Properties

Label 3528.2.bl.b.1097.6
Level $3528$
Weight $2$
Character 3528.1097
Analytic conductor $28.171$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3528,2,Mod(521,3528)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3528, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3528.521"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3528 = 2^{3} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3528.bl (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(25)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.1712218331\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{48})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{29}]\)
Coefficient ring index: \( 2^{22} \)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1097.6
Root \(0.991445 + 0.130526i\) of defining polynomial
Character \(\chi\) \(=\) 3528.1097
Dual form 3528.2.bl.b.521.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.765367 - 1.32565i) q^{5} +(0.507306 - 0.292893i) q^{11} -2.16478i q^{13} +(2.93015 + 5.07517i) q^{17} +(4.52607 + 2.61313i) q^{19} +(1.94218 + 1.12132i) q^{23} +(1.32843 + 2.30090i) q^{25} -5.41421i q^{29} +(-3.74952 + 2.16478i) q^{31} +(-2.00000 + 3.46410i) q^{37} -8.92177 q^{41} +10.4853 q^{43} +(-3.69552 + 6.40083i) q^{47} +(4.68885 - 2.70711i) q^{53} -0.896683i q^{55} +(-2.86976 - 1.65685i) q^{65} +(4.82843 + 8.36308i) q^{67} -4.58579i q^{71} +(10.9269 - 6.30864i) q^{73} +(1.17157 - 2.02922i) q^{79} +13.5140 q^{83} +8.97056 q^{85} +(2.93015 - 5.07517i) q^{89} +(6.92820 - 4.00000i) q^{95} +8.28772i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 24 q^{25} - 32 q^{37} + 32 q^{43} + 32 q^{67} + 64 q^{79} - 128 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3528\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(1765\) \(2647\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.765367 1.32565i 0.342282 0.592851i −0.642574 0.766224i \(-0.722133\pi\)
0.984856 + 0.173373i \(0.0554667\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.507306 0.292893i 0.152958 0.0883106i −0.421567 0.906797i \(-0.638520\pi\)
0.574526 + 0.818487i \(0.305187\pi\)
\(12\) 0 0
\(13\) 2.16478i 0.600403i −0.953876 0.300202i \(-0.902946\pi\)
0.953876 0.300202i \(-0.0970540\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.93015 + 5.07517i 0.710666 + 1.23091i 0.964607 + 0.263690i \(0.0849396\pi\)
−0.253941 + 0.967220i \(0.581727\pi\)
\(18\) 0 0
\(19\) 4.52607 + 2.61313i 1.03835 + 0.599492i 0.919366 0.393404i \(-0.128703\pi\)
0.118985 + 0.992896i \(0.462036\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.94218 + 1.12132i 0.404973 + 0.233811i 0.688628 0.725115i \(-0.258213\pi\)
−0.283654 + 0.958927i \(0.591547\pi\)
\(24\) 0 0
\(25\) 1.32843 + 2.30090i 0.265685 + 0.460181i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 5.41421i 1.00539i −0.864463 0.502697i \(-0.832341\pi\)
0.864463 0.502697i \(-0.167659\pi\)
\(30\) 0 0
\(31\) −3.74952 + 2.16478i −0.673433 + 0.388807i −0.797376 0.603483i \(-0.793779\pi\)
0.123943 + 0.992289i \(0.460446\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −2.00000 + 3.46410i −0.328798 + 0.569495i −0.982274 0.187453i \(-0.939977\pi\)
0.653476 + 0.756948i \(0.273310\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −8.92177 −1.39335 −0.696673 0.717389i \(-0.745337\pi\)
−0.696673 + 0.717389i \(0.745337\pi\)
\(42\) 0 0
\(43\) 10.4853 1.59899 0.799495 0.600672i \(-0.205100\pi\)
0.799495 + 0.600672i \(0.205100\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.69552 + 6.40083i −0.539047 + 0.933656i 0.459909 + 0.887966i \(0.347882\pi\)
−0.998956 + 0.0456902i \(0.985451\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.68885 2.70711i 0.644063 0.371850i −0.142115 0.989850i \(-0.545390\pi\)
0.786178 + 0.618000i \(0.212057\pi\)
\(54\) 0 0
\(55\) 0.896683i 0.120909i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(60\) 0 0
\(61\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.86976 1.65685i −0.355949 0.205507i
\(66\) 0 0
\(67\) 4.82843 + 8.36308i 0.589886 + 1.02171i 0.994247 + 0.107113i \(0.0341608\pi\)
−0.404361 + 0.914600i \(0.632506\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.58579i 0.544233i −0.962264 0.272116i \(-0.912276\pi\)
0.962264 0.272116i \(-0.0877236\pi\)
\(72\) 0 0
\(73\) 10.9269 6.30864i 1.27890 0.738371i 0.302251 0.953229i \(-0.402262\pi\)
0.976645 + 0.214858i \(0.0689287\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 1.17157 2.02922i 0.131812 0.228306i −0.792563 0.609790i \(-0.791254\pi\)
0.924375 + 0.381485i \(0.124587\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 13.5140 1.48335 0.741676 0.670759i \(-0.234031\pi\)
0.741676 + 0.670759i \(0.234031\pi\)
\(84\) 0 0
\(85\) 8.97056 0.972994
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 2.93015 5.07517i 0.310595 0.537967i −0.667896 0.744255i \(-0.732805\pi\)
0.978491 + 0.206288i \(0.0661382\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 6.92820 4.00000i 0.710819 0.410391i
\(96\) 0 0
\(97\) 8.28772i 0.841490i 0.907179 + 0.420745i \(0.138231\pi\)
−0.907179 + 0.420745i \(0.861769\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −8.15640 14.1273i −0.811592 1.40572i −0.911749 0.410748i \(-0.865268\pi\)
0.100157 0.994972i \(-0.468066\pi\)
\(102\) 0 0
\(103\) −12.8017 7.39104i −1.26138 0.728260i −0.288042 0.957618i \(-0.593004\pi\)
−0.973342 + 0.229357i \(0.926338\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 11.3199 + 6.53553i 1.09433 + 0.631814i 0.934727 0.355367i \(-0.115644\pi\)
0.159607 + 0.987181i \(0.448977\pi\)
\(108\) 0 0
\(109\) 4.82843 + 8.36308i 0.462479 + 0.801038i 0.999084 0.0427961i \(-0.0136266\pi\)
−0.536604 + 0.843834i \(0.680293\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 20.2426i 1.90427i −0.305682 0.952134i \(-0.598884\pi\)
0.305682 0.952134i \(-0.401116\pi\)
\(114\) 0 0
\(115\) 2.97297 1.71644i 0.277231 0.160059i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −5.32843 + 9.22911i −0.484402 + 0.839010i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.7206 1.04832
\(126\) 0 0
\(127\) 16.9706 1.50589 0.752947 0.658081i \(-0.228632\pi\)
0.752947 + 0.658081i \(0.228632\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 3.69552 6.40083i 0.322879 0.559243i −0.658202 0.752841i \(-0.728683\pi\)
0.981081 + 0.193599i \(0.0620160\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.57321 4.94975i 0.732459 0.422885i −0.0868620 0.996220i \(-0.527684\pi\)
0.819321 + 0.573335i \(0.194351\pi\)
\(138\) 0 0
\(139\) 10.4525i 0.886570i 0.896381 + 0.443285i \(0.146187\pi\)
−0.896381 + 0.443285i \(0.853813\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.634051 1.09821i −0.0530220 0.0918368i
\(144\) 0 0
\(145\) −7.17738 4.14386i −0.596049 0.344129i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −14.0665 8.12132i −1.15238 0.665324i −0.202911 0.979197i \(-0.565040\pi\)
−0.949465 + 0.313873i \(0.898373\pi\)
\(150\) 0 0
\(151\) 6.07107 + 10.5154i 0.494056 + 0.855731i 0.999977 0.00684943i \(-0.00218026\pi\)
−0.505920 + 0.862580i \(0.668847\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 6.62742i 0.532327i
\(156\) 0 0
\(157\) −14.3548 + 8.28772i −1.14563 + 0.661432i −0.947819 0.318807i \(-0.896718\pi\)
−0.197814 + 0.980240i \(0.563384\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 3.17157 5.49333i 0.248417 0.430270i −0.714670 0.699462i \(-0.753423\pi\)
0.963087 + 0.269191i \(0.0867564\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −13.5140 −1.04574 −0.522871 0.852412i \(-0.675139\pi\)
−0.522871 + 0.852412i \(0.675139\pi\)
\(168\) 0 0
\(169\) 8.31371 0.639516
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −11.2179 + 19.4299i −0.852879 + 1.47723i 0.0257200 + 0.999669i \(0.491812\pi\)
−0.878599 + 0.477560i \(0.841521\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −3.37706 + 1.94975i −0.252413 + 0.145731i −0.620869 0.783914i \(-0.713220\pi\)
0.368455 + 0.929645i \(0.379887\pi\)
\(180\) 0 0
\(181\) 14.4107i 1.07114i −0.844492 0.535568i \(-0.820098\pi\)
0.844492 0.535568i \(-0.179902\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3.06147 + 5.30262i 0.225084 + 0.389856i
\(186\) 0 0
\(187\) 2.97297 + 1.71644i 0.217405 + 0.125519i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 19.6830 + 11.3640i 1.42421 + 0.822267i 0.996655 0.0817226i \(-0.0260421\pi\)
0.427554 + 0.903990i \(0.359375\pi\)
\(192\) 0 0
\(193\) 2.82843 + 4.89898i 0.203595 + 0.352636i 0.949684 0.313210i \(-0.101404\pi\)
−0.746089 + 0.665846i \(0.768071\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 14.3848i 1.02487i −0.858725 0.512436i \(-0.828743\pi\)
0.858725 0.512436i \(-0.171257\pi\)
\(198\) 0 0
\(199\) −2.97297 + 1.71644i −0.210748 + 0.121675i −0.601659 0.798753i \(-0.705493\pi\)
0.390911 + 0.920428i \(0.372160\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −6.82843 + 11.8272i −0.476918 + 0.826046i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 3.06147 0.211766
\(210\) 0 0
\(211\) 24.8284 1.70926 0.854630 0.519238i \(-0.173784\pi\)
0.854630 + 0.519238i \(0.173784\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 8.02509 13.8999i 0.547306 0.947962i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 10.9867 6.34315i 0.739042 0.426686i
\(222\) 0 0
\(223\) 3.43289i 0.229883i −0.993372 0.114942i \(-0.963332\pi\)
0.993372 0.114942i \(-0.0366681\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3.06147 5.30262i −0.203197 0.351947i 0.746360 0.665542i \(-0.231800\pi\)
−0.949557 + 0.313595i \(0.898466\pi\)
\(228\) 0 0
\(229\) 19.9790 + 11.5349i 1.32025 + 0.762247i 0.983769 0.179442i \(-0.0574293\pi\)
0.336483 + 0.941690i \(0.390763\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −4.09450 2.36396i −0.268240 0.154868i 0.359848 0.933011i \(-0.382829\pi\)
−0.628087 + 0.778143i \(0.716162\pi\)
\(234\) 0 0
\(235\) 5.65685 + 9.79796i 0.369012 + 0.639148i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 17.0711i 1.10424i −0.833766 0.552118i \(-0.813820\pi\)
0.833766 0.552118i \(-0.186180\pi\)
\(240\) 0 0
\(241\) −14.6764 + 8.47343i −0.945391 + 0.545822i −0.891646 0.452733i \(-0.850449\pi\)
−0.0537446 + 0.998555i \(0.517116\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 5.65685 9.79796i 0.359937 0.623429i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −28.2960 −1.78603 −0.893015 0.450026i \(-0.851415\pi\)
−0.893015 + 0.450026i \(0.851415\pi\)
\(252\) 0 0
\(253\) 1.31371 0.0825921
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 9.05309 15.6804i 0.564716 0.978117i −0.432360 0.901701i \(-0.642319\pi\)
0.997076 0.0764157i \(-0.0243476\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 5.82655 3.36396i 0.359281 0.207431i −0.309485 0.950904i \(-0.600157\pi\)
0.668765 + 0.743474i \(0.266823\pi\)
\(264\) 0 0
\(265\) 8.28772i 0.509111i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2.29610 + 3.97696i 0.139996 + 0.242480i 0.927495 0.373836i \(-0.121958\pi\)
−0.787499 + 0.616316i \(0.788624\pi\)
\(270\) 0 0
\(271\) 14.3548 + 8.28772i 0.871989 + 0.503443i 0.868009 0.496549i \(-0.165400\pi\)
0.00398032 + 0.999992i \(0.498733\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.34784 + 0.778175i 0.0812777 + 0.0469257i
\(276\) 0 0
\(277\) −4.17157 7.22538i −0.250646 0.434131i 0.713058 0.701105i \(-0.247310\pi\)
−0.963704 + 0.266974i \(0.913976\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 9.89949i 0.590554i −0.955412 0.295277i \(-0.904588\pi\)
0.955412 0.295277i \(-0.0954120\pi\)
\(282\) 0 0
\(283\) 21.0772 12.1689i 1.25291 0.723369i 0.281225 0.959642i \(-0.409259\pi\)
0.971687 + 0.236273i \(0.0759260\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −8.67157 + 15.0196i −0.510093 + 0.883506i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 10.7151 0.625985 0.312992 0.949756i \(-0.398669\pi\)
0.312992 + 0.949756i \(0.398669\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2.42742 4.20441i 0.140381 0.243147i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 26.1313i 1.49139i −0.666288 0.745695i \(-0.732118\pi\)
0.666288 0.745695i \(-0.267882\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 14.7821 + 25.6033i 0.838214 + 1.45183i 0.891386 + 0.453245i \(0.149734\pi\)
−0.0531718 + 0.998585i \(0.516933\pi\)
\(312\) 0 0
\(313\) −7.49903 4.32957i −0.423870 0.244722i 0.272861 0.962053i \(-0.412030\pi\)
−0.696732 + 0.717332i \(0.745363\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −12.4576 7.19239i −0.699687 0.403965i 0.107544 0.994200i \(-0.465702\pi\)
−0.807231 + 0.590236i \(0.799035\pi\)
\(318\) 0 0
\(319\) −1.58579 2.74666i −0.0887870 0.153784i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 30.6274i 1.70416i
\(324\) 0 0
\(325\) 4.98096 2.87576i 0.276294 0.159518i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0.414214 0.717439i 0.0227672 0.0394340i −0.854417 0.519587i \(-0.826086\pi\)
0.877185 + 0.480153i \(0.159419\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 14.7821 0.807631
\(336\) 0 0
\(337\) −8.00000 −0.435788 −0.217894 0.975972i \(-0.569919\pi\)
−0.217894 + 0.975972i \(0.569919\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1.26810 + 2.19642i −0.0686715 + 0.118943i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −15.2042 + 8.77817i −0.816207 + 0.471237i −0.849107 0.528222i \(-0.822859\pi\)
0.0329000 + 0.999459i \(0.489526\pi\)
\(348\) 0 0
\(349\) 16.5754i 0.887263i 0.896209 + 0.443631i \(0.146310\pi\)
−0.896209 + 0.443631i \(0.853690\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −0.131316 0.227446i −0.00698926 0.0121057i 0.862510 0.506041i \(-0.168891\pi\)
−0.869499 + 0.493935i \(0.835558\pi\)
\(354\) 0 0
\(355\) −6.07917 3.50981i −0.322649 0.186281i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 24.5819 + 14.1924i 1.29739 + 0.749046i 0.979952 0.199235i \(-0.0638457\pi\)
0.317433 + 0.948281i \(0.397179\pi\)
\(360\) 0 0
\(361\) 4.15685 + 7.19988i 0.218782 + 0.378941i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 19.3137i 1.01093i
\(366\) 0 0
\(367\) −13.5782 + 7.83938i −0.708776 + 0.409212i −0.810608 0.585589i \(-0.800863\pi\)
0.101831 + 0.994802i \(0.467530\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −2.65685 + 4.60181i −0.137567 + 0.238273i −0.926575 0.376110i \(-0.877261\pi\)
0.789008 + 0.614383i \(0.210595\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −11.7206 −0.603642
\(378\) 0 0
\(379\) 16.8284 0.864418 0.432209 0.901773i \(-0.357734\pi\)
0.432209 + 0.901773i \(0.357734\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −14.1480 + 24.5051i −0.722930 + 1.25215i 0.236890 + 0.971536i \(0.423872\pi\)
−0.959820 + 0.280615i \(0.909461\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0.630399 0.363961i 0.0319625 0.0184536i −0.483934 0.875105i \(-0.660792\pi\)
0.515896 + 0.856651i \(0.327459\pi\)
\(390\) 0 0
\(391\) 13.1426i 0.664647i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1.79337 3.10620i −0.0902340 0.156290i
\(396\) 0 0
\(397\) −7.49903 4.32957i −0.376366 0.217295i 0.299870 0.953980i \(-0.403057\pi\)
−0.676236 + 0.736685i \(0.736390\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −27.3286 15.7782i −1.36473 0.787924i −0.374477 0.927236i \(-0.622178\pi\)
−0.990249 + 0.139312i \(0.955511\pi\)
\(402\) 0 0
\(403\) 4.68629 + 8.11689i 0.233441 + 0.404331i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.34315i 0.116145i
\(408\) 0 0
\(409\) 10.9269 6.30864i 0.540300 0.311942i −0.204900 0.978783i \(-0.565687\pi\)
0.745201 + 0.666840i \(0.232354\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 10.3431 17.9149i 0.507725 0.879406i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 8.65914 0.423027 0.211513 0.977375i \(-0.432161\pi\)
0.211513 + 0.977375i \(0.432161\pi\)
\(420\) 0 0
\(421\) −14.9706 −0.729621 −0.364810 0.931082i \(-0.618866\pi\)
−0.364810 + 0.931082i \(0.618866\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −7.78498 + 13.4840i −0.377627 + 0.654070i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 8.87039 5.12132i 0.427272 0.246685i −0.270912 0.962604i \(-0.587325\pi\)
0.698184 + 0.715919i \(0.253992\pi\)
\(432\) 0 0
\(433\) 33.8937i 1.62883i 0.580284 + 0.814414i \(0.302941\pi\)
−0.580284 + 0.814414i \(0.697059\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5.86030 + 10.1503i 0.280336 + 0.485557i
\(438\) 0 0
\(439\) −2.97297 1.71644i −0.141892 0.0819213i 0.427373 0.904075i \(-0.359439\pi\)
−0.569265 + 0.822154i \(0.692772\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 7.43551 + 4.29289i 0.353272 + 0.203962i 0.666125 0.745840i \(-0.267952\pi\)
−0.312854 + 0.949801i \(0.601285\pi\)
\(444\) 0 0
\(445\) −4.48528 7.76874i −0.212623 0.368273i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 9.41421i 0.444284i 0.975014 + 0.222142i \(0.0713049\pi\)
−0.975014 + 0.222142i \(0.928695\pi\)
\(450\) 0 0
\(451\) −4.52607 + 2.61313i −0.213124 + 0.123047i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 5.65685 9.79796i 0.264616 0.458329i −0.702847 0.711341i \(-0.748088\pi\)
0.967463 + 0.253012i \(0.0814213\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −10.7151 −0.499054 −0.249527 0.968368i \(-0.580275\pi\)
−0.249527 + 0.968368i \(0.580275\pi\)
\(462\) 0 0
\(463\) −29.6569 −1.37827 −0.689135 0.724633i \(-0.742010\pi\)
−0.689135 + 0.724633i \(0.742010\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −15.4161 + 26.7015i −0.713373 + 1.23560i 0.250211 + 0.968191i \(0.419500\pi\)
−0.963584 + 0.267407i \(0.913833\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 5.31925 3.07107i 0.244579 0.141208i
\(474\) 0 0
\(475\) 13.8854i 0.637105i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −11.7206 20.3007i −0.535528 0.927562i −0.999138 0.0415223i \(-0.986779\pi\)
0.463609 0.886040i \(-0.346554\pi\)
\(480\) 0 0
\(481\) 7.49903 + 4.32957i 0.341926 + 0.197411i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 10.9867 + 6.34315i 0.498878 + 0.288027i
\(486\) 0 0
\(487\) −19.7279 34.1698i −0.893957 1.54838i −0.835090 0.550114i \(-0.814584\pi\)
−0.0588679 0.998266i \(-0.518749\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 26.5269i 1.19714i 0.801069 + 0.598571i \(0.204265\pi\)
−0.801069 + 0.598571i \(0.795735\pi\)
\(492\) 0 0
\(493\) 27.4781 15.8645i 1.23755 0.714500i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 3.58579 6.21076i 0.160522 0.278032i −0.774534 0.632532i \(-0.782016\pi\)
0.935056 + 0.354500i \(0.115349\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 19.6369 0.875566 0.437783 0.899081i \(-0.355764\pi\)
0.437783 + 0.899081i \(0.355764\pi\)
\(504\) 0 0
\(505\) −24.9706 −1.11118
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 5.09494 8.82469i 0.225829 0.391147i −0.730739 0.682657i \(-0.760824\pi\)
0.956568 + 0.291510i \(0.0941576\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −19.5959 + 11.3137i −0.863499 + 0.498542i
\(516\) 0 0
\(517\) 4.32957i 0.190414i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −2.93015 5.07517i −0.128372 0.222347i 0.794674 0.607037i \(-0.207642\pi\)
−0.923046 + 0.384689i \(0.874309\pi\)
\(522\) 0 0
\(523\) −7.49903 4.32957i −0.327910 0.189319i 0.327003 0.945023i \(-0.393961\pi\)
−0.654913 + 0.755705i \(0.727295\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −21.9733 12.6863i −0.957172 0.552624i
\(528\) 0 0
\(529\) −8.98528 15.5630i −0.390664 0.676651i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 19.3137i 0.836570i
\(534\) 0 0
\(535\) 17.3277 10.0042i 0.749143 0.432518i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −8.17157 + 14.1536i −0.351323 + 0.608510i −0.986482 0.163872i \(-0.947602\pi\)
0.635158 + 0.772382i \(0.280935\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 14.7821 0.633194
\(546\) 0 0
\(547\) 6.34315 0.271213 0.135607 0.990763i \(-0.456702\pi\)
0.135607 + 0.990763i \(0.456702\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 14.1480 24.5051i 0.602726 1.04395i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −22.6037 + 13.0503i −0.957750 + 0.552957i −0.895480 0.445102i \(-0.853167\pi\)
−0.0622698 + 0.998059i \(0.519834\pi\)
\(558\) 0 0
\(559\) 22.6984i 0.960039i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −22.8072 39.5032i −0.961207 1.66486i −0.719477 0.694516i \(-0.755619\pi\)
−0.241730 0.970344i \(-0.577715\pi\)
\(564\) 0 0
\(565\) −26.8347 15.4930i −1.12895 0.651797i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 3.67423 + 2.12132i 0.154032 + 0.0889304i 0.575035 0.818129i \(-0.304988\pi\)
−0.421003 + 0.907059i \(0.638322\pi\)
\(570\) 0 0
\(571\) 10.4853 + 18.1610i 0.438795 + 0.760016i 0.997597 0.0692856i \(-0.0220720\pi\)
−0.558801 + 0.829301i \(0.688739\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 5.95837i 0.248481i
\(576\) 0 0
\(577\) 3.74952 2.16478i 0.156094 0.0901212i −0.419918 0.907562i \(-0.637941\pi\)
0.576013 + 0.817441i \(0.304608\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 1.58579 2.74666i 0.0656766 0.113755i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 4.85483 0.200380 0.100190 0.994968i \(-0.468055\pi\)
0.100190 + 0.994968i \(0.468055\pi\)
\(588\) 0 0
\(589\) −22.6274 −0.932346
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.66205 2.87875i 0.0682522 0.118216i −0.829880 0.557942i \(-0.811591\pi\)
0.898132 + 0.439726i \(0.144924\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 9.71092 5.60660i 0.396777 0.229080i −0.288315 0.957536i \(-0.593095\pi\)
0.685093 + 0.728456i \(0.259762\pi\)
\(600\) 0 0
\(601\) 33.8937i 1.38255i −0.722590 0.691277i \(-0.757049\pi\)
0.722590 0.691277i \(-0.242951\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 8.15640 + 14.1273i 0.331605 + 0.574357i
\(606\) 0 0
\(607\) 4.52607 + 2.61313i 0.183707 + 0.106064i 0.589033 0.808109i \(-0.299509\pi\)
−0.405326 + 0.914172i \(0.632842\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 13.8564 + 8.00000i 0.560570 + 0.323645i
\(612\) 0 0
\(613\) −0.656854 1.13770i −0.0265301 0.0459515i 0.852456 0.522800i \(-0.175112\pi\)
−0.878986 + 0.476848i \(0.841779\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 12.2426i 0.492870i −0.969159 0.246435i \(-0.920741\pi\)
0.969159 0.246435i \(-0.0792592\pi\)
\(618\) 0 0
\(619\) −16.5512 + 9.55582i −0.665248 + 0.384081i −0.794274 0.607560i \(-0.792148\pi\)
0.129026 + 0.991641i \(0.458815\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 2.32843 4.03295i 0.0931371 0.161318i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −23.4412 −0.934662
\(630\) 0 0
\(631\) −39.5980 −1.57637 −0.788185 0.615438i \(-0.788979\pi\)
−0.788185 + 0.615438i \(0.788979\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 12.9887 22.4971i 0.515441 0.892770i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −16.3419 + 9.43503i −0.645468 + 0.372661i −0.786718 0.617313i \(-0.788221\pi\)
0.141250 + 0.989974i \(0.454888\pi\)
\(642\) 0 0
\(643\) 13.8854i 0.547586i 0.961789 + 0.273793i \(0.0882784\pi\)
−0.961789 + 0.273793i \(0.911722\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.79337 + 3.10620i 0.0705045 + 0.122117i 0.899123 0.437697i \(-0.144206\pi\)
−0.828618 + 0.559814i \(0.810872\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −35.6917 20.6066i −1.39672 0.806399i −0.402676 0.915343i \(-0.631920\pi\)
−0.994048 + 0.108944i \(0.965253\pi\)
\(654\) 0 0
\(655\) −5.65685 9.79796i −0.221032 0.382838i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 47.4142i 1.84700i 0.383604 + 0.923498i \(0.374683\pi\)
−0.383604 + 0.923498i \(0.625317\pi\)
\(660\) 0 0
\(661\) −32.4590 + 18.7402i −1.26251 + 0.728910i −0.973559 0.228434i \(-0.926639\pi\)
−0.288950 + 0.957344i \(0.593306\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 6.07107 10.5154i 0.235073 0.407158i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −13.6569 −0.526433 −0.263217 0.964737i \(-0.584783\pi\)
−0.263217 + 0.964737i \(0.584783\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 22.9385 39.7306i 0.881597 1.52697i 0.0320325 0.999487i \(-0.489802\pi\)
0.849565 0.527484i \(-0.176865\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −30.0753 + 17.3640i −1.15080 + 0.664414i −0.949082 0.315030i \(-0.897985\pi\)
−0.201716 + 0.979444i \(0.564652\pi\)
\(684\) 0 0
\(685\) 15.1535i 0.578985i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −5.86030 10.1503i −0.223260 0.386697i
\(690\) 0 0
\(691\) 27.1564 + 15.6788i 1.03308 + 0.596448i 0.917865 0.396893i \(-0.129912\pi\)
0.115213 + 0.993341i \(0.463245\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 13.8564 + 8.00000i 0.525603 + 0.303457i
\(696\) 0 0
\(697\) −26.1421 45.2795i −0.990204 1.71508i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 28.9289i 1.09263i 0.837580 + 0.546315i \(0.183970\pi\)
−0.837580 + 0.546315i \(0.816030\pi\)
\(702\) 0 0
\(703\) −18.1043 + 10.4525i −0.682815 + 0.394224i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 12.1421 21.0308i 0.456007 0.789828i −0.542738 0.839902i \(-0.682612\pi\)
0.998746 + 0.0500739i \(0.0159457\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −9.70967 −0.363630
\(714\) 0 0
\(715\) −1.94113 −0.0725940
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −10.4525 + 18.1043i −0.389813 + 0.675175i −0.992424 0.122859i \(-0.960794\pi\)
0.602611 + 0.798035i \(0.294127\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 12.4576 7.19239i 0.462663 0.267119i
\(726\) 0 0
\(727\) 6.12293i 0.227087i −0.993533 0.113544i \(-0.963780\pi\)
0.993533 0.113544i \(-0.0362201\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 30.7235 + 53.2146i 1.13635 + 1.96821i
\(732\) 0 0
\(733\) −5.62427 3.24718i −0.207737 0.119937i 0.392522 0.919743i \(-0.371603\pi\)
−0.600259 + 0.799805i \(0.704936\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.89898 + 2.82843i 0.180456 + 0.104186i
\(738\) 0 0
\(739\) −20.1421 34.8872i −0.740940 1.28335i −0.952068 0.305888i \(-0.901047\pi\)
0.211127 0.977459i \(-0.432287\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 47.6985i 1.74989i −0.484224 0.874944i \(-0.660898\pi\)
0.484224 0.874944i \(-0.339102\pi\)
\(744\) 0 0
\(745\) −21.5321 + 12.4316i −0.788876 + 0.455458i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −6.75736 + 11.7041i −0.246580 + 0.427088i −0.962575 0.271017i \(-0.912640\pi\)
0.715995 + 0.698105i \(0.245973\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 18.5864 0.676428
\(756\) 0 0
\(757\) −27.5980 −1.00307 −0.501533 0.865139i \(-0.667230\pi\)
−0.501533 + 0.865139i \(0.667230\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −14.6508 + 25.3759i −0.531090 + 0.919874i 0.468252 + 0.883595i \(0.344884\pi\)
−0.999342 + 0.0362791i \(0.988449\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 33.8937i 1.22224i −0.791539 0.611119i \(-0.790720\pi\)
0.791539 0.611119i \(-0.209280\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −8.15640 14.1273i −0.293365 0.508124i 0.681238 0.732062i \(-0.261442\pi\)
−0.974603 + 0.223938i \(0.928109\pi\)
\(774\) 0 0
\(775\) −9.96192 5.75152i −0.357843 0.206601i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −40.3805 23.3137i −1.44678 0.835300i
\(780\) 0 0
\(781\) −1.34315 2.32640i −0.0480615 0.0832450i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 25.3726i 0.905586i
\(786\) 0 0
\(787\) −33.1023 + 19.1116i −1.17997 + 0.681256i −0.956008 0.293341i \(-0.905233\pi\)
−0.223963 + 0.974598i \(0.571899\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −22.4357 −0.794715 −0.397357 0.917664i \(-0.630073\pi\)
−0.397357 + 0.917664i \(0.630073\pi\)
\(798\) 0 0
\(799\) −43.3137 −1.53233
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 3.69552 6.40083i 0.130412 0.225880i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −6.12372 + 3.53553i −0.215299 + 0.124303i −0.603772 0.797157i \(-0.706336\pi\)
0.388473 + 0.921460i \(0.373003\pi\)
\(810\) 0 0
\(811\) 12.2459i 0.430011i 0.976613 + 0.215005i \(0.0689769\pi\)
−0.976613 + 0.215005i \(0.931023\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −4.85483 8.40882i −0.170057 0.294548i
\(816\) 0 0
\(817\) 47.4571 + 27.3994i 1.66031 + 0.958582i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 34.0827 + 19.6777i 1.18950 + 0.686755i 0.958192 0.286126i \(-0.0923677\pi\)
0.231303 + 0.972882i \(0.425701\pi\)
\(822\) 0 0
\(823\) −10.8284 18.7554i −0.377455 0.653772i 0.613236 0.789900i \(-0.289867\pi\)
−0.990691 + 0.136128i \(0.956534\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 55.0122i 1.91296i 0.291796 + 0.956481i \(0.405747\pi\)
−0.291796 + 0.956481i \(0.594253\pi\)
\(828\) 0 0
\(829\) 9.37379 5.41196i 0.325565 0.187965i −0.328305 0.944572i \(-0.606477\pi\)
0.653870 + 0.756607i \(0.273144\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −10.3431 + 17.9149i −0.357939 + 0.619969i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −51.7373 −1.78617 −0.893084 0.449890i \(-0.851463\pi\)
−0.893084 + 0.449890i \(0.851463\pi\)
\(840\) 0 0
\(841\) −0.313708 −0.0108175
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 6.36304 11.0211i 0.218895 0.379137i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −7.76874 + 4.48528i −0.266309 + 0.153753i
\(852\) 0 0
\(853\) 29.5641i 1.01226i 0.862458 + 0.506129i \(0.168924\pi\)
−0.862458 + 0.506129i \(0.831076\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −2.93015 5.07517i −0.100092 0.173365i 0.811630 0.584171i \(-0.198580\pi\)
−0.911722 + 0.410807i \(0.865247\pi\)
\(858\) 0 0
\(859\) −12.0251 6.94269i −0.410291 0.236882i 0.280624 0.959818i \(-0.409459\pi\)
−0.690915 + 0.722936i \(0.742792\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 17.8278 + 10.2929i 0.606866 + 0.350374i 0.771738 0.635941i \(-0.219388\pi\)
−0.164872 + 0.986315i \(0.552721\pi\)
\(864\) 0 0
\(865\) 17.1716 + 29.7420i 0.583851 + 1.01126i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.37258i 0.0465617i
\(870\) 0 0
\(871\) 18.1043 10.4525i 0.613440 0.354170i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 7.00000 12.1244i 0.236373 0.409410i −0.723298 0.690536i \(-0.757375\pi\)
0.959671 + 0.281126i \(0.0907079\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 39.0112 1.31432 0.657160 0.753751i \(-0.271758\pi\)
0.657160 + 0.753751i \(0.271758\pi\)
\(882\) 0 0
\(883\) −4.14214 −0.139394 −0.0696970 0.997568i \(-0.522203\pi\)
−0.0696970 + 0.997568i \(0.522203\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −8.02509 + 13.8999i −0.269456 + 0.466712i −0.968721 0.248151i \(-0.920177\pi\)
0.699265 + 0.714862i \(0.253511\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −33.4523 + 19.3137i −1.11944 + 0.646309i
\(894\) 0 0
\(895\) 5.96909i 0.199525i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 11.7206 + 20.3007i 0.390904 + 0.677066i
\(900\) 0 0
\(901\) 27.4781 + 15.8645i 0.915427 + 0.528522i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −19.1035 11.0294i −0.635023 0.366631i
\(906\) 0 0
\(907\) 5.10051 + 8.83433i 0.169359 + 0.293339i 0.938195 0.346108i \(-0.112497\pi\)
−0.768835 + 0.639447i \(0.779163\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 20.1838i 0.668718i −0.942446 0.334359i \(-0.891480\pi\)
0.942446 0.334359i \(-0.108520\pi\)
\(912\) 0 0
\(913\) 6.85572 3.95815i 0.226891 0.130996i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 18.8995 32.7349i 0.623437 1.07982i −0.365404 0.930849i \(-0.619069\pi\)
0.988841 0.148975i \(-0.0475975\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −9.92724 −0.326759
\(924\) 0 0
\(925\) −10.6274 −0.349427
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −10.0586 + 17.4219i −0.330010 + 0.571595i −0.982514 0.186191i \(-0.940386\pi\)
0.652503 + 0.757786i \(0.273719\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 4.55082 2.62742i 0.148828 0.0859257i
\(936\) 0 0
\(937\) 3.58673i 0.117173i 0.998282 + 0.0585867i \(0.0186594\pi\)
−0.998282 + 0.0585867i \(0.981341\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −11.2179 19.4299i −0.365692 0.633397i 0.623195 0.782067i \(-0.285834\pi\)
−0.988887 + 0.148669i \(0.952501\pi\)
\(942\) 0 0
\(943\) −17.3277 10.0042i −0.564268 0.325780i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −21.2919 12.2929i −0.691894 0.399465i 0.112427 0.993660i \(-0.464138\pi\)
−0.804321 + 0.594195i \(0.797471\pi\)
\(948\) 0 0
\(949\) −13.6569 23.6544i −0.443320 0.767853i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 53.2132i 1.72374i 0.507125 + 0.861872i \(0.330708\pi\)
−0.507125 + 0.861872i \(0.669292\pi\)
\(954\) 0 0
\(955\) 30.1294 17.3952i 0.974963 0.562895i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −6.12742 + 10.6130i −0.197659 + 0.342355i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 8.65914 0.278748
\(966\) 0 0
\(967\) −29.6569 −0.953700 −0.476850 0.878985i \(-0.658222\pi\)
−0.476850 + 0.878985i \(0.658222\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 11.7206 20.3007i 0.376132 0.651480i −0.614364 0.789023i \(-0.710587\pi\)
0.990496 + 0.137543i \(0.0439205\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −15.5014 + 8.94975i −0.495934 + 0.286328i −0.727033 0.686603i \(-0.759101\pi\)
0.231099 + 0.972930i \(0.425768\pi\)
\(978\) 0 0
\(979\) 3.43289i 0.109716i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 9.29319 + 16.0963i 0.296407 + 0.513391i 0.975311 0.220835i \(-0.0708783\pi\)
−0.678904 + 0.734227i \(0.737545\pi\)
\(984\) 0 0
\(985\) −19.0692 11.0096i −0.607597 0.350796i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 20.3643 + 11.7574i 0.647548 + 0.373862i
\(990\) 0 0
\(991\) −13.9289 24.1256i −0.442467 0.766376i 0.555405 0.831580i \(-0.312563\pi\)
−0.997872 + 0.0652046i \(0.979230\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 5.25483i 0.166589i
\(996\) 0 0
\(997\) 46.8138 27.0279i 1.48261 0.855984i 0.482802 0.875730i \(-0.339619\pi\)
0.999805 + 0.0197461i \(0.00628577\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3528.2.bl.b.1097.6 16
3.2 odd 2 inner 3528.2.bl.b.1097.3 16
7.2 even 3 504.2.k.a.377.3 8
7.3 odd 6 inner 3528.2.bl.b.521.3 16
7.4 even 3 inner 3528.2.bl.b.521.5 16
7.5 odd 6 504.2.k.a.377.6 yes 8
7.6 odd 2 inner 3528.2.bl.b.1097.4 16
21.2 odd 6 504.2.k.a.377.5 yes 8
21.5 even 6 504.2.k.a.377.4 yes 8
21.11 odd 6 inner 3528.2.bl.b.521.4 16
21.17 even 6 inner 3528.2.bl.b.521.6 16
21.20 even 2 inner 3528.2.bl.b.1097.5 16
28.19 even 6 1008.2.k.c.881.5 8
28.23 odd 6 1008.2.k.c.881.4 8
56.5 odd 6 4032.2.k.f.3905.4 8
56.19 even 6 4032.2.k.e.3905.3 8
56.37 even 6 4032.2.k.f.3905.5 8
56.51 odd 6 4032.2.k.e.3905.6 8
84.23 even 6 1008.2.k.c.881.6 8
84.47 odd 6 1008.2.k.c.881.3 8
168.5 even 6 4032.2.k.f.3905.6 8
168.107 even 6 4032.2.k.e.3905.4 8
168.131 odd 6 4032.2.k.e.3905.5 8
168.149 odd 6 4032.2.k.f.3905.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.k.a.377.3 8 7.2 even 3
504.2.k.a.377.4 yes 8 21.5 even 6
504.2.k.a.377.5 yes 8 21.2 odd 6
504.2.k.a.377.6 yes 8 7.5 odd 6
1008.2.k.c.881.3 8 84.47 odd 6
1008.2.k.c.881.4 8 28.23 odd 6
1008.2.k.c.881.5 8 28.19 even 6
1008.2.k.c.881.6 8 84.23 even 6
3528.2.bl.b.521.3 16 7.3 odd 6 inner
3528.2.bl.b.521.4 16 21.11 odd 6 inner
3528.2.bl.b.521.5 16 7.4 even 3 inner
3528.2.bl.b.521.6 16 21.17 even 6 inner
3528.2.bl.b.1097.3 16 3.2 odd 2 inner
3528.2.bl.b.1097.4 16 7.6 odd 2 inner
3528.2.bl.b.1097.5 16 21.20 even 2 inner
3528.2.bl.b.1097.6 16 1.1 even 1 trivial
4032.2.k.e.3905.3 8 56.19 even 6
4032.2.k.e.3905.4 8 168.107 even 6
4032.2.k.e.3905.5 8 168.131 odd 6
4032.2.k.e.3905.6 8 56.51 odd 6
4032.2.k.f.3905.3 8 168.149 odd 6
4032.2.k.f.3905.4 8 56.5 odd 6
4032.2.k.f.3905.5 8 56.37 even 6
4032.2.k.f.3905.6 8 168.5 even 6