Properties

Label 3528.1.bw
Level $3528$
Weight $1$
Character orbit 3528.bw
Rep. character $\chi_{3528}(325,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $10$
Newform subspaces $3$
Sturm bound $672$
Trace bound $10$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 3528 = 2^{3} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3528.bw (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 56 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 3 \)
Sturm bound: \(672\)
Trace bound: \(10\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3528, [\chi])\).

Total New Old
Modular forms 88 18 70
Cusp forms 24 10 14
Eisenstein series 64 8 56

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 10 0 0 0

Trace form

\( 10q - q^{2} + 3q^{4} + 2q^{8} + O(q^{10}) \) \( 10q - q^{2} + 3q^{4} + 2q^{8} + 6q^{10} - 5q^{16} - 4q^{22} + 2q^{23} - q^{25} - 6q^{31} - q^{32} + 6q^{40} + 2q^{46} - 2q^{50} - 2q^{58} - 6q^{64} + 4q^{71} + 4q^{79} - 2q^{88} - 4q^{92} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(3528, [\chi])\) into newform subspaces

Label Dim. \(A\) Field Image CM RM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
3528.1.bw.a \(2\) \(1.761\) \(\Q(\sqrt{-3}) \) \(D_{2}\) \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-14}) \) \(\Q(\sqrt{2}) \) \(-1\) \(0\) \(0\) \(0\) \(q+\zeta_{6}^{2}q^{2}-\zeta_{6}q^{4}+q^{8}+\zeta_{6}^{2}q^{16}+\cdots\)
3528.1.bw.b \(4\) \(1.761\) \(\Q(\zeta_{12})\) \(D_{2}\) \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-6}) \) \(\Q(\sqrt{42}) \) \(0\) \(0\) \(0\) \(0\) \(q+\zeta_{12}^{5}q^{2}-\zeta_{12}^{4}q^{4}+\zeta_{12}^{3}q^{8}+\cdots\)
3528.1.bw.c \(4\) \(1.761\) \(\Q(\zeta_{12})\) \(D_{6}\) \(\Q(\sqrt{-6}) \) None \(0\) \(0\) \(0\) \(0\) \(q+\zeta_{12}^{5}q^{2}-\zeta_{12}^{4}q^{4}+(-\zeta_{12}-\zeta_{12}^{3}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(3528, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3528, [\chi]) \cong \) \(S_{1}^{\mathrm{new}}(392, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(504, [\chi])\)\(^{\oplus 2}\)