Properties

Label 351.2.i.b.242.8
Level $351$
Weight $2$
Character 351.242
Analytic conductor $2.803$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [351,2,Mod(161,351)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(351, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("351.161"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.i (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.80274911095\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 24x^{14} + 184x^{12} + 600x^{10} + 894x^{8} + 600x^{6} + 184x^{4} + 24x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 242.8
Root \(3.60931i\) of defining polynomial
Character \(\chi\) \(=\) 351.242
Dual form 351.2.i.b.161.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.94318 - 1.94318i) q^{2} -5.55193i q^{4} +(0.426892 - 0.426892i) q^{5} +(-1.60020 + 1.60020i) q^{7} +(-6.90206 - 6.90206i) q^{8} -1.65906i q^{10} +(-1.16629 - 1.16629i) q^{11} +(3.11256 + 1.81988i) q^{13} +6.21895i q^{14} -15.7201 q^{16} +6.73139 q^{17} +(-1.61949 - 1.61949i) q^{19} +(-2.37008 - 2.37008i) q^{20} -4.53264 q^{22} +7.07274 q^{23} +4.63553i q^{25} +(9.58465 - 2.51191i) q^{26} +(8.88418 + 8.88418i) q^{28} +4.74015i q^{29} +(-3.99131 - 3.99131i) q^{31} +(-16.7429 + 16.7429i) q^{32} +(13.0803 - 13.0803i) q^{34} +1.36622i q^{35} +(-5.84461 + 5.84461i) q^{37} -6.29394 q^{38} -5.89287 q^{40} +(1.16629 - 1.16629i) q^{41} -2.02473i q^{43} +(-6.47517 + 6.47517i) q^{44} +(13.7436 - 13.7436i) q^{46} +(-5.13821 - 5.13821i) q^{47} +1.87875i q^{49} +(9.00768 + 9.00768i) q^{50} +(10.1039 - 17.2807i) q^{52} -0.512438i q^{53} -0.995761 q^{55} +22.0893 q^{56} +(9.21099 + 9.21099i) q^{58} +(4.62577 + 4.62577i) q^{59} -1.50693 q^{61} -15.5117 q^{62} +33.6290i q^{64} +(2.10562 - 0.551834i) q^{65} +(3.28398 + 3.28398i) q^{67} -37.3722i q^{68} +(2.65482 + 2.65482i) q^{70} +(7.49963 - 7.49963i) q^{71} +(-4.30752 + 4.30752i) q^{73} +22.7143i q^{74} +(-8.99131 + 8.99131i) q^{76} +3.73259 q^{77} -9.54324 q^{79} +(-6.71079 + 6.71079i) q^{80} -4.53264i q^{82} +(-1.71812 + 1.71812i) q^{83} +(2.87358 - 2.87358i) q^{85} +(-3.93442 - 3.93442i) q^{86} +16.0996i q^{88} +(-5.47955 - 5.47955i) q^{89} +(-7.89287 + 2.06854i) q^{91} -39.2674i q^{92} -19.9690 q^{94} -1.38270 q^{95} +(5.52721 + 5.52721i) q^{97} +(3.65075 + 3.65075i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{7} + 16 q^{13} - 8 q^{16} - 32 q^{19} + 8 q^{22} + 40 q^{28} + 16 q^{31} + 24 q^{34} - 32 q^{37} - 72 q^{40} + 48 q^{46} + 48 q^{52} + 32 q^{55} + 56 q^{58} - 64 q^{61} - 32 q^{67} - 40 q^{70}+ \cdots + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.94318 1.94318i 1.37404 1.37404i 0.519675 0.854364i \(-0.326053\pi\)
0.854364 0.519675i \(-0.173947\pi\)
\(3\) 0 0
\(4\) 5.55193i 2.77597i
\(5\) 0.426892 0.426892i 0.190912 0.190912i −0.605178 0.796090i \(-0.706898\pi\)
0.796090 + 0.605178i \(0.206898\pi\)
\(6\) 0 0
\(7\) −1.60020 + 1.60020i −0.604817 + 0.604817i −0.941587 0.336770i \(-0.890666\pi\)
0.336770 + 0.941587i \(0.390666\pi\)
\(8\) −6.90206 6.90206i −2.44025 2.44025i
\(9\) 0 0
\(10\) 1.65906i 0.524641i
\(11\) −1.16629 1.16629i −0.351650 0.351650i 0.509073 0.860723i \(-0.329988\pi\)
−0.860723 + 0.509073i \(0.829988\pi\)
\(12\) 0 0
\(13\) 3.11256 + 1.81988i 0.863269 + 0.504745i
\(14\) 6.21895i 1.66208i
\(15\) 0 0
\(16\) −15.7201 −3.93002
\(17\) 6.73139 1.63260 0.816301 0.577627i \(-0.196021\pi\)
0.816301 + 0.577627i \(0.196021\pi\)
\(18\) 0 0
\(19\) −1.61949 1.61949i −0.371537 0.371537i 0.496500 0.868037i \(-0.334618\pi\)
−0.868037 + 0.496500i \(0.834618\pi\)
\(20\) −2.37008 2.37008i −0.529965 0.529965i
\(21\) 0 0
\(22\) −4.53264 −0.966362
\(23\) 7.07274 1.47477 0.737384 0.675474i \(-0.236061\pi\)
0.737384 + 0.675474i \(0.236061\pi\)
\(24\) 0 0
\(25\) 4.63553i 0.927105i
\(26\) 9.58465 2.51191i 1.87970 0.492626i
\(27\) 0 0
\(28\) 8.88418 + 8.88418i 1.67895 + 1.67895i
\(29\) 4.74015i 0.880224i 0.897943 + 0.440112i \(0.145061\pi\)
−0.897943 + 0.440112i \(0.854939\pi\)
\(30\) 0 0
\(31\) −3.99131 3.99131i −0.716860 0.716860i 0.251101 0.967961i \(-0.419207\pi\)
−0.967961 + 0.251101i \(0.919207\pi\)
\(32\) −16.7429 + 16.7429i −2.95976 + 2.95976i
\(33\) 0 0
\(34\) 13.0803 13.0803i 2.24326 2.24326i
\(35\) 1.36622i 0.230934i
\(36\) 0 0
\(37\) −5.84461 + 5.84461i −0.960848 + 0.960848i −0.999262 0.0384139i \(-0.987769\pi\)
0.0384139 + 0.999262i \(0.487769\pi\)
\(38\) −6.29394 −1.02101
\(39\) 0 0
\(40\) −5.89287 −0.931745
\(41\) 1.16629 1.16629i 0.182144 0.182144i −0.610145 0.792289i \(-0.708889\pi\)
0.792289 + 0.610145i \(0.208889\pi\)
\(42\) 0 0
\(43\) 2.02473i 0.308768i −0.988011 0.154384i \(-0.950661\pi\)
0.988011 0.154384i \(-0.0493393\pi\)
\(44\) −6.47517 + 6.47517i −0.976169 + 0.976169i
\(45\) 0 0
\(46\) 13.7436 13.7436i 2.02639 2.02639i
\(47\) −5.13821 5.13821i −0.749484 0.749484i 0.224898 0.974382i \(-0.427795\pi\)
−0.974382 + 0.224898i \(0.927795\pi\)
\(48\) 0 0
\(49\) 1.87875i 0.268392i
\(50\) 9.00768 + 9.00768i 1.27388 + 1.27388i
\(51\) 0 0
\(52\) 10.1039 17.2807i 1.40115 2.39641i
\(53\) 0.512438i 0.0703887i −0.999380 0.0351944i \(-0.988795\pi\)
0.999380 0.0351944i \(-0.0112050\pi\)
\(54\) 0 0
\(55\) −0.995761 −0.134268
\(56\) 22.0893 2.95181
\(57\) 0 0
\(58\) 9.21099 + 9.21099i 1.20946 + 1.20946i
\(59\) 4.62577 + 4.62577i 0.602224 + 0.602224i 0.940902 0.338678i \(-0.109980\pi\)
−0.338678 + 0.940902i \(0.609980\pi\)
\(60\) 0 0
\(61\) −1.50693 −0.192943 −0.0964714 0.995336i \(-0.530756\pi\)
−0.0964714 + 0.995336i \(0.530756\pi\)
\(62\) −15.5117 −1.96999
\(63\) 0 0
\(64\) 33.6290i 4.20363i
\(65\) 2.10562 0.551834i 0.261170 0.0684465i
\(66\) 0 0
\(67\) 3.28398 + 3.28398i 0.401203 + 0.401203i 0.878657 0.477454i \(-0.158440\pi\)
−0.477454 + 0.878657i \(0.658440\pi\)
\(68\) 37.3722i 4.53205i
\(69\) 0 0
\(70\) 2.65482 + 2.65482i 0.317312 + 0.317312i
\(71\) 7.49963 7.49963i 0.890042 0.890042i −0.104484 0.994527i \(-0.533319\pi\)
0.994527 + 0.104484i \(0.0333192\pi\)
\(72\) 0 0
\(73\) −4.30752 + 4.30752i −0.504157 + 0.504157i −0.912727 0.408570i \(-0.866028\pi\)
0.408570 + 0.912727i \(0.366028\pi\)
\(74\) 22.7143i 2.64049i
\(75\) 0 0
\(76\) −8.99131 + 8.99131i −1.03137 + 1.03137i
\(77\) 3.73259 0.425368
\(78\) 0 0
\(79\) −9.54324 −1.07370 −0.536849 0.843678i \(-0.680386\pi\)
−0.536849 + 0.843678i \(0.680386\pi\)
\(80\) −6.71079 + 6.71079i −0.750289 + 0.750289i
\(81\) 0 0
\(82\) 4.53264i 0.500546i
\(83\) −1.71812 + 1.71812i −0.188589 + 0.188589i −0.795086 0.606497i \(-0.792574\pi\)
0.606497 + 0.795086i \(0.292574\pi\)
\(84\) 0 0
\(85\) 2.87358 2.87358i 0.311683 0.311683i
\(86\) −3.93442 3.93442i −0.424259 0.424259i
\(87\) 0 0
\(88\) 16.0996i 1.71623i
\(89\) −5.47955 5.47955i −0.580831 0.580831i 0.354300 0.935132i \(-0.384719\pi\)
−0.935132 + 0.354300i \(0.884719\pi\)
\(90\) 0 0
\(91\) −7.89287 + 2.06854i −0.827398 + 0.216842i
\(92\) 39.2674i 4.09391i
\(93\) 0 0
\(94\) −19.9690 −2.05964
\(95\) −1.38270 −0.141862
\(96\) 0 0
\(97\) 5.52721 + 5.52721i 0.561203 + 0.561203i 0.929649 0.368446i \(-0.120110\pi\)
−0.368446 + 0.929649i \(0.620110\pi\)
\(98\) 3.65075 + 3.65075i 0.368782 + 0.368782i
\(99\) 0 0
\(100\) 25.7361 2.57361
\(101\) −17.9742 −1.78850 −0.894248 0.447572i \(-0.852289\pi\)
−0.894248 + 0.447572i \(0.852289\pi\)
\(102\) 0 0
\(103\) 0.511171i 0.0503671i −0.999683 0.0251836i \(-0.991983\pi\)
0.999683 0.0251836i \(-0.00801702\pi\)
\(104\) −8.92214 34.0440i −0.874888 3.33829i
\(105\) 0 0
\(106\) −0.995761 0.995761i −0.0967169 0.0967169i
\(107\) 14.4291i 1.39492i 0.716625 + 0.697459i \(0.245686\pi\)
−0.716625 + 0.697459i \(0.754314\pi\)
\(108\) 0 0
\(109\) 2.50367 + 2.50367i 0.239808 + 0.239808i 0.816771 0.576962i \(-0.195762\pi\)
−0.576962 + 0.816771i \(0.695762\pi\)
\(110\) −1.93495 + 1.93495i −0.184490 + 0.184490i
\(111\) 0 0
\(112\) 25.1552 25.1552i 2.37695 2.37695i
\(113\) 2.50367i 0.235526i 0.993042 + 0.117763i \(0.0375723\pi\)
−0.993042 + 0.117763i \(0.962428\pi\)
\(114\) 0 0
\(115\) 3.01930 3.01930i 0.281551 0.281551i
\(116\) 26.3170 2.44347
\(117\) 0 0
\(118\) 17.9774 1.65496
\(119\) −10.7715 + 10.7715i −0.987425 + 0.987425i
\(120\) 0 0
\(121\) 8.27953i 0.752685i
\(122\) −2.92825 + 2.92825i −0.265111 + 0.265111i
\(123\) 0 0
\(124\) −22.1595 + 22.1595i −1.98998 + 1.98998i
\(125\) 4.11333 + 4.11333i 0.367907 + 0.367907i
\(126\) 0 0
\(127\) 10.5722i 0.938132i −0.883163 0.469066i \(-0.844591\pi\)
0.883163 0.469066i \(-0.155409\pi\)
\(128\) 31.8615 + 31.8615i 2.81619 + 2.81619i
\(129\) 0 0
\(130\) 3.01930 5.16393i 0.264810 0.452906i
\(131\) 14.2416i 1.24429i −0.782901 0.622146i \(-0.786261\pi\)
0.782901 0.622146i \(-0.213739\pi\)
\(132\) 0 0
\(133\) 5.18301 0.449424
\(134\) 12.7628 1.10254
\(135\) 0 0
\(136\) −46.4605 46.4605i −3.98395 3.98395i
\(137\) −11.3466 11.3466i −0.969406 0.969406i 0.0301401 0.999546i \(-0.490405\pi\)
−0.999546 + 0.0301401i \(0.990405\pi\)
\(138\) 0 0
\(139\) 3.84906 0.326473 0.163237 0.986587i \(-0.447807\pi\)
0.163237 + 0.986587i \(0.447807\pi\)
\(140\) 7.58517 0.641064
\(141\) 0 0
\(142\) 29.1463i 2.44591i
\(143\) −1.50764 5.75266i −0.126075 0.481062i
\(144\) 0 0
\(145\) 2.02353 + 2.02353i 0.168045 + 0.168045i
\(146\) 16.7406i 1.38546i
\(147\) 0 0
\(148\) 32.4489 + 32.4489i 2.66728 + 2.66728i
\(149\) −0.114385 + 0.114385i −0.00937082 + 0.00937082i −0.711777 0.702406i \(-0.752109\pi\)
0.702406 + 0.711777i \(0.252109\pi\)
\(150\) 0 0
\(151\) −10.9045 + 10.9045i −0.887392 + 0.887392i −0.994272 0.106880i \(-0.965914\pi\)
0.106880 + 0.994272i \(0.465914\pi\)
\(152\) 22.3557i 1.81328i
\(153\) 0 0
\(154\) 7.25311 7.25311i 0.584472 0.584472i
\(155\) −3.40772 −0.273714
\(156\) 0 0
\(157\) 2.46410 0.196657 0.0983284 0.995154i \(-0.468650\pi\)
0.0983284 + 0.995154i \(0.468650\pi\)
\(158\) −18.5443 + 18.5443i −1.47530 + 1.47530i
\(159\) 0 0
\(160\) 14.2948i 1.13011i
\(161\) −11.3178 + 11.3178i −0.891965 + 0.891965i
\(162\) 0 0
\(163\) −2.30426 + 2.30426i −0.180483 + 0.180483i −0.791566 0.611083i \(-0.790734\pi\)
0.611083 + 0.791566i \(0.290734\pi\)
\(164\) −6.47517 6.47517i −0.505626 0.505626i
\(165\) 0 0
\(166\) 6.67727i 0.518256i
\(167\) −3.53447 3.53447i −0.273505 0.273505i 0.557004 0.830510i \(-0.311951\pi\)
−0.830510 + 0.557004i \(0.811951\pi\)
\(168\) 0 0
\(169\) 6.37605 + 11.3290i 0.490466 + 0.871460i
\(170\) 11.1678i 0.856530i
\(171\) 0 0
\(172\) −11.2412 −0.857130
\(173\) 1.13745 0.0864788 0.0432394 0.999065i \(-0.486232\pi\)
0.0432394 + 0.999065i \(0.486232\pi\)
\(174\) 0 0
\(175\) −7.41775 7.41775i −0.560729 0.560729i
\(176\) 18.3342 + 18.3342i 1.38199 + 1.38199i
\(177\) 0 0
\(178\) −21.2956 −1.59617
\(179\) −16.0241 −1.19770 −0.598850 0.800861i \(-0.704375\pi\)
−0.598850 + 0.800861i \(0.704375\pi\)
\(180\) 0 0
\(181\) 17.2463i 1.28191i 0.767579 + 0.640955i \(0.221461\pi\)
−0.767579 + 0.640955i \(0.778539\pi\)
\(182\) −11.3178 + 19.3569i −0.838928 + 1.43483i
\(183\) 0 0
\(184\) −48.8165 48.8165i −3.59880 3.59880i
\(185\) 4.99004i 0.366875i
\(186\) 0 0
\(187\) −7.85076 7.85076i −0.574104 0.574104i
\(188\) −28.5270 + 28.5270i −2.08054 + 2.08054i
\(189\) 0 0
\(190\) −2.68683 + 2.68683i −0.194923 + 0.194923i
\(191\) 4.14892i 0.300206i 0.988670 + 0.150103i \(0.0479605\pi\)
−0.988670 + 0.150103i \(0.952040\pi\)
\(192\) 0 0
\(193\) 8.02762 8.02762i 0.577840 0.577840i −0.356467 0.934308i \(-0.616019\pi\)
0.934308 + 0.356467i \(0.116019\pi\)
\(194\) 21.4808 1.54223
\(195\) 0 0
\(196\) 10.4307 0.745049
\(197\) 6.95835 6.95835i 0.495762 0.495762i −0.414354 0.910116i \(-0.635992\pi\)
0.910116 + 0.414354i \(0.135992\pi\)
\(198\) 0 0
\(199\) 5.95717i 0.422293i 0.977454 + 0.211146i \(0.0677196\pi\)
−0.977454 + 0.211146i \(0.932280\pi\)
\(200\) 31.9947 31.9947i 2.26237 2.26237i
\(201\) 0 0
\(202\) −34.9271 + 34.9271i −2.45746 + 2.45746i
\(203\) −7.58517 7.58517i −0.532375 0.532375i
\(204\) 0 0
\(205\) 0.995761i 0.0695470i
\(206\) −0.993299 0.993299i −0.0692064 0.0692064i
\(207\) 0 0
\(208\) −48.9297 28.6087i −3.39267 1.98366i
\(209\) 3.77760i 0.261302i
\(210\) 0 0
\(211\) 13.9572 0.960851 0.480426 0.877035i \(-0.340482\pi\)
0.480426 + 0.877035i \(0.340482\pi\)
\(212\) −2.84502 −0.195397
\(213\) 0 0
\(214\) 28.0385 + 28.0385i 1.91667 + 1.91667i
\(215\) −0.864340 0.864340i −0.0589475 0.0589475i
\(216\) 0 0
\(217\) 12.7737 0.867138
\(218\) 9.73019 0.659012
\(219\) 0 0
\(220\) 5.52840i 0.372725i
\(221\) 20.9519 + 12.2503i 1.40937 + 0.824047i
\(222\) 0 0
\(223\) −8.32355 8.32355i −0.557386 0.557386i 0.371176 0.928562i \(-0.378955\pi\)
−0.928562 + 0.371176i \(0.878955\pi\)
\(224\) 53.5839i 3.58023i
\(225\) 0 0
\(226\) 4.86510 + 4.86510i 0.323622 + 0.323622i
\(227\) 11.7447 11.7447i 0.779520 0.779520i −0.200229 0.979749i \(-0.564169\pi\)
0.979749 + 0.200229i \(0.0641686\pi\)
\(228\) 0 0
\(229\) 3.63362 3.63362i 0.240116 0.240116i −0.576782 0.816898i \(-0.695692\pi\)
0.816898 + 0.576782i \(0.195692\pi\)
\(230\) 11.7341i 0.773723i
\(231\) 0 0
\(232\) 32.7168 32.7168i 2.14797 2.14797i
\(233\) 3.77379 0.247229 0.123615 0.992330i \(-0.460551\pi\)
0.123615 + 0.992330i \(0.460551\pi\)
\(234\) 0 0
\(235\) −4.38692 −0.286171
\(236\) 25.6820 25.6820i 1.67175 1.67175i
\(237\) 0 0
\(238\) 41.8622i 2.71352i
\(239\) −18.7030 + 18.7030i −1.20980 + 1.20980i −0.238705 + 0.971092i \(0.576723\pi\)
−0.971092 + 0.238705i \(0.923277\pi\)
\(240\) 0 0
\(241\) 16.0618 16.0618i 1.03463 1.03463i 0.0352499 0.999379i \(-0.488777\pi\)
0.999379 0.0352499i \(-0.0112227\pi\)
\(242\) −16.0887 16.0887i −1.03422 1.03422i
\(243\) 0 0
\(244\) 8.36638i 0.535603i
\(245\) 0.802023 + 0.802023i 0.0512393 + 0.0512393i
\(246\) 0 0
\(247\) −2.09348 7.98805i −0.133205 0.508267i
\(248\) 55.0965i 3.49863i
\(249\) 0 0
\(250\) 15.9859 1.01104
\(251\) 15.8291 0.999127 0.499563 0.866277i \(-0.333494\pi\)
0.499563 + 0.866277i \(0.333494\pi\)
\(252\) 0 0
\(253\) −8.24887 8.24887i −0.518602 0.518602i
\(254\) −20.5438 20.5438i −1.28903 1.28903i
\(255\) 0 0
\(256\) 56.5676 3.53547
\(257\) −13.3878 −0.835107 −0.417554 0.908652i \(-0.637112\pi\)
−0.417554 + 0.908652i \(0.637112\pi\)
\(258\) 0 0
\(259\) 18.7050i 1.16227i
\(260\) −3.06374 11.6903i −0.190005 0.725000i
\(261\) 0 0
\(262\) −27.6740 27.6740i −1.70971 1.70971i
\(263\) 4.87004i 0.300299i 0.988663 + 0.150150i \(0.0479756\pi\)
−0.988663 + 0.150150i \(0.952024\pi\)
\(264\) 0 0
\(265\) −0.218756 0.218756i −0.0134381 0.0134381i
\(266\) 10.0715 10.0715i 0.617526 0.617526i
\(267\) 0 0
\(268\) 18.2325 18.2325i 1.11372 1.11372i
\(269\) 25.3095i 1.54314i −0.636142 0.771572i \(-0.719471\pi\)
0.636142 0.771572i \(-0.280529\pi\)
\(270\) 0 0
\(271\) 1.49752 1.49752i 0.0909680 0.0909680i −0.660158 0.751126i \(-0.729511\pi\)
0.751126 + 0.660158i \(0.229511\pi\)
\(272\) −105.818 −6.41616
\(273\) 0 0
\(274\) −44.0971 −2.66400
\(275\) 5.40637 5.40637i 0.326017 0.326017i
\(276\) 0 0
\(277\) 23.8317i 1.43191i 0.698148 + 0.715953i \(0.254008\pi\)
−0.698148 + 0.715953i \(0.745992\pi\)
\(278\) 7.47944 7.47944i 0.448587 0.448587i
\(279\) 0 0
\(280\) 9.42975 9.42975i 0.563535 0.563535i
\(281\) 3.34690 + 3.34690i 0.199659 + 0.199659i 0.799854 0.600195i \(-0.204910\pi\)
−0.600195 + 0.799854i \(0.704910\pi\)
\(282\) 0 0
\(283\) 5.34357i 0.317642i −0.987307 0.158821i \(-0.949231\pi\)
0.987307 0.158821i \(-0.0507693\pi\)
\(284\) −41.6374 41.6374i −2.47073 2.47073i
\(285\) 0 0
\(286\) −14.1081 8.24887i −0.834230 0.487766i
\(287\) 3.73259i 0.220328i
\(288\) 0 0
\(289\) 28.3116 1.66539
\(290\) 7.86420 0.461802
\(291\) 0 0
\(292\) 23.9151 + 23.9151i 1.39952 + 1.39952i
\(293\) −10.1177 10.1177i −0.591082 0.591082i 0.346842 0.937924i \(-0.387254\pi\)
−0.937924 + 0.346842i \(0.887254\pi\)
\(294\) 0 0
\(295\) 3.94941 0.229943
\(296\) 80.6797 4.68941
\(297\) 0 0
\(298\) 0.444544i 0.0257517i
\(299\) 22.0143 + 12.8715i 1.27312 + 0.744381i
\(300\) 0 0
\(301\) 3.23996 + 3.23996i 0.186748 + 0.186748i
\(302\) 42.3787i 2.43862i
\(303\) 0 0
\(304\) 25.4586 + 25.4586i 1.46015 + 1.46015i
\(305\) −0.643297 + 0.643297i −0.0368351 + 0.0368351i
\(306\) 0 0
\(307\) −1.14598 + 1.14598i −0.0654046 + 0.0654046i −0.739052 0.673648i \(-0.764726\pi\)
0.673648 + 0.739052i \(0.264726\pi\)
\(308\) 20.7231i 1.18081i
\(309\) 0 0
\(310\) −6.62182 + 6.62182i −0.376094 + 0.376094i
\(311\) 13.2129 0.749235 0.374617 0.927180i \(-0.377774\pi\)
0.374617 + 0.927180i \(0.377774\pi\)
\(312\) 0 0
\(313\) 14.2614 0.806104 0.403052 0.915177i \(-0.367949\pi\)
0.403052 + 0.915177i \(0.367949\pi\)
\(314\) 4.78820 4.78820i 0.270214 0.270214i
\(315\) 0 0
\(316\) 52.9834i 2.98055i
\(317\) 10.6804 10.6804i 0.599870 0.599870i −0.340408 0.940278i \(-0.610565\pi\)
0.940278 + 0.340408i \(0.110565\pi\)
\(318\) 0 0
\(319\) 5.52840 5.52840i 0.309531 0.309531i
\(320\) 14.3560 + 14.3560i 0.802522 + 0.802522i
\(321\) 0 0
\(322\) 43.9850i 2.45119i
\(323\) −10.9014 10.9014i −0.606572 0.606572i
\(324\) 0 0
\(325\) −8.43611 + 14.4284i −0.467951 + 0.800341i
\(326\) 8.95520i 0.495983i
\(327\) 0 0
\(328\) −16.0996 −0.888953
\(329\) 16.4443 0.906602
\(330\) 0 0
\(331\) −18.7676 18.7676i −1.03156 1.03156i −0.999485 0.0320776i \(-0.989788\pi\)
−0.0320776 0.999485i \(-0.510212\pi\)
\(332\) 9.53891 + 9.53891i 0.523516 + 0.523516i
\(333\) 0 0
\(334\) −13.7362 −0.751614
\(335\) 2.80381 0.153189
\(336\) 0 0
\(337\) 13.0695i 0.711942i −0.934497 0.355971i \(-0.884150\pi\)
0.934497 0.355971i \(-0.115850\pi\)
\(338\) 34.4042 + 9.62446i 1.87134 + 0.523502i
\(339\) 0 0
\(340\) −15.9539 15.9539i −0.865222 0.865222i
\(341\) 9.31005i 0.504168i
\(342\) 0 0
\(343\) −14.2077 14.2077i −0.767146 0.767146i
\(344\) −13.9748 + 13.9748i −0.753471 + 0.753471i
\(345\) 0 0
\(346\) 2.21028 2.21028i 0.118825 0.118825i
\(347\) 13.7080i 0.735885i 0.929848 + 0.367943i \(0.119938\pi\)
−0.929848 + 0.367943i \(0.880062\pi\)
\(348\) 0 0
\(349\) −13.6226 + 13.6226i −0.729201 + 0.729201i −0.970461 0.241260i \(-0.922439\pi\)
0.241260 + 0.970461i \(0.422439\pi\)
\(350\) −28.8281 −1.54093
\(351\) 0 0
\(352\) 39.0543 2.08160
\(353\) 16.0512 16.0512i 0.854317 0.854317i −0.136344 0.990662i \(-0.543535\pi\)
0.990662 + 0.136344i \(0.0435354\pi\)
\(354\) 0 0
\(355\) 6.40306i 0.339839i
\(356\) −30.4221 + 30.4221i −1.61237 + 1.61237i
\(357\) 0 0
\(358\) −31.1378 + 31.1378i −1.64569 + 1.64569i
\(359\) 14.0435 + 14.0435i 0.741185 + 0.741185i 0.972806 0.231621i \(-0.0744029\pi\)
−0.231621 + 0.972806i \(0.574403\pi\)
\(360\) 0 0
\(361\) 13.7545i 0.723921i
\(362\) 33.5128 + 33.5128i 1.76139 + 1.76139i
\(363\) 0 0
\(364\) 11.4844 + 43.8207i 0.601945 + 2.29683i
\(365\) 3.67769i 0.192499i
\(366\) 0 0
\(367\) −20.8336 −1.08751 −0.543753 0.839245i \(-0.682997\pi\)
−0.543753 + 0.839245i \(0.682997\pi\)
\(368\) −111.184 −5.79587
\(369\) 0 0
\(370\) 9.69656 + 9.69656i 0.504100 + 0.504100i
\(371\) 0.820001 + 0.820001i 0.0425723 + 0.0425723i
\(372\) 0 0
\(373\) −3.43357 −0.177783 −0.0888917 0.996041i \(-0.528333\pi\)
−0.0888917 + 0.996041i \(0.528333\pi\)
\(374\) −30.5109 −1.57768
\(375\) 0 0
\(376\) 70.9284i 3.65785i
\(377\) −8.62652 + 14.7540i −0.444289 + 0.759870i
\(378\) 0 0
\(379\) 14.0653 + 14.0653i 0.722485 + 0.722485i 0.969111 0.246626i \(-0.0793219\pi\)
−0.246626 + 0.969111i \(0.579322\pi\)
\(380\) 7.67664i 0.393803i
\(381\) 0 0
\(382\) 8.06213 + 8.06213i 0.412494 + 0.412494i
\(383\) 19.8817 19.8817i 1.01591 1.01591i 0.0160340 0.999871i \(-0.494896\pi\)
0.999871 0.0160340i \(-0.00510399\pi\)
\(384\) 0 0
\(385\) 1.59341 1.59341i 0.0812078 0.0812078i
\(386\) 31.1983i 1.58795i
\(387\) 0 0
\(388\) 30.6867 30.6867i 1.55788 1.55788i
\(389\) 31.1571 1.57973 0.789863 0.613283i \(-0.210151\pi\)
0.789863 + 0.613283i \(0.210151\pi\)
\(390\) 0 0
\(391\) 47.6093 2.40771
\(392\) 12.9672 12.9672i 0.654944 0.654944i
\(393\) 0 0
\(394\) 27.0427i 1.36239i
\(395\) −4.07393 + 4.07393i −0.204982 + 0.204982i
\(396\) 0 0
\(397\) −5.72025 + 5.72025i −0.287091 + 0.287091i −0.835929 0.548838i \(-0.815071\pi\)
0.548838 + 0.835929i \(0.315071\pi\)
\(398\) 11.5759 + 11.5759i 0.580247 + 0.580247i
\(399\) 0 0
\(400\) 72.8709i 3.64355i
\(401\) −23.4537 23.4537i −1.17122 1.17122i −0.981919 0.189304i \(-0.939377\pi\)
−0.189304 0.981919i \(-0.560623\pi\)
\(402\) 0 0
\(403\) −5.15947 19.6869i −0.257012 0.980674i
\(404\) 99.7913i 4.96480i
\(405\) 0 0
\(406\) −29.4788 −1.46301
\(407\) 13.6330 0.675764
\(408\) 0 0
\(409\) 0.765209 + 0.765209i 0.0378372 + 0.0378372i 0.725772 0.687935i \(-0.241483\pi\)
−0.687935 + 0.725772i \(0.741483\pi\)
\(410\) −1.93495 1.93495i −0.0955602 0.0955602i
\(411\) 0 0
\(412\) −2.83798 −0.139817
\(413\) −14.8043 −0.728470
\(414\) 0 0
\(415\) 1.46691i 0.0720077i
\(416\) −82.5835 + 21.6432i −4.04899 + 1.06115i
\(417\) 0 0
\(418\) 7.34057 + 7.34057i 0.359039 + 0.359039i
\(419\) 25.2592i 1.23399i 0.786966 + 0.616996i \(0.211651\pi\)
−0.786966 + 0.616996i \(0.788349\pi\)
\(420\) 0 0
\(421\) 26.4917 + 26.4917i 1.29113 + 1.29113i 0.934090 + 0.357037i \(0.116213\pi\)
0.357037 + 0.934090i \(0.383787\pi\)
\(422\) 27.1214 27.1214i 1.32025 1.32025i
\(423\) 0 0
\(424\) −3.53688 + 3.53688i −0.171766 + 0.171766i
\(425\) 31.2035i 1.51359i
\(426\) 0 0
\(427\) 2.41139 2.41139i 0.116695 0.116695i
\(428\) 80.1096 3.87224
\(429\) 0 0
\(430\) −3.35915 −0.161992
\(431\) 6.69199 6.69199i 0.322342 0.322342i −0.527323 0.849665i \(-0.676804\pi\)
0.849665 + 0.527323i \(0.176804\pi\)
\(432\) 0 0
\(433\) 40.5441i 1.94842i −0.225636 0.974212i \(-0.572446\pi\)
0.225636 0.974212i \(-0.427554\pi\)
\(434\) 24.8217 24.8217i 1.19148 1.19148i
\(435\) 0 0
\(436\) 13.9002 13.9002i 0.665700 0.665700i
\(437\) −11.4542 11.4542i −0.547930 0.547930i
\(438\) 0 0
\(439\) 12.1128i 0.578111i −0.957312 0.289056i \(-0.906659\pi\)
0.957312 0.289056i \(-0.0933412\pi\)
\(440\) 6.87280 + 6.87280i 0.327648 + 0.327648i
\(441\) 0 0
\(442\) 64.5180 16.9086i 3.06881 0.804262i
\(443\) 30.6985i 1.45853i −0.684231 0.729265i \(-0.739862\pi\)
0.684231 0.729265i \(-0.260138\pi\)
\(444\) 0 0
\(445\) −4.67836 −0.221775
\(446\) −32.3484 −1.53174
\(447\) 0 0
\(448\) −53.8130 53.8130i −2.54242 2.54242i
\(449\) 22.8163 + 22.8163i 1.07677 + 1.07677i 0.996797 + 0.0799723i \(0.0254832\pi\)
0.0799723 + 0.996797i \(0.474517\pi\)
\(450\) 0 0
\(451\) −2.72047 −0.128102
\(452\) 13.9002 0.653812
\(453\) 0 0
\(454\) 45.6441i 2.14218i
\(455\) −2.48636 + 4.25245i −0.116563 + 0.199358i
\(456\) 0 0
\(457\) 11.6442 + 11.6442i 0.544694 + 0.544694i 0.924901 0.380208i \(-0.124147\pi\)
−0.380208 + 0.924901i \(0.624147\pi\)
\(458\) 14.1216i 0.659858i
\(459\) 0 0
\(460\) −16.7629 16.7629i −0.781576 0.781576i
\(461\) 7.35821 7.35821i 0.342706 0.342706i −0.514678 0.857384i \(-0.672088\pi\)
0.857384 + 0.514678i \(0.172088\pi\)
\(462\) 0 0
\(463\) −21.8101 + 21.8101i −1.01360 + 1.01360i −0.0136951 + 0.999906i \(0.504359\pi\)
−0.999906 + 0.0136951i \(0.995641\pi\)
\(464\) 74.5157i 3.45930i
\(465\) 0 0
\(466\) 7.33318 7.33318i 0.339703 0.339703i
\(467\) −2.69124 −0.124536 −0.0622678 0.998059i \(-0.519833\pi\)
−0.0622678 + 0.998059i \(0.519833\pi\)
\(468\) 0 0
\(469\) −10.5100 −0.485308
\(470\) −8.52460 + 8.52460i −0.393210 + 0.393210i
\(471\) 0 0
\(472\) 63.8547i 2.93915i
\(473\) −2.36142 + 2.36142i −0.108578 + 0.108578i
\(474\) 0 0
\(475\) 7.50719 7.50719i 0.344454 0.344454i
\(476\) 59.8029 + 59.8029i 2.74106 + 2.74106i
\(477\) 0 0
\(478\) 72.6868i 3.32462i
\(479\) −12.4608 12.4608i −0.569350 0.569350i 0.362597 0.931946i \(-0.381890\pi\)
−0.931946 + 0.362597i \(0.881890\pi\)
\(480\) 0 0
\(481\) −28.8282 + 7.55519i −1.31445 + 0.344487i
\(482\) 62.4219i 2.84324i
\(483\) 0 0
\(484\) −45.9674 −2.08943
\(485\) 4.71904 0.214281
\(486\) 0 0
\(487\) 8.26795 + 8.26795i 0.374657 + 0.374657i 0.869170 0.494513i \(-0.164654\pi\)
−0.494513 + 0.869170i \(0.664654\pi\)
\(488\) 10.4009 + 10.4009i 0.470828 + 0.470828i
\(489\) 0 0
\(490\) 3.11696 0.140810
\(491\) −8.95140 −0.403971 −0.201985 0.979389i \(-0.564739\pi\)
−0.201985 + 0.979389i \(0.564739\pi\)
\(492\) 0 0
\(493\) 31.9078i 1.43706i
\(494\) −19.5903 11.4542i −0.881408 0.515350i
\(495\) 0 0
\(496\) 62.7437 + 62.7437i 2.81728 + 2.81728i
\(497\) 24.0017i 1.07663i
\(498\) 0 0
\(499\) −12.8465 12.8465i −0.575089 0.575089i 0.358457 0.933546i \(-0.383303\pi\)
−0.933546 + 0.358457i \(0.883303\pi\)
\(500\) 22.8369 22.8369i 1.02130 1.02130i
\(501\) 0 0
\(502\) 30.7590 30.7590i 1.37284 1.37284i
\(503\) 22.0270i 0.982135i −0.871122 0.491067i \(-0.836607\pi\)
0.871122 0.491067i \(-0.163393\pi\)
\(504\) 0 0
\(505\) −7.67303 + 7.67303i −0.341445 + 0.341445i
\(506\) −32.0582 −1.42516
\(507\) 0 0
\(508\) −58.6962 −2.60422
\(509\) −26.3902 + 26.3902i −1.16972 + 1.16972i −0.187451 + 0.982274i \(0.560023\pi\)
−0.982274 + 0.187451i \(0.939977\pi\)
\(510\) 0 0
\(511\) 13.7857i 0.609845i
\(512\) 46.1983 46.1983i 2.04169 2.04169i
\(513\) 0 0
\(514\) −26.0149 + 26.0149i −1.14747 + 1.14747i
\(515\) −0.218215 0.218215i −0.00961569 0.00961569i
\(516\) 0 0
\(517\) 11.9853i 0.527112i
\(518\) −36.3473 36.3473i −1.59701 1.59701i
\(519\) 0 0
\(520\) −18.3419 10.7243i −0.804346 0.470293i
\(521\) 35.6847i 1.56338i −0.623669 0.781689i \(-0.714359\pi\)
0.623669 0.781689i \(-0.285641\pi\)
\(522\) 0 0
\(523\) −9.07914 −0.397003 −0.198502 0.980101i \(-0.563607\pi\)
−0.198502 + 0.980101i \(0.563607\pi\)
\(524\) −79.0683 −3.45411
\(525\) 0 0
\(526\) 9.46339 + 9.46339i 0.412623 + 0.412623i
\(527\) −26.8670 26.8670i −1.17035 1.17035i
\(528\) 0 0
\(529\) 27.0236 1.17494
\(530\) −0.850165 −0.0369288
\(531\) 0 0
\(532\) 28.7757i 1.24758i
\(533\) 5.75266 1.50764i 0.249176 0.0653030i
\(534\) 0 0
\(535\) 6.15969 + 6.15969i 0.266306 + 0.266306i
\(536\) 45.3325i 1.95807i
\(537\) 0 0
\(538\) −49.1809 49.1809i −2.12034 2.12034i
\(539\) 2.19117 2.19117i 0.0943802 0.0943802i
\(540\) 0 0
\(541\) 2.25289 2.25289i 0.0968594 0.0968594i −0.657017 0.753876i \(-0.728182\pi\)
0.753876 + 0.657017i \(0.228182\pi\)
\(542\) 5.81993i 0.249987i
\(543\) 0 0
\(544\) −112.703 + 112.703i −4.83211 + 4.83211i
\(545\) 2.13760 0.0915645
\(546\) 0 0
\(547\) −16.0702 −0.687113 −0.343557 0.939132i \(-0.611632\pi\)
−0.343557 + 0.939132i \(0.611632\pi\)
\(548\) −62.9956 + 62.9956i −2.69104 + 2.69104i
\(549\) 0 0
\(550\) 21.0112i 0.895919i
\(551\) 7.67664 7.67664i 0.327036 0.327036i
\(552\) 0 0
\(553\) 15.2711 15.2711i 0.649391 0.649391i
\(554\) 46.3094 + 46.3094i 1.96750 + 1.96750i
\(555\) 0 0
\(556\) 21.3697i 0.906279i
\(557\) 14.4580 + 14.4580i 0.612604 + 0.612604i 0.943624 0.331020i \(-0.107393\pi\)
−0.331020 + 0.943624i \(0.607393\pi\)
\(558\) 0 0
\(559\) 3.68477 6.30209i 0.155849 0.266550i
\(560\) 21.4771i 0.907575i
\(561\) 0 0
\(562\) 13.0073 0.548680
\(563\) −20.4441 −0.861614 −0.430807 0.902444i \(-0.641771\pi\)
−0.430807 + 0.902444i \(0.641771\pi\)
\(564\) 0 0
\(565\) 1.06880 + 1.06880i 0.0449647 + 0.0449647i
\(566\) −10.3835 10.3835i −0.436453 0.436453i
\(567\) 0 0
\(568\) −103.526 −4.34385
\(569\) 28.4958 1.19461 0.597303 0.802015i \(-0.296239\pi\)
0.597303 + 0.802015i \(0.296239\pi\)
\(570\) 0 0
\(571\) 44.9174i 1.87974i 0.341537 + 0.939868i \(0.389052\pi\)
−0.341537 + 0.939868i \(0.610948\pi\)
\(572\) −31.9384 + 8.37030i −1.33541 + 0.349980i
\(573\) 0 0
\(574\) 7.25311 + 7.25311i 0.302739 + 0.302739i
\(575\) 32.7859i 1.36726i
\(576\) 0 0
\(577\) 5.69092 + 5.69092i 0.236916 + 0.236916i 0.815572 0.578656i \(-0.196423\pi\)
−0.578656 + 0.815572i \(0.696423\pi\)
\(578\) 55.0147 55.0147i 2.28831 2.28831i
\(579\) 0 0
\(580\) 11.2345 11.2345i 0.466488 0.466488i
\(581\) 5.49867i 0.228123i
\(582\) 0 0
\(583\) −0.597651 + 0.597651i −0.0247522 + 0.0247522i
\(584\) 59.4615 2.46054
\(585\) 0 0
\(586\) −39.3211 −1.62434
\(587\) −17.8319 + 17.8319i −0.736002 + 0.736002i −0.971802 0.235800i \(-0.924229\pi\)
0.235800 + 0.971802i \(0.424229\pi\)
\(588\) 0 0
\(589\) 12.9278i 0.532680i
\(590\) 7.67443 7.67443i 0.315951 0.315951i
\(591\) 0 0
\(592\) 91.8778 91.8778i 3.77616 3.77616i
\(593\) −26.1382 26.1382i −1.07337 1.07337i −0.997086 0.0762808i \(-0.975695\pi\)
−0.0762808 0.997086i \(-0.524305\pi\)
\(594\) 0 0
\(595\) 9.19657i 0.377023i
\(596\) 0.635060 + 0.635060i 0.0260131 + 0.0260131i
\(597\) 0 0
\(598\) 67.7897 17.7661i 2.77213 0.726509i
\(599\) 31.8022i 1.29940i 0.760190 + 0.649701i \(0.225106\pi\)
−0.760190 + 0.649701i \(0.774894\pi\)
\(600\) 0 0
\(601\) 15.1081 0.616272 0.308136 0.951342i \(-0.400295\pi\)
0.308136 + 0.951342i \(0.400295\pi\)
\(602\) 12.5917 0.513199
\(603\) 0 0
\(604\) 60.5408 + 60.5408i 2.46337 + 2.46337i
\(605\) −3.53447 3.53447i −0.143697 0.143697i
\(606\) 0 0
\(607\) 6.24394 0.253434 0.126717 0.991939i \(-0.459556\pi\)
0.126717 + 0.991939i \(0.459556\pi\)
\(608\) 54.2300 2.19932
\(609\) 0 0
\(610\) 2.50009i 0.101226i
\(611\) −6.64204 25.3439i −0.268708 1.02530i
\(612\) 0 0
\(613\) −13.8830 13.8830i −0.560729 0.560729i 0.368786 0.929514i \(-0.379774\pi\)
−0.929514 + 0.368786i \(0.879774\pi\)
\(614\) 4.45370i 0.179737i
\(615\) 0 0
\(616\) −25.7626 25.7626i −1.03800 1.03800i
\(617\) 17.1721 17.1721i 0.691324 0.691324i −0.271199 0.962523i \(-0.587420\pi\)
0.962523 + 0.271199i \(0.0874202\pi\)
\(618\) 0 0
\(619\) −7.32775 + 7.32775i −0.294527 + 0.294527i −0.838866 0.544339i \(-0.816781\pi\)
0.544339 + 0.838866i \(0.316781\pi\)
\(620\) 18.9194i 0.759822i
\(621\) 0 0
\(622\) 25.6751 25.6751i 1.02948 1.02948i
\(623\) 17.5367 0.702594
\(624\) 0 0
\(625\) −19.6657 −0.786629
\(626\) 27.7126 27.7126i 1.10762 1.10762i
\(627\) 0 0
\(628\) 13.6805i 0.545912i
\(629\) −39.3423 + 39.3423i −1.56868 + 1.56868i
\(630\) 0 0
\(631\) 17.1639 17.1639i 0.683285 0.683285i −0.277454 0.960739i \(-0.589491\pi\)
0.960739 + 0.277454i \(0.0894906\pi\)
\(632\) 65.8680 + 65.8680i 2.62009 + 2.62009i
\(633\) 0 0
\(634\) 41.5079i 1.64849i
\(635\) −4.51319 4.51319i −0.179101 0.179101i
\(636\) 0 0
\(637\) −3.41910 + 5.84771i −0.135470 + 0.231695i
\(638\) 21.4854i 0.850615i
\(639\) 0 0
\(640\) 27.2029 1.07529
\(641\) −19.1932 −0.758085 −0.379043 0.925379i \(-0.623747\pi\)
−0.379043 + 0.925379i \(0.623747\pi\)
\(642\) 0 0
\(643\) −18.9358 18.9358i −0.746753 0.746753i 0.227115 0.973868i \(-0.427071\pi\)
−0.973868 + 0.227115i \(0.927071\pi\)
\(644\) 62.8355 + 62.8355i 2.47606 + 2.47606i
\(645\) 0 0
\(646\) −42.3670 −1.66691
\(647\) −48.7650 −1.91715 −0.958574 0.284842i \(-0.908059\pi\)
−0.958574 + 0.284842i \(0.908059\pi\)
\(648\) 0 0
\(649\) 10.7900i 0.423544i
\(650\) 11.6440 + 44.4299i 0.456716 + 1.74268i
\(651\) 0 0
\(652\) 12.7931 + 12.7931i 0.501016 + 0.501016i
\(653\) 8.91019i 0.348683i 0.984685 + 0.174341i \(0.0557796\pi\)
−0.984685 + 0.174341i \(0.944220\pi\)
\(654\) 0 0
\(655\) −6.07962 6.07962i −0.237550 0.237550i
\(656\) −18.3342 + 18.3342i −0.715831 + 0.715831i
\(657\) 0 0
\(658\) 31.9543 31.9543i 1.24571 1.24571i
\(659\) 23.5920i 0.919014i 0.888174 + 0.459507i \(0.151974\pi\)
−0.888174 + 0.459507i \(0.848026\pi\)
\(660\) 0 0
\(661\) −16.7726 + 16.7726i −0.652377 + 0.652377i −0.953565 0.301188i \(-0.902617\pi\)
0.301188 + 0.953565i \(0.402617\pi\)
\(662\) −72.9380 −2.83482
\(663\) 0 0
\(664\) 23.7172 0.920406
\(665\) 2.21258 2.21258i 0.0858003 0.0858003i
\(666\) 0 0
\(667\) 33.5259i 1.29813i
\(668\) −19.6231 + 19.6231i −0.759241 + 0.759241i
\(669\) 0 0
\(670\) 5.44833 5.44833i 0.210487 0.210487i
\(671\) 1.75752 + 1.75752i 0.0678483 + 0.0678483i
\(672\) 0 0
\(673\) 28.9652i 1.11653i −0.829664 0.558264i \(-0.811468\pi\)
0.829664 0.558264i \(-0.188532\pi\)
\(674\) −25.3965 25.3965i −0.978236 0.978236i
\(675\) 0 0
\(676\) 62.8978 35.3994i 2.41915 1.36152i
\(677\) 16.7241i 0.642761i 0.946950 + 0.321380i \(0.104147\pi\)
−0.946950 + 0.321380i \(0.895853\pi\)
\(678\) 0 0
\(679\) −17.6892 −0.678850
\(680\) −39.6672 −1.52117
\(681\) 0 0
\(682\) 18.0911 + 18.0911i 0.692746 + 0.692746i
\(683\) 4.91716 + 4.91716i 0.188150 + 0.188150i 0.794896 0.606746i \(-0.207525\pi\)
−0.606746 + 0.794896i \(0.707525\pi\)
\(684\) 0 0
\(685\) −9.68755 −0.370142
\(686\) −55.2165 −2.10818
\(687\) 0 0
\(688\) 31.8289i 1.21347i
\(689\) 0.932576 1.59499i 0.0355283 0.0607644i
\(690\) 0 0
\(691\) 18.8583 + 18.8583i 0.717404 + 0.717404i 0.968073 0.250669i \(-0.0806505\pi\)
−0.250669 + 0.968073i \(0.580650\pi\)
\(692\) 6.31505i 0.240062i
\(693\) 0 0
\(694\) 26.6372 + 26.6372i 1.01114 + 1.01114i
\(695\) 1.64314 1.64314i 0.0623277 0.0623277i
\(696\) 0 0
\(697\) 7.85076 7.85076i 0.297369 0.297369i
\(698\) 52.9424i 2.00390i
\(699\) 0 0
\(700\) −41.1828 + 41.1828i −1.55657 + 1.55657i
\(701\) −39.2125 −1.48103 −0.740517 0.672037i \(-0.765419\pi\)
−0.740517 + 0.672037i \(0.765419\pi\)
\(702\) 0 0
\(703\) 18.9306 0.713981
\(704\) 39.2212 39.2212i 1.47820 1.47820i
\(705\) 0 0
\(706\) 62.3807i 2.34773i
\(707\) 28.7622 28.7622i 1.08171 1.08171i
\(708\) 0 0
\(709\) 6.90793 6.90793i 0.259433 0.259433i −0.565391 0.824823i \(-0.691275\pi\)
0.824823 + 0.565391i \(0.191275\pi\)
\(710\) −12.4423 12.4423i −0.466953 0.466953i
\(711\) 0 0
\(712\) 75.6404i 2.83474i
\(713\) −28.2295 28.2295i −1.05720 1.05720i
\(714\) 0 0
\(715\) −3.09937 1.81217i −0.115910 0.0677712i
\(716\) 88.9649i 3.32477i
\(717\) 0 0
\(718\) 54.5780 2.03683
\(719\) 23.1518 0.863415 0.431708 0.902014i \(-0.357911\pi\)
0.431708 + 0.902014i \(0.357911\pi\)
\(720\) 0 0
\(721\) 0.817973 + 0.817973i 0.0304629 + 0.0304629i
\(722\) −26.7275 26.7275i −0.994696 0.994696i
\(723\) 0 0
\(724\) 95.7504 3.55854
\(725\) −21.9731 −0.816061
\(726\) 0 0
\(727\) 20.1563i 0.747557i 0.927518 + 0.373778i \(0.121938\pi\)
−0.927518 + 0.373778i \(0.878062\pi\)
\(728\) 68.7543 + 40.1999i 2.54820 + 1.48991i
\(729\) 0 0
\(730\) 7.14643 + 7.14643i 0.264501 + 0.264501i
\(731\) 13.6292i 0.504095i
\(732\) 0 0
\(733\) −7.58955 7.58955i −0.280326 0.280326i 0.552913 0.833239i \(-0.313516\pi\)
−0.833239 + 0.552913i \(0.813516\pi\)
\(734\) −40.4836 + 40.4836i −1.49428 + 1.49428i
\(735\) 0 0
\(736\) −118.418 + 118.418i −4.36496 + 4.36496i
\(737\) 7.66016i 0.282166i
\(738\) 0 0
\(739\) −27.5852 + 27.5852i −1.01474 + 1.01474i −0.0148481 + 0.999890i \(0.504726\pi\)
−0.999890 + 0.0148481i \(0.995274\pi\)
\(740\) 27.7044 1.01843
\(741\) 0 0
\(742\) 3.18683 0.116992
\(743\) −5.54681 + 5.54681i −0.203493 + 0.203493i −0.801495 0.598002i \(-0.795962\pi\)
0.598002 + 0.801495i \(0.295962\pi\)
\(744\) 0 0
\(745\) 0.0976605i 0.00357800i
\(746\) −6.67206 + 6.67206i −0.244281 + 0.244281i
\(747\) 0 0
\(748\) −43.5869 + 43.5869i −1.59369 + 1.59369i
\(749\) −23.0894 23.0894i −0.843670 0.843670i
\(750\) 0 0
\(751\) 36.5949i 1.33537i 0.744445 + 0.667684i \(0.232714\pi\)
−0.744445 + 0.667684i \(0.767286\pi\)
\(752\) 80.7731 + 80.7731i 2.94549 + 2.94549i
\(753\) 0 0
\(754\) 11.9068 + 45.4327i 0.433622 + 1.65456i
\(755\) 9.31005i 0.338827i
\(756\) 0 0
\(757\) −40.7089 −1.47959 −0.739794 0.672833i \(-0.765077\pi\)
−0.739794 + 0.672833i \(0.765077\pi\)
\(758\) 54.6629 1.98544
\(759\) 0 0
\(760\) 9.54346 + 9.54346i 0.346178 + 0.346178i
\(761\) 6.97072 + 6.97072i 0.252688 + 0.252688i 0.822072 0.569384i \(-0.192818\pi\)
−0.569384 + 0.822072i \(0.692818\pi\)
\(762\) 0 0
\(763\) −8.01273 −0.290080
\(764\) 23.0345 0.833361
\(765\) 0 0
\(766\) 77.2675i 2.79179i
\(767\) 5.97962 + 22.8163i 0.215912 + 0.823850i
\(768\) 0 0
\(769\) −13.4888 13.4888i −0.486420 0.486420i 0.420755 0.907174i \(-0.361765\pi\)
−0.907174 + 0.420755i \(0.861765\pi\)
\(770\) 6.19259i 0.223165i
\(771\) 0 0
\(772\) −44.5688 44.5688i −1.60407 1.60407i
\(773\) 35.5292 35.5292i 1.27789 1.27789i 0.336051 0.941844i \(-0.390908\pi\)
0.941844 0.336051i \(-0.109092\pi\)
\(774\) 0 0
\(775\) 18.5018 18.5018i 0.664605 0.664605i
\(776\) 76.2982i 2.73895i
\(777\) 0 0
\(778\) 60.5440 60.5440i 2.17061 2.17061i
\(779\) −3.77760 −0.135346
\(780\) 0 0
\(781\) −17.4935 −0.625967
\(782\) 92.5137 92.5137i 3.30828 3.30828i
\(783\) 0 0
\(784\) 29.5341i 1.05479i
\(785\) 1.05191 1.05191i 0.0375441 0.0375441i
\(786\) 0 0
\(787\) −13.7330 + 13.7330i −0.489530 + 0.489530i −0.908158 0.418628i \(-0.862511\pi\)
0.418628 + 0.908158i \(0.362511\pi\)
\(788\) −38.6323 38.6323i −1.37622 1.37622i
\(789\) 0 0
\(790\) 15.8328i 0.563306i
\(791\) −4.00637 4.00637i −0.142450 0.142450i
\(792\) 0 0
\(793\) −4.69041 2.74244i −0.166561 0.0973868i
\(794\) 22.2310i 0.788949i
\(795\) 0 0
\(796\) 33.0738 1.17227
\(797\) 5.03124 0.178216 0.0891079 0.996022i \(-0.471598\pi\)
0.0891079 + 0.996022i \(0.471598\pi\)
\(798\) 0 0
\(799\) −34.5873 34.5873i −1.22361 1.22361i
\(800\) −77.6123 77.6123i −2.74401 2.74401i
\(801\) 0 0
\(802\) −91.1498 −3.21861
\(803\) 10.0476 0.354574
\(804\) 0 0
\(805\) 9.66293i 0.340573i
\(806\) −48.2811 28.2295i −1.70063 0.994340i
\(807\) 0 0
\(808\) 124.059 + 124.059i 4.36437 + 4.36437i
\(809\) 16.0030i 0.562636i 0.959615 + 0.281318i \(0.0907716\pi\)
−0.959615 + 0.281318i \(0.909228\pi\)
\(810\) 0 0
\(811\) 15.6191 + 15.6191i 0.548461 + 0.548461i 0.925996 0.377534i \(-0.123228\pi\)
−0.377534 + 0.925996i \(0.623228\pi\)
\(812\) −42.1124 + 42.1124i −1.47785 + 1.47785i
\(813\) 0 0
\(814\) 26.4915 26.4915i 0.928527 0.928527i
\(815\) 1.96734i 0.0689129i
\(816\) 0 0
\(817\) −3.27903 + 3.27903i −0.114719 + 0.114719i
\(818\) 2.97389 0.103979
\(819\) 0 0
\(820\) −5.52840 −0.193060
\(821\) −12.3130 + 12.3130i −0.429725 + 0.429725i −0.888535 0.458809i \(-0.848276\pi\)
0.458809 + 0.888535i \(0.348276\pi\)
\(822\) 0 0
\(823\) 37.3599i 1.30228i 0.758956 + 0.651142i \(0.225710\pi\)
−0.758956 + 0.651142i \(0.774290\pi\)
\(824\) −3.52813 + 3.52813i −0.122908 + 0.122908i
\(825\) 0 0
\(826\) −28.7674 + 28.7674i −1.00095 + 1.00095i
\(827\) 13.6004 + 13.6004i 0.472932 + 0.472932i 0.902862 0.429930i \(-0.141462\pi\)
−0.429930 + 0.902862i \(0.641462\pi\)
\(828\) 0 0
\(829\) 40.2785i 1.39893i −0.714667 0.699465i \(-0.753422\pi\)
0.714667 0.699465i \(-0.246578\pi\)
\(830\) 2.85047 + 2.85047i 0.0989414 + 0.0989414i
\(831\) 0 0
\(832\) −61.2008 + 104.672i −2.12176 + 3.62886i
\(833\) 12.6466i 0.438178i
\(834\) 0 0
\(835\) −3.01767 −0.104431
\(836\) 20.9730 0.725365
\(837\) 0 0
\(838\) 49.0833 + 49.0833i 1.69555 + 1.69555i
\(839\) −27.2939 27.2939i −0.942291 0.942291i 0.0561321 0.998423i \(-0.482123\pi\)
−0.998423 + 0.0561321i \(0.982123\pi\)
\(840\) 0 0
\(841\) 6.53094 0.225205
\(842\) 102.957 3.54812
\(843\) 0 0
\(844\) 77.4893i 2.66729i
\(845\) 7.55814 + 2.11437i 0.260008 + 0.0727365i
\(846\) 0 0
\(847\) 13.2489 + 13.2489i 0.455237 + 0.455237i
\(848\) 8.05557i 0.276629i
\(849\) 0 0
\(850\) 60.6342 + 60.6342i 2.07974 + 2.07974i
\(851\) −41.3374 + 41.3374i −1.41703 + 1.41703i
\(852\) 0 0
\(853\) −35.9570 + 35.9570i −1.23114 + 1.23114i −0.267620 + 0.963524i \(0.586237\pi\)
−0.963524 + 0.267620i \(0.913763\pi\)
\(854\) 9.37153i 0.320687i
\(855\) 0 0
\(856\) 99.5908 99.5908i 3.40394 3.40394i
\(857\) −15.0580 −0.514370 −0.257185 0.966362i \(-0.582795\pi\)
−0.257185 + 0.966362i \(0.582795\pi\)
\(858\) 0 0
\(859\) 25.9846 0.886582 0.443291 0.896378i \(-0.353811\pi\)
0.443291 + 0.896378i \(0.353811\pi\)
\(860\) −4.79876 + 4.79876i −0.163636 + 0.163636i
\(861\) 0 0
\(862\) 26.0076i 0.885821i
\(863\) −23.5740 + 23.5740i −0.802469 + 0.802469i −0.983481 0.181012i \(-0.942063\pi\)
0.181012 + 0.983481i \(0.442063\pi\)
\(864\) 0 0
\(865\) 0.485569 0.485569i 0.0165098 0.0165098i
\(866\) −78.7846 78.7846i −2.67721 2.67721i
\(867\) 0 0
\(868\) 70.9190i 2.40715i
\(869\) 11.1302 + 11.1302i 0.377566 + 0.377566i
\(870\) 0 0
\(871\) 4.24513 + 16.1981i 0.143841 + 0.548850i
\(872\) 34.5610i 1.17038i
\(873\) 0 0
\(874\) −44.5154 −1.50576
\(875\) −13.1643 −0.445033
\(876\) 0 0
\(877\) −28.7018 28.7018i −0.969190 0.969190i 0.0303491 0.999539i \(-0.490338\pi\)
−0.999539 + 0.0303491i \(0.990338\pi\)
\(878\) −23.5374 23.5374i −0.794347 0.794347i
\(879\) 0 0
\(880\) 15.6535 0.527678
\(881\) 37.3137 1.25713 0.628565 0.777757i \(-0.283642\pi\)
0.628565 + 0.777757i \(0.283642\pi\)
\(882\) 0 0
\(883\) 14.9070i 0.501660i −0.968031 0.250830i \(-0.919296\pi\)
0.968031 0.250830i \(-0.0807036\pi\)
\(884\) 68.0131 116.323i 2.28753 3.91238i
\(885\) 0 0
\(886\) −59.6529 59.6529i −2.00408 2.00408i
\(887\) 32.3657i 1.08673i −0.839495 0.543367i \(-0.817149\pi\)
0.839495 0.543367i \(-0.182851\pi\)
\(888\) 0 0
\(889\) 16.9176 + 16.9176i 0.567398 + 0.567398i
\(890\) −9.09091 + 9.09091i −0.304728 + 0.304728i
\(891\) 0 0
\(892\) −46.2118 + 46.2118i −1.54729 + 1.54729i
\(893\) 16.6426i 0.556922i
\(894\) 0 0
\(895\) −6.84058 + 6.84058i −0.228655 + 0.228655i
\(896\) −101.969 −3.40656
\(897\) 0 0
\(898\) 88.6727 2.95905
\(899\) 18.9194 18.9194i 0.630998 0.630998i
\(900\) 0 0
\(901\) 3.44942i 0.114917i
\(902\) −5.28638 + 5.28638i −0.176017 + 0.176017i
\(903\) 0 0
\(904\) 17.2805 17.2805i 0.574741 0.574741i
\(905\) 7.36232 + 7.36232i 0.244732 + 0.244732i
\(906\) 0 0
\(907\) 33.4143i 1.10950i −0.832016 0.554752i \(-0.812813\pi\)
0.832016 0.554752i \(-0.187187\pi\)
\(908\) −65.2055 65.2055i −2.16392 2.16392i
\(909\) 0 0
\(910\) 3.43183 + 13.0948i 0.113764 + 0.434087i
\(911\) 7.69858i 0.255065i −0.991834 0.127533i \(-0.959294\pi\)
0.991834 0.127533i \(-0.0407058\pi\)
\(912\) 0 0
\(913\) 4.00767 0.132634
\(914\) 45.2537 1.49686
\(915\) 0 0
\(916\) −20.1736 20.1736i −0.666554 0.666554i
\(917\) 22.7893 + 22.7893i 0.752569 + 0.752569i
\(918\) 0 0
\(919\) 34.8634 1.15004 0.575019 0.818140i \(-0.304995\pi\)
0.575019 + 0.818140i \(0.304995\pi\)
\(920\) −41.6787 −1.37411
\(921\) 0 0
\(922\) 28.5967i 0.941783i
\(923\) 36.9915 9.69460i 1.21759 0.319102i
\(924\) 0 0
\(925\) −27.0928 27.0928i −0.890807 0.890807i
\(926\) 84.7621i 2.78546i
\(927\) 0 0
\(928\) −79.3640 79.3640i −2.60525 2.60525i
\(929\) 5.29791 5.29791i 0.173819 0.173819i −0.614836 0.788655i \(-0.710778\pi\)
0.788655 + 0.614836i \(0.210778\pi\)
\(930\) 0 0
\(931\) 3.04261 3.04261i 0.0997177 0.0997177i
\(932\) 20.9519i 0.686301i
\(933\) 0 0
\(934\) −5.22957 + 5.22957i −0.171117 + 0.171117i
\(935\) −6.70286 −0.219207
\(936\) 0 0
\(937\) 38.1244 1.24547 0.622734 0.782433i \(-0.286022\pi\)
0.622734 + 0.782433i \(0.286022\pi\)
\(938\) −20.4229 + 20.4229i −0.666833 + 0.666833i
\(939\) 0 0
\(940\) 24.3559i 0.794401i
\(941\) 28.7910 28.7910i 0.938560 0.938560i −0.0596586 0.998219i \(-0.519001\pi\)
0.998219 + 0.0596586i \(0.0190012\pi\)
\(942\) 0 0
\(943\) 8.24887 8.24887i 0.268620 0.268620i
\(944\) −72.7175 72.7175i −2.36675 2.36675i
\(945\) 0 0
\(946\) 9.17736i 0.298382i
\(947\) 4.47941 + 4.47941i 0.145561 + 0.145561i 0.776132 0.630571i \(-0.217179\pi\)
−0.630571 + 0.776132i \(0.717179\pi\)
\(948\) 0 0
\(949\) −21.2466 + 5.56823i −0.689693 + 0.180752i
\(950\) 29.1757i 0.946586i
\(951\) 0 0
\(952\) 148.692 4.81913
\(953\) 27.9211 0.904452 0.452226 0.891903i \(-0.350630\pi\)
0.452226 + 0.891903i \(0.350630\pi\)
\(954\) 0 0
\(955\) 1.77114 + 1.77114i 0.0573128 + 0.0573128i
\(956\) 103.838 + 103.838i 3.35836 + 3.35836i
\(957\) 0 0
\(958\) −48.4274 −1.56462
\(959\) 36.3136 1.17263
\(960\) 0 0
\(961\) 0.861065i 0.0277763i
\(962\) −41.3374 + 70.6997i −1.33277 + 2.27945i
\(963\) 0 0
\(964\) −89.1738 89.1738i −2.87209 2.87209i
\(965\) 6.85385i 0.220633i
\(966\) 0 0
\(967\) 4.80037 + 4.80037i 0.154370 + 0.154370i 0.780066 0.625697i \(-0.215185\pi\)
−0.625697 + 0.780066i \(0.715185\pi\)
\(968\) −57.1458 + 57.1458i −1.83674 + 1.83674i
\(969\) 0 0
\(970\) 9.16997 9.16997i 0.294430 0.294430i
\(971\) 51.5139i 1.65316i −0.562820 0.826580i \(-0.690283\pi\)
0.562820 0.826580i \(-0.309717\pi\)
\(972\) 0 0
\(973\) −6.15926 + 6.15926i −0.197457 + 0.197457i
\(974\) 32.1323 1.02959
\(975\) 0 0
\(976\) 23.6891 0.758270
\(977\) 23.2538 23.2538i 0.743954 0.743954i −0.229382 0.973336i \(-0.573671\pi\)
0.973336 + 0.229382i \(0.0736705\pi\)
\(978\) 0 0
\(979\) 12.7815i 0.408499i
\(980\) 4.45278 4.45278i 0.142239 0.142239i
\(981\) 0 0
\(982\) −17.3942 + 17.3942i −0.555072 + 0.555072i
\(983\) 1.95776 + 1.95776i 0.0624428 + 0.0624428i 0.737639 0.675196i \(-0.235941\pi\)
−0.675196 + 0.737639i \(0.735941\pi\)
\(984\) 0 0
\(985\) 5.94093i 0.189294i
\(986\) 62.0028 + 62.0028i 1.97457 + 1.97457i
\(987\) 0 0
\(988\) −44.3491 + 11.6229i −1.41093 + 0.369772i
\(989\) 14.3204i 0.455361i
\(990\) 0 0
\(991\) 43.5318 1.38283 0.691416 0.722457i \(-0.256987\pi\)
0.691416 + 0.722457i \(0.256987\pi\)
\(992\) 133.652 4.24347
\(993\) 0 0
\(994\) 46.6398 + 46.6398i 1.47933 + 1.47933i
\(995\) 2.54307 + 2.54307i 0.0806207 + 0.0806207i
\(996\) 0 0
\(997\) 40.2561 1.27492 0.637462 0.770481i \(-0.279984\pi\)
0.637462 + 0.770481i \(0.279984\pi\)
\(998\) −49.9263 −1.58039
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 351.2.i.b.242.8 yes 16
3.2 odd 2 inner 351.2.i.b.242.1 yes 16
13.5 odd 4 inner 351.2.i.b.161.1 16
39.5 even 4 inner 351.2.i.b.161.8 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
351.2.i.b.161.1 16 13.5 odd 4 inner
351.2.i.b.161.8 yes 16 39.5 even 4 inner
351.2.i.b.242.1 yes 16 3.2 odd 2 inner
351.2.i.b.242.8 yes 16 1.1 even 1 trivial