
\(974\) −57.3697 −1.83824
\(975\) 4.26635 0.136632
\(976\) −25.1882 −0.806253
\(977\) 46.9248 1.50126 0.750629 0.660724i \(-0.229751\pi\)
0.750629 + 0.660724i \(0.229751\pi\)
\(978\) 20.8309 0.666100
\(979\) −11.0852 −0.354285
\(980\) −5.90126 −0.188509
\(981\) 14.4155 0.460250
\(982\) 18.2721 0.583087
\(983\) −51.1074 −1.63007 −0.815036 0.579410i \(-0.803283\pi\)
−0.815036 + 0.579410i \(0.803283\pi\)
\(984\) 83.3078 2.65576
\(985\) 20.1217 0.641130
\(986\) 13.9013 0.442706
\(987\) −5.77111 −0.183696
\(988\) −14.5456 −0.462758
\(989\) 9.30731 0.295955
\(990\) −4.15515 −0.132059
\(991\) −19.5551 −0.621187 −0.310594 0.950543i \(-0.600528\pi\)
−0.310594 + 0.950543i \(0.600528\pi\)
\(992\) 71.6050 2.27346
\(993\) 4.53715 0.143982
\(994\) −38.0878 −1.20807
\(995\) 2.22889 0.0706607
\(996\) −0.488815 −0.0154887
\(997\) −3.11805 −0.0987497 −0.0493749 0.998780i \(-0.515723\pi\)
−0.0493749 + 0.998780i \(0.515723\pi\)
\(998\) −48.6504 −1.54000
\(999\) 0.130157 0.00411798
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 357.2.a.h.1.4 4
3.2 odd 2 1071.2.a.j.1.1 4
4.3 odd 2 5712.2.a.bx.1.2 4
5.4 even 2 8925.2.a.bs.1.1 4
7.6 odd 2 2499.2.a.z.1.4 4
17.16 even 2 6069.2.a.s.1.4 4
21.20 even 2 7497.2.a.be.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
357.2.a.h.1.4 4 1.1 even 1 trivial
1071.2.a.j.1.1 4 3.2 odd 2
2499.2.a.z.1.4 4 7.6 odd 2
5712.2.a.bx.1.2 4 4.3 odd 2
6069.2.a.s.1.4 4 17.16 even 2
7497.2.a.be.1.1 4 21.20 even 2
8925.2.a.bs.1.1 4 5.4 even 2