Defining parameters
Level: | \( N \) | \(=\) | \( 3528 = 2^{3} \cdot 3^{2} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 3528.bw (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 56 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(672\) | ||
Trace bound: | \(10\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(3528, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 88 | 18 | 70 |
Cusp forms | 24 | 10 | 14 |
Eisenstein series | 64 | 8 | 56 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 10 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(3528, [\chi])\) into newform subspaces
Label | Dim. | \(A\) | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
\(a_2\) | \(a_3\) | \(a_5\) | \(a_7\) | ||||||||
3528.1.bw.a | \(2\) | \(1.761\) | \(\Q(\sqrt{-3}) \) | \(D_{2}\) | \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-14}) \) | \(\Q(\sqrt{2}) \) | \(-1\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{6}^{2}q^{2}-\zeta_{6}q^{4}+q^{8}+\zeta_{6}^{2}q^{16}+\cdots\) |
3528.1.bw.b | \(4\) | \(1.761\) | \(\Q(\zeta_{12})\) | \(D_{2}\) | \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-6}) \) | \(\Q(\sqrt{42}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{12}^{5}q^{2}-\zeta_{12}^{4}q^{4}+\zeta_{12}^{3}q^{8}+\cdots\) |
3528.1.bw.c | \(4\) | \(1.761\) | \(\Q(\zeta_{12})\) | \(D_{6}\) | \(\Q(\sqrt{-6}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{12}^{5}q^{2}-\zeta_{12}^{4}q^{4}+(-\zeta_{12}-\zeta_{12}^{3}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(3528, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(3528, [\chi]) \cong \) \(S_{1}^{\mathrm{new}}(392, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(504, [\chi])\)\(^{\oplus 2}\)