Properties

Label 351.2.q.f.244.1
Level $351$
Weight $2$
Character 351.244
Analytic conductor $2.803$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [351,2,Mod(82,351)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("351.82"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(351, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.q (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.80274911095\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 244.1
Root \(-1.22474 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 351.244
Dual form 351.2.q.f.82.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22474 + 0.707107i) q^{2} -1.41421i q^{5} +(1.50000 + 0.866025i) q^{7} -2.82843i q^{8} +(1.00000 + 1.73205i) q^{10} +(-1.22474 + 0.707107i) q^{11} +(2.50000 - 2.59808i) q^{13} -2.44949 q^{14} +(2.00000 + 3.46410i) q^{16} +(2.44949 - 4.24264i) q^{17} +(1.50000 + 0.866025i) q^{19} +(1.00000 - 1.73205i) q^{22} +(1.22474 + 2.12132i) q^{23} +3.00000 q^{25} +(-1.22474 + 4.94975i) q^{26} +(4.89898 + 8.48528i) q^{29} -5.19615i q^{31} +6.92820i q^{34} +(1.22474 - 2.12132i) q^{35} +(1.50000 - 0.866025i) q^{37} -2.44949 q^{38} -4.00000 q^{40} +(6.12372 - 3.53553i) q^{41} +(-2.50000 + 4.33013i) q^{43} +(-3.00000 - 1.73205i) q^{46} +2.82843i q^{47} +(-2.00000 - 3.46410i) q^{49} +(-3.67423 + 2.12132i) q^{50} +(1.00000 + 1.73205i) q^{55} +(2.44949 - 4.24264i) q^{56} +(-12.0000 - 6.92820i) q^{58} +(4.89898 + 2.82843i) q^{59} +(2.00000 - 3.46410i) q^{61} +(3.67423 + 6.36396i) q^{62} -8.00000 q^{64} +(-3.67423 - 3.53553i) q^{65} +(6.00000 - 3.46410i) q^{67} +3.46410i q^{70} +(-13.4722 - 7.77817i) q^{71} +(-1.22474 + 2.12132i) q^{74} -2.44949 q^{77} -10.0000 q^{79} +(4.89898 - 2.82843i) q^{80} +(-5.00000 + 8.66025i) q^{82} -9.89949i q^{83} +(-6.00000 - 3.46410i) q^{85} -7.07107i q^{86} +(2.00000 + 3.46410i) q^{88} +(-8.57321 + 4.94975i) q^{89} +(6.00000 - 1.73205i) q^{91} +(-2.00000 - 3.46410i) q^{94} +(1.22474 - 2.12132i) q^{95} +(-12.0000 - 6.92820i) q^{97} +(4.89898 + 2.82843i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{7} + 4 q^{10} + 10 q^{13} + 8 q^{16} + 6 q^{19} + 4 q^{22} + 12 q^{25} + 6 q^{37} - 16 q^{40} - 10 q^{43} - 12 q^{46} - 8 q^{49} + 4 q^{55} - 48 q^{58} + 8 q^{61} - 32 q^{64} + 24 q^{67} - 40 q^{79}+ \cdots - 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.22474 + 0.707107i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(3\) 0 0
\(4\) 0 0
\(5\) 1.41421i 0.632456i −0.948683 0.316228i \(-0.897584\pi\)
0.948683 0.316228i \(-0.102416\pi\)
\(6\) 0 0
\(7\) 1.50000 + 0.866025i 0.566947 + 0.327327i 0.755929 0.654654i \(-0.227186\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) 2.82843i 1.00000i
\(9\) 0 0
\(10\) 1.00000 + 1.73205i 0.316228 + 0.547723i
\(11\) −1.22474 + 0.707107i −0.369274 + 0.213201i −0.673141 0.739514i \(-0.735055\pi\)
0.303867 + 0.952714i \(0.401722\pi\)
\(12\) 0 0
\(13\) 2.50000 2.59808i 0.693375 0.720577i
\(14\) −2.44949 −0.654654
\(15\) 0 0
\(16\) 2.00000 + 3.46410i 0.500000 + 0.866025i
\(17\) 2.44949 4.24264i 0.594089 1.02899i −0.399586 0.916696i \(-0.630846\pi\)
0.993675 0.112296i \(-0.0358205\pi\)
\(18\) 0 0
\(19\) 1.50000 + 0.866025i 0.344124 + 0.198680i 0.662094 0.749421i \(-0.269668\pi\)
−0.317970 + 0.948101i \(0.603001\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 1.00000 1.73205i 0.213201 0.369274i
\(23\) 1.22474 + 2.12132i 0.255377 + 0.442326i 0.964998 0.262258i \(-0.0844671\pi\)
−0.709621 + 0.704584i \(0.751134\pi\)
\(24\) 0 0
\(25\) 3.00000 0.600000
\(26\) −1.22474 + 4.94975i −0.240192 + 0.970725i
\(27\) 0 0
\(28\) 0 0
\(29\) 4.89898 + 8.48528i 0.909718 + 1.57568i 0.814456 + 0.580225i \(0.197035\pi\)
0.0952614 + 0.995452i \(0.469631\pi\)
\(30\) 0 0
\(31\) 5.19615i 0.933257i −0.884454 0.466628i \(-0.845469\pi\)
0.884454 0.466628i \(-0.154531\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 6.92820i 1.18818i
\(35\) 1.22474 2.12132i 0.207020 0.358569i
\(36\) 0 0
\(37\) 1.50000 0.866025i 0.246598 0.142374i −0.371607 0.928390i \(-0.621193\pi\)
0.618206 + 0.786016i \(0.287860\pi\)
\(38\) −2.44949 −0.397360
\(39\) 0 0
\(40\) −4.00000 −0.632456
\(41\) 6.12372 3.53553i 0.956365 0.552158i 0.0613127 0.998119i \(-0.480471\pi\)
0.895052 + 0.445961i \(0.147138\pi\)
\(42\) 0 0
\(43\) −2.50000 + 4.33013i −0.381246 + 0.660338i −0.991241 0.132068i \(-0.957838\pi\)
0.609994 + 0.792406i \(0.291172\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −3.00000 1.73205i −0.442326 0.255377i
\(47\) 2.82843i 0.412568i 0.978492 + 0.206284i \(0.0661372\pi\)
−0.978492 + 0.206284i \(0.933863\pi\)
\(48\) 0 0
\(49\) −2.00000 3.46410i −0.285714 0.494872i
\(50\) −3.67423 + 2.12132i −0.519615 + 0.300000i
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 1.00000 + 1.73205i 0.134840 + 0.233550i
\(56\) 2.44949 4.24264i 0.327327 0.566947i
\(57\) 0 0
\(58\) −12.0000 6.92820i −1.57568 0.909718i
\(59\) 4.89898 + 2.82843i 0.637793 + 0.368230i 0.783764 0.621059i \(-0.213297\pi\)
−0.145971 + 0.989289i \(0.546631\pi\)
\(60\) 0 0
\(61\) 2.00000 3.46410i 0.256074 0.443533i −0.709113 0.705095i \(-0.750904\pi\)
0.965187 + 0.261562i \(0.0842377\pi\)
\(62\) 3.67423 + 6.36396i 0.466628 + 0.808224i
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) −3.67423 3.53553i −0.455733 0.438529i
\(66\) 0 0
\(67\) 6.00000 3.46410i 0.733017 0.423207i −0.0865081 0.996251i \(-0.527571\pi\)
0.819525 + 0.573044i \(0.194238\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 3.46410i 0.414039i
\(71\) −13.4722 7.77817i −1.59886 0.923099i −0.991708 0.128510i \(-0.958981\pi\)
−0.607147 0.794590i \(-0.707686\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) −1.22474 + 2.12132i −0.142374 + 0.246598i
\(75\) 0 0
\(76\) 0 0
\(77\) −2.44949 −0.279145
\(78\) 0 0
\(79\) −10.0000 −1.12509 −0.562544 0.826767i \(-0.690177\pi\)
−0.562544 + 0.826767i \(0.690177\pi\)
\(80\) 4.89898 2.82843i 0.547723 0.316228i
\(81\) 0 0
\(82\) −5.00000 + 8.66025i −0.552158 + 0.956365i
\(83\) 9.89949i 1.08661i −0.839535 0.543305i \(-0.817173\pi\)
0.839535 0.543305i \(-0.182827\pi\)
\(84\) 0 0
\(85\) −6.00000 3.46410i −0.650791 0.375735i
\(86\) 7.07107i 0.762493i
\(87\) 0 0
\(88\) 2.00000 + 3.46410i 0.213201 + 0.369274i
\(89\) −8.57321 + 4.94975i −0.908759 + 0.524672i −0.880032 0.474915i \(-0.842479\pi\)
−0.0287273 + 0.999587i \(0.509145\pi\)
\(90\) 0 0
\(91\) 6.00000 1.73205i 0.628971 0.181568i
\(92\) 0 0
\(93\) 0 0
\(94\) −2.00000 3.46410i −0.206284 0.357295i
\(95\) 1.22474 2.12132i 0.125656 0.217643i
\(96\) 0 0
\(97\) −12.0000 6.92820i −1.21842 0.703452i −0.253837 0.967247i \(-0.581693\pi\)
−0.964579 + 0.263795i \(0.915026\pi\)
\(98\) 4.89898 + 2.82843i 0.494872 + 0.285714i
\(99\) 0 0
\(100\) 0 0
\(101\) −6.12372 10.6066i −0.609333 1.05540i −0.991350 0.131241i \(-0.958104\pi\)
0.382017 0.924155i \(-0.375230\pi\)
\(102\) 0 0
\(103\) 5.00000 0.492665 0.246332 0.969185i \(-0.420775\pi\)
0.246332 + 0.969185i \(0.420775\pi\)
\(104\) −7.34847 7.07107i −0.720577 0.693375i
\(105\) 0 0
\(106\) 0 0
\(107\) 8.57321 + 14.8492i 0.828804 + 1.43553i 0.898977 + 0.437996i \(0.144311\pi\)
−0.0701732 + 0.997535i \(0.522355\pi\)
\(108\) 0 0
\(109\) 15.5885i 1.49310i −0.665327 0.746552i \(-0.731708\pi\)
0.665327 0.746552i \(-0.268292\pi\)
\(110\) −2.44949 1.41421i −0.233550 0.134840i
\(111\) 0 0
\(112\) 6.92820i 0.654654i
\(113\) −8.57321 + 14.8492i −0.806500 + 1.39690i 0.108774 + 0.994067i \(0.465308\pi\)
−0.915274 + 0.402833i \(0.868026\pi\)
\(114\) 0 0
\(115\) 3.00000 1.73205i 0.279751 0.161515i
\(116\) 0 0
\(117\) 0 0
\(118\) −8.00000 −0.736460
\(119\) 7.34847 4.24264i 0.673633 0.388922i
\(120\) 0 0
\(121\) −4.50000 + 7.79423i −0.409091 + 0.708566i
\(122\) 5.65685i 0.512148i
\(123\) 0 0
\(124\) 0 0
\(125\) 11.3137i 1.01193i
\(126\) 0 0
\(127\) 9.50000 + 16.4545i 0.842989 + 1.46010i 0.887357 + 0.461084i \(0.152539\pi\)
−0.0443678 + 0.999015i \(0.514127\pi\)
\(128\) 9.79796 5.65685i 0.866025 0.500000i
\(129\) 0 0
\(130\) 7.00000 + 1.73205i 0.613941 + 0.151911i
\(131\) −14.6969 −1.28408 −0.642039 0.766672i \(-0.721911\pi\)
−0.642039 + 0.766672i \(0.721911\pi\)
\(132\) 0 0
\(133\) 1.50000 + 2.59808i 0.130066 + 0.225282i
\(134\) −4.89898 + 8.48528i −0.423207 + 0.733017i
\(135\) 0 0
\(136\) −12.0000 6.92820i −1.02899 0.594089i
\(137\) 12.2474 + 7.07107i 1.04637 + 0.604122i 0.921631 0.388067i \(-0.126857\pi\)
0.124739 + 0.992190i \(0.460191\pi\)
\(138\) 0 0
\(139\) −1.00000 + 1.73205i −0.0848189 + 0.146911i −0.905314 0.424743i \(-0.860365\pi\)
0.820495 + 0.571654i \(0.193698\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 22.0000 1.84620
\(143\) −1.22474 + 4.94975i −0.102418 + 0.413919i
\(144\) 0 0
\(145\) 12.0000 6.92820i 0.996546 0.575356i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 15.9217 + 9.19239i 1.30436 + 0.753070i 0.981148 0.193258i \(-0.0619056\pi\)
0.323207 + 0.946328i \(0.395239\pi\)
\(150\) 0 0
\(151\) 5.19615i 0.422857i 0.977393 + 0.211428i \(0.0678115\pi\)
−0.977393 + 0.211428i \(0.932188\pi\)
\(152\) 2.44949 4.24264i 0.198680 0.344124i
\(153\) 0 0
\(154\) 3.00000 1.73205i 0.241747 0.139573i
\(155\) −7.34847 −0.590243
\(156\) 0 0
\(157\) 5.00000 0.399043 0.199522 0.979893i \(-0.436061\pi\)
0.199522 + 0.979893i \(0.436061\pi\)
\(158\) 12.2474 7.07107i 0.974355 0.562544i
\(159\) 0 0
\(160\) 0 0
\(161\) 4.24264i 0.334367i
\(162\) 0 0
\(163\) 1.50000 + 0.866025i 0.117489 + 0.0678323i 0.557593 0.830115i \(-0.311725\pi\)
−0.440104 + 0.897947i \(0.645058\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 7.00000 + 12.1244i 0.543305 + 0.941033i
\(167\) 6.12372 3.53553i 0.473868 0.273588i −0.243990 0.969778i \(-0.578456\pi\)
0.717858 + 0.696190i \(0.245123\pi\)
\(168\) 0 0
\(169\) −0.500000 12.9904i −0.0384615 0.999260i
\(170\) 9.79796 0.751469
\(171\) 0 0
\(172\) 0 0
\(173\) 2.44949 4.24264i 0.186231 0.322562i −0.757759 0.652534i \(-0.773706\pi\)
0.943991 + 0.329972i \(0.107039\pi\)
\(174\) 0 0
\(175\) 4.50000 + 2.59808i 0.340168 + 0.196396i
\(176\) −4.89898 2.82843i −0.369274 0.213201i
\(177\) 0 0
\(178\) 7.00000 12.1244i 0.524672 0.908759i
\(179\) −2.44949 4.24264i −0.183083 0.317110i 0.759846 0.650104i \(-0.225275\pi\)
−0.942929 + 0.332994i \(0.891941\pi\)
\(180\) 0 0
\(181\) 11.0000 0.817624 0.408812 0.912619i \(-0.365943\pi\)
0.408812 + 0.912619i \(0.365943\pi\)
\(182\) −6.12372 + 6.36396i −0.453921 + 0.471728i
\(183\) 0 0
\(184\) 6.00000 3.46410i 0.442326 0.255377i
\(185\) −1.22474 2.12132i −0.0900450 0.155963i
\(186\) 0 0
\(187\) 6.92820i 0.506640i
\(188\) 0 0
\(189\) 0 0
\(190\) 3.46410i 0.251312i
\(191\) −8.57321 + 14.8492i −0.620336 + 1.07445i 0.369087 + 0.929395i \(0.379670\pi\)
−0.989423 + 0.145059i \(0.953663\pi\)
\(192\) 0 0
\(193\) −7.50000 + 4.33013i −0.539862 + 0.311689i −0.745023 0.667039i \(-0.767561\pi\)
0.205161 + 0.978728i \(0.434228\pi\)
\(194\) 19.5959 1.40690
\(195\) 0 0
\(196\) 0 0
\(197\) −8.57321 + 4.94975i −0.610816 + 0.352655i −0.773285 0.634059i \(-0.781388\pi\)
0.162469 + 0.986714i \(0.448054\pi\)
\(198\) 0 0
\(199\) −13.0000 + 22.5167i −0.921546 + 1.59616i −0.124521 + 0.992217i \(0.539739\pi\)
−0.797025 + 0.603947i \(0.793594\pi\)
\(200\) 8.48528i 0.600000i
\(201\) 0 0
\(202\) 15.0000 + 8.66025i 1.05540 + 0.609333i
\(203\) 16.9706i 1.19110i
\(204\) 0 0
\(205\) −5.00000 8.66025i −0.349215 0.604858i
\(206\) −6.12372 + 3.53553i −0.426660 + 0.246332i
\(207\) 0 0
\(208\) 14.0000 + 3.46410i 0.970725 + 0.240192i
\(209\) −2.44949 −0.169435
\(210\) 0 0
\(211\) 12.5000 + 21.6506i 0.860535 + 1.49049i 0.871413 + 0.490550i \(0.163204\pi\)
−0.0108774 + 0.999941i \(0.503462\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −21.0000 12.1244i −1.43553 0.828804i
\(215\) 6.12372 + 3.53553i 0.417635 + 0.241121i
\(216\) 0 0
\(217\) 4.50000 7.79423i 0.305480 0.529107i
\(218\) 11.0227 + 19.0919i 0.746552 + 1.29307i
\(219\) 0 0
\(220\) 0 0
\(221\) −4.89898 16.9706i −0.329541 1.14156i
\(222\) 0 0
\(223\) −3.00000 + 1.73205i −0.200895 + 0.115987i −0.597073 0.802187i \(-0.703670\pi\)
0.396178 + 0.918174i \(0.370336\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 24.2487i 1.61300i
\(227\) 1.22474 + 0.707107i 0.0812892 + 0.0469323i 0.540094 0.841605i \(-0.318389\pi\)
−0.458804 + 0.888537i \(0.651722\pi\)
\(228\) 0 0
\(229\) 10.3923i 0.686743i 0.939200 + 0.343371i \(0.111569\pi\)
−0.939200 + 0.343371i \(0.888431\pi\)
\(230\) −2.44949 + 4.24264i −0.161515 + 0.279751i
\(231\) 0 0
\(232\) 24.0000 13.8564i 1.57568 0.909718i
\(233\) −22.0454 −1.44424 −0.722121 0.691766i \(-0.756833\pi\)
−0.722121 + 0.691766i \(0.756833\pi\)
\(234\) 0 0
\(235\) 4.00000 0.260931
\(236\) 0 0
\(237\) 0 0
\(238\) −6.00000 + 10.3923i −0.388922 + 0.673633i
\(239\) 14.1421i 0.914779i −0.889267 0.457389i \(-0.848785\pi\)
0.889267 0.457389i \(-0.151215\pi\)
\(240\) 0 0
\(241\) −25.5000 14.7224i −1.64260 0.948355i −0.979905 0.199465i \(-0.936079\pi\)
−0.662695 0.748890i \(-0.730587\pi\)
\(242\) 12.7279i 0.818182i
\(243\) 0 0
\(244\) 0 0
\(245\) −4.89898 + 2.82843i −0.312984 + 0.180702i
\(246\) 0 0
\(247\) 6.00000 1.73205i 0.381771 0.110208i
\(248\) −14.6969 −0.933257
\(249\) 0 0
\(250\) 8.00000 + 13.8564i 0.505964 + 0.876356i
\(251\) 13.4722 23.3345i 0.850357 1.47286i −0.0305288 0.999534i \(-0.509719\pi\)
0.880886 0.473328i \(-0.156948\pi\)
\(252\) 0 0
\(253\) −3.00000 1.73205i −0.188608 0.108893i
\(254\) −23.2702 13.4350i −1.46010 0.842989i
\(255\) 0 0
\(256\) 0 0
\(257\) 1.22474 + 2.12132i 0.0763975 + 0.132324i 0.901693 0.432377i \(-0.142325\pi\)
−0.825296 + 0.564701i \(0.808992\pi\)
\(258\) 0 0
\(259\) 3.00000 0.186411
\(260\) 0 0
\(261\) 0 0
\(262\) 18.0000 10.3923i 1.11204 0.642039i
\(263\) −6.12372 10.6066i −0.377605 0.654031i 0.613108 0.789999i \(-0.289919\pi\)
−0.990713 + 0.135968i \(0.956586\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −3.67423 2.12132i −0.225282 0.130066i
\(267\) 0 0
\(268\) 0 0
\(269\) 13.4722 23.3345i 0.821414 1.42273i −0.0832151 0.996532i \(-0.526519\pi\)
0.904629 0.426199i \(-0.140148\pi\)
\(270\) 0 0
\(271\) −25.5000 + 14.7224i −1.54901 + 0.894324i −0.550797 + 0.834639i \(0.685676\pi\)
−0.998217 + 0.0596851i \(0.980990\pi\)
\(272\) 19.5959 1.18818
\(273\) 0 0
\(274\) −20.0000 −1.20824
\(275\) −3.67423 + 2.12132i −0.221565 + 0.127920i
\(276\) 0 0
\(277\) 2.00000 3.46410i 0.120168 0.208138i −0.799666 0.600446i \(-0.794990\pi\)
0.919834 + 0.392308i \(0.128323\pi\)
\(278\) 2.82843i 0.169638i
\(279\) 0 0
\(280\) −6.00000 3.46410i −0.358569 0.207020i
\(281\) 15.5563i 0.928014i 0.885832 + 0.464007i \(0.153589\pi\)
−0.885832 + 0.464007i \(0.846411\pi\)
\(282\) 0 0
\(283\) 3.50000 + 6.06218i 0.208053 + 0.360359i 0.951101 0.308879i \(-0.0999539\pi\)
−0.743048 + 0.669238i \(0.766621\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) −2.00000 6.92820i −0.118262 0.409673i
\(287\) 12.2474 0.722944
\(288\) 0 0
\(289\) −3.50000 6.06218i −0.205882 0.356599i
\(290\) −9.79796 + 16.9706i −0.575356 + 0.996546i
\(291\) 0 0
\(292\) 0 0
\(293\) −17.1464 9.89949i −1.00171 0.578335i −0.0929527 0.995671i \(-0.529631\pi\)
−0.908752 + 0.417336i \(0.862964\pi\)
\(294\) 0 0
\(295\) 4.00000 6.92820i 0.232889 0.403376i
\(296\) −2.44949 4.24264i −0.142374 0.246598i
\(297\) 0 0
\(298\) −26.0000 −1.50614
\(299\) 8.57321 + 2.12132i 0.495802 + 0.122679i
\(300\) 0 0
\(301\) −7.50000 + 4.33013i −0.432293 + 0.249584i
\(302\) −3.67423 6.36396i −0.211428 0.366205i
\(303\) 0 0
\(304\) 6.92820i 0.397360i
\(305\) −4.89898 2.82843i −0.280515 0.161955i
\(306\) 0 0
\(307\) 15.5885i 0.889680i 0.895610 + 0.444840i \(0.146740\pi\)
−0.895610 + 0.444840i \(0.853260\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 9.00000 5.19615i 0.511166 0.295122i
\(311\) 7.34847 0.416693 0.208347 0.978055i \(-0.433192\pi\)
0.208347 + 0.978055i \(0.433192\pi\)
\(312\) 0 0
\(313\) −28.0000 −1.58265 −0.791327 0.611393i \(-0.790609\pi\)
−0.791327 + 0.611393i \(0.790609\pi\)
\(314\) −6.12372 + 3.53553i −0.345582 + 0.199522i
\(315\) 0 0
\(316\) 0 0
\(317\) 15.5563i 0.873732i 0.899527 + 0.436866i \(0.143912\pi\)
−0.899527 + 0.436866i \(0.856088\pi\)
\(318\) 0 0
\(319\) −12.0000 6.92820i −0.671871 0.387905i
\(320\) 11.3137i 0.632456i
\(321\) 0 0
\(322\) −3.00000 5.19615i −0.167183 0.289570i
\(323\) 7.34847 4.24264i 0.408880 0.236067i
\(324\) 0 0
\(325\) 7.50000 7.79423i 0.416025 0.432346i
\(326\) −2.44949 −0.135665
\(327\) 0 0
\(328\) −10.0000 17.3205i −0.552158 0.956365i
\(329\) −2.44949 + 4.24264i −0.135045 + 0.233904i
\(330\) 0 0
\(331\) −12.0000 6.92820i −0.659580 0.380808i 0.132537 0.991178i \(-0.457688\pi\)
−0.792117 + 0.610370i \(0.791021\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −5.00000 + 8.66025i −0.273588 + 0.473868i
\(335\) −4.89898 8.48528i −0.267660 0.463600i
\(336\) 0 0
\(337\) −4.00000 −0.217894 −0.108947 0.994048i \(-0.534748\pi\)
−0.108947 + 0.994048i \(0.534748\pi\)
\(338\) 9.79796 + 15.5563i 0.532939 + 0.846154i
\(339\) 0 0
\(340\) 0 0
\(341\) 3.67423 + 6.36396i 0.198971 + 0.344628i
\(342\) 0 0
\(343\) 19.0526i 1.02874i
\(344\) 12.2474 + 7.07107i 0.660338 + 0.381246i
\(345\) 0 0
\(346\) 6.92820i 0.372463i
\(347\) 2.44949 4.24264i 0.131495 0.227757i −0.792758 0.609537i \(-0.791355\pi\)
0.924253 + 0.381780i \(0.124689\pi\)
\(348\) 0 0
\(349\) −3.00000 + 1.73205i −0.160586 + 0.0927146i −0.578140 0.815938i \(-0.696221\pi\)
0.417553 + 0.908652i \(0.362888\pi\)
\(350\) −7.34847 −0.392792
\(351\) 0 0
\(352\) 0 0
\(353\) −1.22474 + 0.707107i −0.0651866 + 0.0376355i −0.532239 0.846594i \(-0.678649\pi\)
0.467052 + 0.884230i \(0.345316\pi\)
\(354\) 0 0
\(355\) −11.0000 + 19.0526i −0.583819 + 1.01120i
\(356\) 0 0
\(357\) 0 0
\(358\) 6.00000 + 3.46410i 0.317110 + 0.183083i
\(359\) 19.7990i 1.04495i 0.852654 + 0.522475i \(0.174991\pi\)
−0.852654 + 0.522475i \(0.825009\pi\)
\(360\) 0 0
\(361\) −8.00000 13.8564i −0.421053 0.729285i
\(362\) −13.4722 + 7.77817i −0.708083 + 0.408812i
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 11.0000 + 19.0526i 0.574195 + 0.994535i 0.996129 + 0.0879086i \(0.0280183\pi\)
−0.421933 + 0.906627i \(0.638648\pi\)
\(368\) −4.89898 + 8.48528i −0.255377 + 0.442326i
\(369\) 0 0
\(370\) 3.00000 + 1.73205i 0.155963 + 0.0900450i
\(371\) 0 0
\(372\) 0 0
\(373\) 3.50000 6.06218i 0.181223 0.313888i −0.761074 0.648665i \(-0.775328\pi\)
0.942297 + 0.334777i \(0.108661\pi\)
\(374\) −4.89898 8.48528i −0.253320 0.438763i
\(375\) 0 0
\(376\) 8.00000 0.412568
\(377\) 34.2929 + 8.48528i 1.76617 + 0.437014i
\(378\) 0 0
\(379\) −12.0000 + 6.92820i −0.616399 + 0.355878i −0.775466 0.631390i \(-0.782485\pi\)
0.159067 + 0.987268i \(0.449151\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 24.2487i 1.24067i
\(383\) 26.9444 + 15.5563i 1.37679 + 0.794892i 0.991772 0.128015i \(-0.0408606\pi\)
0.385022 + 0.922908i \(0.374194\pi\)
\(384\) 0 0
\(385\) 3.46410i 0.176547i
\(386\) 6.12372 10.6066i 0.311689 0.539862i
\(387\) 0 0
\(388\) 0 0
\(389\) 14.6969 0.745164 0.372582 0.927999i \(-0.378472\pi\)
0.372582 + 0.927999i \(0.378472\pi\)
\(390\) 0 0
\(391\) 12.0000 0.606866
\(392\) −9.79796 + 5.65685i −0.494872 + 0.285714i
\(393\) 0 0
\(394\) 7.00000 12.1244i 0.352655 0.610816i
\(395\) 14.1421i 0.711568i
\(396\) 0 0
\(397\) 28.5000 + 16.4545i 1.43037 + 0.825827i 0.997149 0.0754589i \(-0.0240422\pi\)
0.433225 + 0.901286i \(0.357376\pi\)
\(398\) 36.7696i 1.84309i
\(399\) 0 0
\(400\) 6.00000 + 10.3923i 0.300000 + 0.519615i
\(401\) 17.1464 9.89949i 0.856252 0.494357i −0.00650355 0.999979i \(-0.502070\pi\)
0.862755 + 0.505622i \(0.168737\pi\)
\(402\) 0 0
\(403\) −13.5000 12.9904i −0.672483 0.647097i
\(404\) 0 0
\(405\) 0 0
\(406\) −12.0000 20.7846i −0.595550 1.03152i
\(407\) −1.22474 + 2.12132i −0.0607083 + 0.105150i
\(408\) 0 0
\(409\) −25.5000 14.7224i −1.26089 0.727977i −0.287646 0.957737i \(-0.592873\pi\)
−0.973247 + 0.229759i \(0.926206\pi\)
\(410\) 12.2474 + 7.07107i 0.604858 + 0.349215i
\(411\) 0 0
\(412\) 0 0
\(413\) 4.89898 + 8.48528i 0.241063 + 0.417533i
\(414\) 0 0
\(415\) −14.0000 −0.687233
\(416\) 0 0
\(417\) 0 0
\(418\) 3.00000 1.73205i 0.146735 0.0847174i
\(419\) −9.79796 16.9706i −0.478662 0.829066i 0.521039 0.853533i \(-0.325545\pi\)
−0.999701 + 0.0244666i \(0.992211\pi\)
\(420\) 0 0
\(421\) 36.3731i 1.77271i 0.463002 + 0.886357i \(0.346772\pi\)
−0.463002 + 0.886357i \(0.653228\pi\)
\(422\) −30.6186 17.6777i −1.49049 0.860535i
\(423\) 0 0
\(424\) 0 0
\(425\) 7.34847 12.7279i 0.356453 0.617395i
\(426\) 0 0
\(427\) 6.00000 3.46410i 0.290360 0.167640i
\(428\) 0 0
\(429\) 0 0
\(430\) −10.0000 −0.482243
\(431\) −30.6186 + 17.6777i −1.47485 + 0.851503i −0.999598 0.0283480i \(-0.990975\pi\)
−0.475249 + 0.879851i \(0.657642\pi\)
\(432\) 0 0
\(433\) 0.500000 0.866025i 0.0240285 0.0416185i −0.853761 0.520665i \(-0.825684\pi\)
0.877790 + 0.479046i \(0.159017\pi\)
\(434\) 12.7279i 0.610960i
\(435\) 0 0
\(436\) 0 0
\(437\) 4.24264i 0.202953i
\(438\) 0 0
\(439\) 6.50000 + 11.2583i 0.310228 + 0.537331i 0.978412 0.206666i \(-0.0662612\pi\)
−0.668184 + 0.743996i \(0.732928\pi\)
\(440\) 4.89898 2.82843i 0.233550 0.134840i
\(441\) 0 0
\(442\) 18.0000 + 17.3205i 0.856173 + 0.823853i
\(443\) 14.6969 0.698273 0.349136 0.937072i \(-0.386475\pi\)
0.349136 + 0.937072i \(0.386475\pi\)
\(444\) 0 0
\(445\) 7.00000 + 12.1244i 0.331832 + 0.574750i
\(446\) 2.44949 4.24264i 0.115987 0.200895i
\(447\) 0 0
\(448\) −12.0000 6.92820i −0.566947 0.327327i
\(449\) 19.5959 + 11.3137i 0.924789 + 0.533927i 0.885160 0.465288i \(-0.154049\pi\)
0.0396290 + 0.999214i \(0.487382\pi\)
\(450\) 0 0
\(451\) −5.00000 + 8.66025i −0.235441 + 0.407795i
\(452\) 0 0
\(453\) 0 0
\(454\) −2.00000 −0.0938647
\(455\) −2.44949 8.48528i −0.114834 0.397796i
\(456\) 0 0
\(457\) −16.5000 + 9.52628i −0.771837 + 0.445621i −0.833530 0.552475i \(-0.813684\pi\)
0.0616922 + 0.998095i \(0.480350\pi\)
\(458\) −7.34847 12.7279i −0.343371 0.594737i
\(459\) 0 0
\(460\) 0 0
\(461\) −9.79796 5.65685i −0.456336 0.263466i 0.254166 0.967161i \(-0.418199\pi\)
−0.710503 + 0.703695i \(0.751532\pi\)
\(462\) 0 0
\(463\) 20.7846i 0.965943i −0.875636 0.482971i \(-0.839558\pi\)
0.875636 0.482971i \(-0.160442\pi\)
\(464\) −19.5959 + 33.9411i −0.909718 + 1.57568i
\(465\) 0 0
\(466\) 27.0000 15.5885i 1.25075 0.722121i
\(467\) −22.0454 −1.02014 −0.510070 0.860133i \(-0.670380\pi\)
−0.510070 + 0.860133i \(0.670380\pi\)
\(468\) 0 0
\(469\) 12.0000 0.554109
\(470\) −4.89898 + 2.82843i −0.225973 + 0.130466i
\(471\) 0 0
\(472\) 8.00000 13.8564i 0.368230 0.637793i
\(473\) 7.07107i 0.325128i
\(474\) 0 0
\(475\) 4.50000 + 2.59808i 0.206474 + 0.119208i
\(476\) 0 0
\(477\) 0 0
\(478\) 10.0000 + 17.3205i 0.457389 + 0.792222i
\(479\) 9.79796 5.65685i 0.447680 0.258468i −0.259170 0.965832i \(-0.583449\pi\)
0.706850 + 0.707364i \(0.250116\pi\)
\(480\) 0 0
\(481\) 1.50000 6.06218i 0.0683941 0.276412i
\(482\) 41.6413 1.89671
\(483\) 0 0
\(484\) 0 0
\(485\) −9.79796 + 16.9706i −0.444902 + 0.770594i
\(486\) 0 0
\(487\) 28.5000 + 16.4545i 1.29146 + 0.745624i 0.978913 0.204279i \(-0.0654850\pi\)
0.312546 + 0.949903i \(0.398818\pi\)
\(488\) −9.79796 5.65685i −0.443533 0.256074i
\(489\) 0 0
\(490\) 4.00000 6.92820i 0.180702 0.312984i
\(491\) −9.79796 16.9706i −0.442176 0.765871i 0.555675 0.831400i \(-0.312460\pi\)
−0.997851 + 0.0655288i \(0.979127\pi\)
\(492\) 0 0
\(493\) 48.0000 2.16181
\(494\) −6.12372 + 6.36396i −0.275519 + 0.286328i
\(495\) 0 0
\(496\) 18.0000 10.3923i 0.808224 0.466628i
\(497\) −13.4722 23.3345i −0.604310 1.04670i
\(498\) 0 0
\(499\) 20.7846i 0.930447i −0.885193 0.465223i \(-0.845974\pi\)
0.885193 0.465223i \(-0.154026\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 38.1051i 1.70071i
\(503\) 13.4722 23.3345i 0.600695 1.04043i −0.392021 0.919956i \(-0.628224\pi\)
0.992716 0.120479i \(-0.0384429\pi\)
\(504\) 0 0
\(505\) −15.0000 + 8.66025i −0.667491 + 0.385376i
\(506\) 4.89898 0.217786
\(507\) 0 0
\(508\) 0 0
\(509\) −15.9217 + 9.19239i −0.705716 + 0.407445i −0.809473 0.587157i \(-0.800247\pi\)
0.103757 + 0.994603i \(0.466914\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 22.6274i 1.00000i
\(513\) 0 0
\(514\) −3.00000 1.73205i −0.132324 0.0763975i
\(515\) 7.07107i 0.311588i
\(516\) 0 0
\(517\) −2.00000 3.46410i −0.0879599 0.152351i
\(518\) −3.67423 + 2.12132i −0.161437 + 0.0932055i
\(519\) 0 0
\(520\) −10.0000 + 10.3923i −0.438529 + 0.455733i
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 0.500000 + 0.866025i 0.0218635 + 0.0378686i 0.876750 0.480946i \(-0.159707\pi\)
−0.854887 + 0.518815i \(0.826373\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 15.0000 + 8.66025i 0.654031 + 0.377605i
\(527\) −22.0454 12.7279i −0.960313 0.554437i
\(528\) 0 0
\(529\) 8.50000 14.7224i 0.369565 0.640106i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 6.12372 24.7487i 0.265248 1.07199i
\(534\) 0 0
\(535\) 21.0000 12.1244i 0.907909 0.524182i
\(536\) −9.79796 16.9706i −0.423207 0.733017i
\(537\) 0 0
\(538\) 38.1051i 1.64283i
\(539\) 4.89898 + 2.82843i 0.211014 + 0.121829i
\(540\) 0 0
\(541\) 31.1769i 1.34040i −0.742180 0.670200i \(-0.766208\pi\)
0.742180 0.670200i \(-0.233792\pi\)
\(542\) 20.8207 36.0624i 0.894324 1.54901i
\(543\) 0 0
\(544\) 0 0
\(545\) −22.0454 −0.944322
\(546\) 0 0
\(547\) 26.0000 1.11168 0.555840 0.831289i \(-0.312397\pi\)
0.555840 + 0.831289i \(0.312397\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 3.00000 5.19615i 0.127920 0.221565i
\(551\) 16.9706i 0.722970i
\(552\) 0 0
\(553\) −15.0000 8.66025i −0.637865 0.368271i
\(554\) 5.65685i 0.240337i
\(555\) 0 0
\(556\) 0 0
\(557\) −8.57321 + 4.94975i −0.363259 + 0.209728i −0.670509 0.741901i \(-0.733924\pi\)
0.307251 + 0.951629i \(0.400591\pi\)
\(558\) 0 0
\(559\) 5.00000 + 17.3205i 0.211477 + 0.732579i
\(560\) 9.79796 0.414039
\(561\) 0 0
\(562\) −11.0000 19.0526i −0.464007 0.803684i
\(563\) −19.5959 + 33.9411i −0.825869 + 1.43045i 0.0753835 + 0.997155i \(0.475982\pi\)
−0.901253 + 0.433293i \(0.857351\pi\)
\(564\) 0 0
\(565\) 21.0000 + 12.1244i 0.883477 + 0.510075i
\(566\) −8.57321 4.94975i −0.360359 0.208053i
\(567\) 0 0
\(568\) −22.0000 + 38.1051i −0.923099 + 1.59886i
\(569\) −6.12372 10.6066i −0.256720 0.444652i 0.708641 0.705569i \(-0.249308\pi\)
−0.965361 + 0.260917i \(0.915975\pi\)
\(570\) 0 0
\(571\) −13.0000 −0.544033 −0.272017 0.962293i \(-0.587691\pi\)
−0.272017 + 0.962293i \(0.587691\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −15.0000 + 8.66025i −0.626088 + 0.361472i
\(575\) 3.67423 + 6.36396i 0.153226 + 0.265396i
\(576\) 0 0
\(577\) 15.5885i 0.648956i −0.945893 0.324478i \(-0.894811\pi\)
0.945893 0.324478i \(-0.105189\pi\)
\(578\) 8.57321 + 4.94975i 0.356599 + 0.205882i
\(579\) 0 0
\(580\) 0 0
\(581\) 8.57321 14.8492i 0.355677 0.616050i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 28.0000 1.15667
\(587\) −12.2474 + 7.07107i −0.505506 + 0.291854i −0.730985 0.682394i \(-0.760939\pi\)
0.225478 + 0.974248i \(0.427606\pi\)
\(588\) 0 0
\(589\) 4.50000 7.79423i 0.185419 0.321156i
\(590\) 11.3137i 0.465778i
\(591\) 0 0
\(592\) 6.00000 + 3.46410i 0.246598 + 0.142374i
\(593\) 7.07107i 0.290374i 0.989404 + 0.145187i \(0.0463784\pi\)
−0.989404 + 0.145187i \(0.953622\pi\)
\(594\) 0 0
\(595\) −6.00000 10.3923i −0.245976 0.426043i
\(596\) 0 0
\(597\) 0 0
\(598\) −12.0000 + 3.46410i −0.490716 + 0.141658i
\(599\) 7.34847 0.300250 0.150125 0.988667i \(-0.452032\pi\)
0.150125 + 0.988667i \(0.452032\pi\)
\(600\) 0 0
\(601\) 20.0000 + 34.6410i 0.815817 + 1.41304i 0.908740 + 0.417363i \(0.137046\pi\)
−0.0929227 + 0.995673i \(0.529621\pi\)
\(602\) 6.12372 10.6066i 0.249584 0.432293i
\(603\) 0 0
\(604\) 0 0
\(605\) 11.0227 + 6.36396i 0.448137 + 0.258732i
\(606\) 0 0
\(607\) 3.50000 6.06218i 0.142061 0.246056i −0.786212 0.617957i \(-0.787961\pi\)
0.928272 + 0.371901i \(0.121294\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 8.00000 0.323911
\(611\) 7.34847 + 7.07107i 0.297287 + 0.286065i
\(612\) 0 0
\(613\) 15.0000 8.66025i 0.605844 0.349784i −0.165493 0.986211i \(-0.552922\pi\)
0.771337 + 0.636427i \(0.219588\pi\)
\(614\) −11.0227 19.0919i −0.444840 0.770486i
\(615\) 0 0
\(616\) 6.92820i 0.279145i
\(617\) −6.12372 3.53553i −0.246532 0.142335i 0.371643 0.928376i \(-0.378794\pi\)
−0.618175 + 0.786040i \(0.712128\pi\)
\(618\) 0 0
\(619\) 25.9808i 1.04425i −0.852867 0.522127i \(-0.825139\pi\)
0.852867 0.522127i \(-0.174861\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −9.00000 + 5.19615i −0.360867 + 0.208347i
\(623\) −17.1464 −0.686957
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 34.2929 19.7990i 1.37062 0.791327i
\(627\) 0 0
\(628\) 0 0
\(629\) 8.48528i 0.338330i
\(630\) 0 0
\(631\) −12.0000 6.92820i −0.477712 0.275807i 0.241750 0.970339i \(-0.422279\pi\)
−0.719463 + 0.694531i \(0.755612\pi\)
\(632\) 28.2843i 1.12509i
\(633\) 0 0
\(634\) −11.0000 19.0526i −0.436866 0.756674i
\(635\) 23.2702 13.4350i 0.923448 0.533153i
\(636\) 0 0
\(637\) −14.0000 3.46410i −0.554700 0.137253i
\(638\) 19.5959 0.775810
\(639\) 0 0
\(640\) −8.00000 13.8564i −0.316228 0.547723i
\(641\) −8.57321 + 14.8492i −0.338622 + 0.586510i −0.984174 0.177206i \(-0.943294\pi\)
0.645552 + 0.763716i \(0.276627\pi\)
\(642\) 0 0
\(643\) 28.5000 + 16.4545i 1.12393 + 0.648901i 0.942401 0.334484i \(-0.108562\pi\)
0.181529 + 0.983386i \(0.441895\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −6.00000 + 10.3923i −0.236067 + 0.408880i
\(647\) −2.44949 4.24264i −0.0962994 0.166795i 0.813851 0.581074i \(-0.197367\pi\)
−0.910150 + 0.414278i \(0.864034\pi\)
\(648\) 0 0
\(649\) −8.00000 −0.314027
\(650\) −3.67423 + 14.8492i −0.144115 + 0.582435i
\(651\) 0 0
\(652\) 0 0
\(653\) 12.2474 + 21.2132i 0.479280 + 0.830137i 0.999718 0.0237627i \(-0.00756462\pi\)
−0.520438 + 0.853900i \(0.674231\pi\)
\(654\) 0 0
\(655\) 20.7846i 0.812122i
\(656\) 24.4949 + 14.1421i 0.956365 + 0.552158i
\(657\) 0 0
\(658\) 6.92820i 0.270089i
\(659\) −8.57321 + 14.8492i −0.333965 + 0.578444i −0.983285 0.182071i \(-0.941720\pi\)
0.649320 + 0.760515i \(0.275053\pi\)
\(660\) 0 0
\(661\) −7.50000 + 4.33013i −0.291716 + 0.168422i −0.638716 0.769443i \(-0.720534\pi\)
0.346999 + 0.937865i \(0.387201\pi\)
\(662\) 19.5959 0.761617
\(663\) 0 0
\(664\) −28.0000 −1.08661
\(665\) 3.67423 2.12132i 0.142481 0.0822613i
\(666\) 0 0
\(667\) −12.0000 + 20.7846i −0.464642 + 0.804783i
\(668\) 0 0
\(669\) 0 0
\(670\) 12.0000 + 6.92820i 0.463600 + 0.267660i
\(671\) 5.65685i 0.218380i
\(672\) 0 0
\(673\) −16.0000 27.7128i −0.616755 1.06825i −0.990074 0.140548i \(-0.955114\pi\)
0.373319 0.927703i \(-0.378220\pi\)
\(674\) 4.89898 2.82843i 0.188702 0.108947i
\(675\) 0 0
\(676\) 0 0
\(677\) −29.3939 −1.12970 −0.564849 0.825194i \(-0.691066\pi\)
−0.564849 + 0.825194i \(0.691066\pi\)
\(678\) 0 0
\(679\) −12.0000 20.7846i −0.460518 0.797640i
\(680\) −9.79796 + 16.9706i −0.375735 + 0.650791i
\(681\) 0 0
\(682\) −9.00000 5.19615i −0.344628 0.198971i
\(683\) −24.4949 14.1421i −0.937271 0.541134i −0.0481673 0.998839i \(-0.515338\pi\)
−0.889104 + 0.457705i \(0.848671\pi\)
\(684\) 0 0
\(685\) 10.0000 17.3205i 0.382080 0.661783i
\(686\) 13.4722 + 23.3345i 0.514371 + 0.890916i
\(687\) 0 0
\(688\) −20.0000 −0.762493
\(689\) 0 0
\(690\) 0 0
\(691\) −16.5000 + 9.52628i −0.627690 + 0.362397i −0.779857 0.625958i \(-0.784708\pi\)
0.152167 + 0.988355i \(0.451375\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 6.92820i 0.262991i
\(695\) 2.44949 + 1.41421i 0.0929144 + 0.0536442i
\(696\) 0 0
\(697\) 34.6410i 1.31212i
\(698\) 2.44949 4.24264i 0.0927146 0.160586i
\(699\) 0 0
\(700\) 0 0
\(701\) 22.0454 0.832644 0.416322 0.909217i \(-0.363319\pi\)
0.416322 + 0.909217i \(0.363319\pi\)
\(702\) 0 0
\(703\) 3.00000 0.113147
\(704\) 9.79796 5.65685i 0.369274 0.213201i
\(705\) 0 0
\(706\) 1.00000 1.73205i 0.0376355 0.0651866i
\(707\) 21.2132i 0.797805i
\(708\) 0 0
\(709\) 1.50000 + 0.866025i 0.0563337 + 0.0325243i 0.527902 0.849305i \(-0.322979\pi\)
−0.471569 + 0.881829i \(0.656312\pi\)
\(710\) 31.1127i 1.16764i
\(711\) 0 0
\(712\) 14.0000 + 24.2487i 0.524672 + 0.908759i
\(713\) 11.0227 6.36396i 0.412804 0.238332i
\(714\) 0 0
\(715\) 7.00000 + 1.73205i 0.261785 + 0.0647750i
\(716\) 0 0
\(717\) 0 0
\(718\) −14.0000 24.2487i −0.522475 0.904954i
\(719\) 2.44949 4.24264i 0.0913506 0.158224i −0.816729 0.577021i \(-0.804215\pi\)
0.908080 + 0.418797i \(0.137548\pi\)
\(720\) 0 0
\(721\) 7.50000 + 4.33013i 0.279315 + 0.161262i
\(722\) 19.5959 + 11.3137i 0.729285 + 0.421053i
\(723\) 0 0
\(724\) 0 0
\(725\) 14.6969 + 25.4558i 0.545831 + 0.945406i
\(726\) 0 0
\(727\) 17.0000 0.630495 0.315248 0.949009i \(-0.397912\pi\)
0.315248 + 0.949009i \(0.397912\pi\)
\(728\) −4.89898 16.9706i −0.181568 0.628971i
\(729\) 0 0
\(730\) 0 0
\(731\) 12.2474 + 21.2132i 0.452988 + 0.784599i
\(732\) 0 0
\(733\) 25.9808i 0.959621i 0.877372 + 0.479811i \(0.159295\pi\)
−0.877372 + 0.479811i \(0.840705\pi\)
\(734\) −26.9444 15.5563i −0.994535 0.574195i
\(735\) 0 0
\(736\) 0 0
\(737\) −4.89898 + 8.48528i −0.180456 + 0.312559i
\(738\) 0 0
\(739\) −39.0000 + 22.5167i −1.43464 + 0.828289i −0.997470 0.0710909i \(-0.977352\pi\)
−0.437168 + 0.899380i \(0.644019\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −37.9671 + 21.9203i −1.39288 + 0.804178i −0.993633 0.112666i \(-0.964061\pi\)
−0.399245 + 0.916844i \(0.630728\pi\)
\(744\) 0 0
\(745\) 13.0000 22.5167i 0.476283 0.824947i
\(746\) 9.89949i 0.362446i
\(747\) 0 0
\(748\) 0 0
\(749\) 29.6985i 1.08516i
\(750\) 0 0
\(751\) −5.50000 9.52628i −0.200698 0.347619i 0.748056 0.663636i \(-0.230988\pi\)
−0.948753 + 0.316017i \(0.897654\pi\)
\(752\) −9.79796 + 5.65685i −0.357295 + 0.206284i
\(753\) 0 0
\(754\) −48.0000 + 13.8564i −1.74806 + 0.504621i
\(755\) 7.34847 0.267438
\(756\) 0 0
\(757\) 0.500000 + 0.866025i 0.0181728 + 0.0314762i 0.874969 0.484179i \(-0.160882\pi\)
−0.856796 + 0.515656i \(0.827548\pi\)
\(758\) 9.79796 16.9706i 0.355878 0.616399i
\(759\) 0 0
\(760\) −6.00000 3.46410i −0.217643 0.125656i
\(761\) 4.89898 + 2.82843i 0.177588 + 0.102530i 0.586159 0.810196i \(-0.300639\pi\)
−0.408571 + 0.912727i \(0.633973\pi\)
\(762\) 0 0
\(763\) 13.5000 23.3827i 0.488733 0.846510i
\(764\) 0 0
\(765\) 0 0
\(766\) −44.0000 −1.58978
\(767\) 19.5959 5.65685i 0.707568 0.204257i
\(768\) 0 0
\(769\) −34.5000 + 19.9186i −1.24410 + 0.718283i −0.969927 0.243397i \(-0.921738\pi\)
−0.274175 + 0.961680i \(0.588405\pi\)
\(770\) −2.44949 4.24264i −0.0882735 0.152894i
\(771\) 0 0
\(772\) 0 0
\(773\) 19.5959 + 11.3137i 0.704816 + 0.406926i 0.809139 0.587618i \(-0.199934\pi\)
−0.104323 + 0.994544i \(0.533267\pi\)
\(774\) 0 0
\(775\) 15.5885i 0.559954i
\(776\) −19.5959 + 33.9411i −0.703452 + 1.21842i
\(777\) 0 0
\(778\) −18.0000 + 10.3923i −0.645331 + 0.372582i
\(779\) 12.2474 0.438810
\(780\) 0 0
\(781\) 22.0000 0.787222
\(782\) −14.6969 + 8.48528i −0.525561 + 0.303433i
\(783\) 0 0
\(784\) 8.00000 13.8564i 0.285714 0.494872i
\(785\) 7.07107i 0.252377i
\(786\) 0 0
\(787\) −12.0000 6.92820i −0.427754 0.246964i 0.270635 0.962682i \(-0.412766\pi\)
−0.698389 + 0.715718i \(0.746100\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) −10.0000 17.3205i −0.355784 0.616236i
\(791\) −25.7196 + 14.8492i −0.914485 + 0.527978i
\(792\) 0 0
\(793\) −4.00000 13.8564i −0.142044 0.492055i
\(794\) −46.5403 −1.65165
\(795\) 0 0
\(796\) 0 0
\(797\) 13.4722 23.3345i 0.477210 0.826551i −0.522449 0.852670i \(-0.674982\pi\)
0.999659 + 0.0261191i \(0.00831493\pi\)
\(798\) 0 0
\(799\) 12.0000 + 6.92820i 0.424529 + 0.245102i
\(800\) 0 0
\(801\) 0 0
\(802\) −14.0000 + 24.2487i −0.494357 + 0.856252i
\(803\) 0 0
\(804\) 0 0
\(805\) 6.00000 0.211472
\(806\) 25.7196 + 6.36396i 0.905936 + 0.224161i
\(807\) 0 0
\(808\) −30.0000 + 17.3205i −1.05540 + 0.609333i
\(809\) −24.4949 42.4264i −0.861195 1.49163i −0.870777 0.491679i \(-0.836383\pi\)
0.00958183 0.999954i \(-0.496950\pi\)
\(810\) 0 0
\(811\) 46.7654i 1.64215i −0.570817 0.821077i \(-0.693374\pi\)
0.570817 0.821077i \(-0.306626\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 3.46410i 0.121417i
\(815\) 1.22474 2.12132i 0.0429009 0.0743066i
\(816\) 0 0
\(817\) −7.50000 + 4.33013i −0.262392 + 0.151492i
\(818\) 41.6413 1.45595
\(819\) 0 0
\(820\) 0 0
\(821\) −1.22474 + 0.707107i −0.0427439 + 0.0246782i −0.521220 0.853423i \(-0.674523\pi\)
0.478476 + 0.878101i \(0.341189\pi\)
\(822\) 0 0
\(823\) 21.5000 37.2391i 0.749443 1.29807i −0.198647 0.980071i \(-0.563655\pi\)
0.948090 0.318002i \(-0.103012\pi\)
\(824\) 14.1421i 0.492665i
\(825\) 0 0
\(826\) −12.0000 6.92820i −0.417533 0.241063i
\(827\) 18.3848i 0.639301i −0.947535 0.319651i \(-0.896434\pi\)
0.947535 0.319651i \(-0.103566\pi\)
\(828\) 0 0
\(829\) −4.00000 6.92820i −0.138926 0.240626i 0.788165 0.615465i \(-0.211032\pi\)
−0.927090 + 0.374838i \(0.877698\pi\)
\(830\) 17.1464 9.89949i 0.595161 0.343616i
\(831\) 0 0
\(832\) −20.0000 + 20.7846i −0.693375 + 0.720577i
\(833\) −19.5959 −0.678958
\(834\) 0 0
\(835\) −5.00000 8.66025i −0.173032 0.299700i
\(836\) 0 0
\(837\) 0 0
\(838\) 24.0000 + 13.8564i 0.829066 + 0.478662i
\(839\) −9.79796 5.65685i −0.338263 0.195296i 0.321241 0.946998i \(-0.395900\pi\)
−0.659504 + 0.751701i \(0.729234\pi\)
\(840\) 0 0
\(841\) −33.5000 + 58.0237i −1.15517 + 2.00082i
\(842\) −25.7196 44.5477i −0.886357 1.53522i
\(843\) 0 0
\(844\) 0 0
\(845\) −18.3712 + 0.707107i −0.631988 + 0.0243252i
\(846\) 0 0
\(847\) −13.5000 + 7.79423i −0.463865 + 0.267813i
\(848\) 0 0
\(849\) 0 0
\(850\) 20.7846i 0.712906i
\(851\) 3.67423 + 2.12132i 0.125951 + 0.0727179i
\(852\) 0 0
\(853\) 5.19615i 0.177913i 0.996036 + 0.0889564i \(0.0283532\pi\)
−0.996036 + 0.0889564i \(0.971647\pi\)
\(854\) −4.89898 + 8.48528i −0.167640 + 0.290360i
\(855\) 0 0
\(856\) 42.0000 24.2487i 1.43553 0.828804i
\(857\) −29.3939 −1.00408 −0.502038 0.864846i \(-0.667416\pi\)
−0.502038 + 0.864846i \(0.667416\pi\)
\(858\) 0 0
\(859\) 41.0000 1.39890 0.699451 0.714681i \(-0.253428\pi\)
0.699451 + 0.714681i \(0.253428\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 25.0000 43.3013i 0.851503 1.47485i
\(863\) 43.8406i 1.49235i −0.665749 0.746176i \(-0.731888\pi\)
0.665749 0.746176i \(-0.268112\pi\)
\(864\) 0 0
\(865\) −6.00000 3.46410i −0.204006 0.117783i
\(866\) 1.41421i 0.0480569i
\(867\) 0 0
\(868\) 0 0
\(869\) 12.2474 7.07107i 0.415466 0.239870i
\(870\) 0 0
\(871\) 6.00000 24.2487i 0.203302 0.821636i
\(872\) −44.0908 −1.49310
\(873\) 0 0
\(874\) −3.00000 5.19615i −0.101477 0.175762i
\(875\) 9.79796 16.9706i 0.331231 0.573710i
\(876\) 0 0
\(877\) 28.5000 + 16.4545i 0.962377 + 0.555628i 0.896904 0.442226i \(-0.145811\pi\)
0.0654729 + 0.997854i \(0.479144\pi\)
\(878\) −15.9217 9.19239i −0.537331 0.310228i
\(879\) 0 0
\(880\) −4.00000 + 6.92820i −0.134840 + 0.233550i
\(881\) −2.44949 4.24264i −0.0825254 0.142938i 0.821809 0.569764i \(-0.192965\pi\)
−0.904334 + 0.426825i \(0.859632\pi\)
\(882\) 0 0
\(883\) −34.0000 −1.14419 −0.572096 0.820187i \(-0.693869\pi\)
−0.572096 + 0.820187i \(0.693869\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −18.0000 + 10.3923i −0.604722 + 0.349136i
\(887\) 12.2474 + 21.2132i 0.411229 + 0.712270i 0.995024 0.0996312i \(-0.0317663\pi\)
−0.583795 + 0.811901i \(0.698433\pi\)
\(888\) 0 0
\(889\) 32.9090i 1.10373i
\(890\) −17.1464 9.89949i −0.574750 0.331832i
\(891\) 0 0
\(892\) 0 0
\(893\) −2.44949 + 4.24264i −0.0819690 + 0.141975i
\(894\) 0 0
\(895\) −6.00000 + 3.46410i −0.200558 + 0.115792i
\(896\) 19.5959 0.654654
\(897\) 0 0
\(898\) −32.0000 −1.06785
\(899\) 44.0908 25.4558i 1.47051 0.849000i
\(900\) 0 0
\(901\) 0 0
\(902\) 14.1421i 0.470882i
\(903\) 0 0
\(904\) 42.0000 + 24.2487i 1.39690 + 0.806500i
\(905\) 15.5563i 0.517111i
\(906\) 0 0
\(907\) −11.5000 19.9186i −0.381851 0.661386i 0.609476 0.792805i \(-0.291380\pi\)
−0.991327 + 0.131419i \(0.958047\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 9.00000 + 8.66025i 0.298347 + 0.287085i
\(911\) 36.7423 1.21733 0.608664 0.793428i \(-0.291706\pi\)
0.608664 + 0.793428i \(0.291706\pi\)
\(912\) 0 0
\(913\) 7.00000 + 12.1244i 0.231666 + 0.401258i
\(914\) 13.4722 23.3345i 0.445621 0.771837i
\(915\) 0 0
\(916\) 0 0
\(917\) −22.0454 12.7279i −0.728003 0.420313i
\(918\) 0 0
\(919\) 5.00000 8.66025i 0.164935 0.285675i −0.771697 0.635990i \(-0.780592\pi\)
0.936632 + 0.350315i \(0.113925\pi\)
\(920\) −4.89898 8.48528i −0.161515 0.279751i
\(921\) 0 0
\(922\) 16.0000 0.526932
\(923\) −53.8888 + 15.5563i −1.77377 + 0.512043i
\(924\) 0 0
\(925\) 4.50000 2.59808i 0.147959 0.0854242i
\(926\) 14.6969 + 25.4558i 0.482971 + 0.836531i
\(927\) 0 0
\(928\) 0 0
\(929\) 23.2702 + 13.4350i 0.763469 + 0.440789i 0.830540 0.556959i \(-0.188032\pi\)
−0.0670709 + 0.997748i \(0.521365\pi\)
\(930\) 0 0
\(931\) 6.92820i 0.227063i
\(932\) 0 0
\(933\) 0 0
\(934\) 27.0000 15.5885i 0.883467 0.510070i
\(935\) 9.79796 0.320428
\(936\) 0 0
\(937\) 11.0000 0.359354 0.179677 0.983726i \(-0.442495\pi\)
0.179677 + 0.983726i \(0.442495\pi\)
\(938\) −14.6969 + 8.48528i −0.479872 + 0.277054i
\(939\) 0 0
\(940\) 0 0
\(941\) 24.0416i 0.783735i 0.920022 + 0.391867i \(0.128171\pi\)
−0.920022 + 0.391867i \(0.871829\pi\)
\(942\) 0 0
\(943\) 15.0000 + 8.66025i 0.488467 + 0.282017i
\(944\) 22.6274i 0.736460i
\(945\) 0 0
\(946\) 5.00000 + 8.66025i 0.162564 + 0.281569i
\(947\) −34.2929 + 19.7990i −1.11437 + 0.643381i −0.939957 0.341292i \(-0.889135\pi\)
−0.174411 + 0.984673i \(0.555802\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −7.34847 −0.238416
\(951\) 0 0
\(952\) −12.0000 20.7846i −0.388922 0.673633i
\(953\) 2.44949 4.24264i 0.0793468 0.137433i −0.823622 0.567140i \(-0.808050\pi\)
0.902968 + 0.429707i \(0.141383\pi\)
\(954\) 0 0
\(955\) 21.0000 + 12.1244i 0.679544 + 0.392335i
\(956\) 0 0
\(957\) 0 0
\(958\) −8.00000 + 13.8564i −0.258468 + 0.447680i
\(959\) 12.2474 + 21.2132i 0.395491 + 0.685010i
\(960\) 0 0
\(961\) 4.00000 0.129032
\(962\) 2.44949 + 8.48528i 0.0789747 + 0.273576i
\(963\) 0 0
\(964\) 0 0
\(965\) 6.12372 + 10.6066i 0.197130 + 0.341439i
\(966\) 0 0
\(967\) 5.19615i 0.167097i −0.996504 0.0835485i \(-0.973375\pi\)
0.996504 0.0835485i \(-0.0266254\pi\)
\(968\) 22.0454 + 12.7279i 0.708566 + 0.409091i
\(969\) 0 0
\(970\) 27.7128i 0.889805i
\(971\) −19.5959 + 33.9411i −0.628863 + 1.08922i 0.358917 + 0.933369i \(0.383146\pi\)
−0.987780 + 0.155853i \(0.950187\pi\)
\(972\) 0 0
\(973\) −3.00000 + 1.73205i −0.0961756 + 0.0555270i
\(974\) −46.5403 −1.49125
\(975\) 0 0
\(976\) 16.0000 0.512148
\(977\) 39.1918 22.6274i 1.25386 0.723915i 0.281984 0.959419i \(-0.409007\pi\)
0.971873 + 0.235504i \(0.0756740\pi\)
\(978\) 0 0
\(979\) 7.00000 12.1244i 0.223721 0.387496i
\(980\) 0 0
\(981\) 0 0
\(982\) 24.0000 + 13.8564i 0.765871 + 0.442176i
\(983\) 9.89949i 0.315745i −0.987460 0.157872i \(-0.949537\pi\)
0.987460 0.157872i \(-0.0504635\pi\)
\(984\) 0 0
\(985\) 7.00000 + 12.1244i 0.223039 + 0.386314i
\(986\) −58.7878 + 33.9411i −1.87218 + 1.08091i
\(987\) 0 0
\(988\) 0 0
\(989\) −12.2474 −0.389446
\(990\) 0 0
\(991\) −17.5000 30.3109i −0.555906 0.962857i −0.997832 0.0658059i \(-0.979038\pi\)
0.441927 0.897051i \(-0.354295\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 33.0000 + 19.0526i 1.04670 + 0.604310i
\(995\) 31.8434 + 18.3848i 1.00950 + 0.582837i
\(996\) 0 0
\(997\) 6.50000 11.2583i 0.205857 0.356555i −0.744548 0.667568i \(-0.767335\pi\)
0.950405 + 0.311014i \(0.100668\pi\)
\(998\) 14.6969 + 25.4558i 0.465223 + 0.805791i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 351.2.q.f.244.1 yes 4
3.2 odd 2 inner 351.2.q.f.244.2 yes 4
13.2 odd 12 4563.2.a.v.1.2 4
13.4 even 6 inner 351.2.q.f.82.1 4
13.11 odd 12 4563.2.a.v.1.3 4
39.2 even 12 4563.2.a.v.1.4 4
39.11 even 12 4563.2.a.v.1.1 4
39.17 odd 6 inner 351.2.q.f.82.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
351.2.q.f.82.1 4 13.4 even 6 inner
351.2.q.f.82.2 yes 4 39.17 odd 6 inner
351.2.q.f.244.1 yes 4 1.1 even 1 trivial
351.2.q.f.244.2 yes 4 3.2 odd 2 inner
4563.2.a.v.1.1 4 39.11 even 12
4563.2.a.v.1.2 4 13.2 odd 12
4563.2.a.v.1.3 4 13.11 odd 12
4563.2.a.v.1.4 4 39.2 even 12