Properties

Label 351.2.i.b.161.7
Level $351$
Weight $2$
Character 351.161
Analytic conductor $2.803$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [351,2,Mod(161,351)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(351, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("351.161"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.i (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.80274911095\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 24x^{14} + 184x^{12} + 600x^{10} + 894x^{8} + 600x^{6} + 184x^{4} + 24x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 161.7
Root \(-0.440957i\) of defining polynomial
Character \(\chi\) \(=\) 351.161
Dual form 351.2.i.b.242.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.35438 + 1.35438i) q^{2} +1.66867i q^{4} +(2.02548 + 2.02548i) q^{5} +(0.0947876 + 0.0947876i) q^{7} +(0.448746 - 0.448746i) q^{8} +5.48652i q^{10} +(1.48275 - 1.48275i) q^{11} +(-3.32235 - 1.40072i) q^{13} +0.256756i q^{14} +4.55288 q^{16} -4.69170 q^{17} +(-4.59030 + 4.59030i) q^{19} +(-3.37986 + 3.37986i) q^{20} +4.01641 q^{22} +3.79420 q^{23} +3.20514i q^{25} +(-2.60260 - 6.39681i) q^{26} +(-0.158169 + 0.158169i) q^{28} -6.75971i q^{29} +(-2.65968 + 2.65968i) q^{31} +(5.26882 + 5.26882i) q^{32} +(-6.35432 - 6.35432i) q^{34} +0.383981i q^{35} +(4.05440 + 4.05440i) q^{37} -12.4340 q^{38} +1.81785 q^{40} +(-1.48275 - 1.48275i) q^{41} -7.45512i q^{43} +(2.47423 + 2.47423i) q^{44} +(5.13878 + 5.13878i) q^{46} +(5.23442 - 5.23442i) q^{47} -6.98203i q^{49} +(-4.34096 + 4.34096i) q^{50} +(2.33734 - 5.54390i) q^{52} -4.43494i q^{53} +6.00658 q^{55} +0.0850712 q^{56} +(9.15519 - 9.15519i) q^{58} +(-0.799482 + 0.799482i) q^{59} -10.9126 q^{61} -7.20443 q^{62} +5.16617i q^{64} +(-3.89221 - 9.56648i) q^{65} +(-4.06338 + 4.06338i) q^{67} -7.82889i q^{68} +(-0.520054 + 0.520054i) q^{70} +(5.81968 + 5.81968i) q^{71} +(-8.62828 - 8.62828i) q^{73} +10.9824i q^{74} +(-7.65968 - 7.65968i) q^{76} +0.281093 q^{77} -4.32835 q^{79} +(9.22177 + 9.22177i) q^{80} -4.01641i q^{82} +(11.0492 + 11.0492i) q^{83} +(-9.50294 - 9.50294i) q^{85} +(10.0970 - 10.0970i) q^{86} -1.33076i q^{88} +(-3.25148 + 3.25148i) q^{89} +(-0.182146 - 0.447688i) q^{91} +6.33127i q^{92} +14.1788 q^{94} -18.5951 q^{95} +(11.1238 - 11.1238i) q^{97} +(9.45630 - 9.45630i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{7} + 16 q^{13} - 8 q^{16} - 32 q^{19} + 8 q^{22} + 40 q^{28} + 16 q^{31} + 24 q^{34} - 32 q^{37} - 72 q^{40} + 48 q^{46} + 48 q^{52} + 32 q^{55} + 56 q^{58} - 64 q^{61} - 32 q^{67} - 40 q^{70}+ \cdots + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.35438 + 1.35438i 0.957689 + 0.957689i 0.999140 0.0414520i \(-0.0131984\pi\)
−0.0414520 + 0.999140i \(0.513198\pi\)
\(3\) 0 0
\(4\) 1.66867i 0.834335i
\(5\) 2.02548 + 2.02548i 0.905822 + 0.905822i 0.995932 0.0901097i \(-0.0287218\pi\)
−0.0901097 + 0.995932i \(0.528722\pi\)
\(6\) 0 0
\(7\) 0.0947876 + 0.0947876i 0.0358263 + 0.0358263i 0.724793 0.688967i \(-0.241935\pi\)
−0.688967 + 0.724793i \(0.741935\pi\)
\(8\) 0.448746 0.448746i 0.158656 0.158656i
\(9\) 0 0
\(10\) 5.48652i 1.73499i
\(11\) 1.48275 1.48275i 0.447067 0.447067i −0.447311 0.894378i \(-0.647618\pi\)
0.894378 + 0.447311i \(0.147618\pi\)
\(12\) 0 0
\(13\) −3.32235 1.40072i −0.921453 0.388490i
\(14\) 0.256756i 0.0686210i
\(15\) 0 0
\(16\) 4.55288 1.13822
\(17\) −4.69170 −1.13790 −0.568952 0.822371i \(-0.692651\pi\)
−0.568952 + 0.822371i \(0.692651\pi\)
\(18\) 0 0
\(19\) −4.59030 + 4.59030i −1.05309 + 1.05309i −0.0545764 + 0.998510i \(0.517381\pi\)
−0.998510 + 0.0545764i \(0.982619\pi\)
\(20\) −3.37986 + 3.37986i −0.755759 + 0.755759i
\(21\) 0 0
\(22\) 4.01641 0.856302
\(23\) 3.79420 0.791146 0.395573 0.918435i \(-0.370546\pi\)
0.395573 + 0.918435i \(0.370546\pi\)
\(24\) 0 0
\(25\) 3.20514i 0.641027i
\(26\) −2.60260 6.39681i −0.510413 1.25452i
\(27\) 0 0
\(28\) −0.158169 + 0.158169i −0.0298912 + 0.0298912i
\(29\) 6.75971i 1.25525i −0.778517 0.627623i \(-0.784028\pi\)
0.778517 0.627623i \(-0.215972\pi\)
\(30\) 0 0
\(31\) −2.65968 + 2.65968i −0.477693 + 0.477693i −0.904393 0.426700i \(-0.859676\pi\)
0.426700 + 0.904393i \(0.359676\pi\)
\(32\) 5.26882 + 5.26882i 0.931405 + 0.931405i
\(33\) 0 0
\(34\) −6.35432 6.35432i −1.08976 1.08976i
\(35\) 0.383981i 0.0649046i
\(36\) 0 0
\(37\) 4.05440 + 4.05440i 0.666539 + 0.666539i 0.956913 0.290374i \(-0.0937798\pi\)
−0.290374 + 0.956913i \(0.593780\pi\)
\(38\) −12.4340 −2.01706
\(39\) 0 0
\(40\) 1.81785 0.287428
\(41\) −1.48275 1.48275i −0.231567 0.231567i 0.581779 0.813347i \(-0.302357\pi\)
−0.813347 + 0.581779i \(0.802357\pi\)
\(42\) 0 0
\(43\) 7.45512i 1.13689i −0.822720 0.568447i \(-0.807544\pi\)
0.822720 0.568447i \(-0.192456\pi\)
\(44\) 2.47423 + 2.47423i 0.373004 + 0.373004i
\(45\) 0 0
\(46\) 5.13878 + 5.13878i 0.757672 + 0.757672i
\(47\) 5.23442 5.23442i 0.763519 0.763519i −0.213438 0.976957i \(-0.568466\pi\)
0.976957 + 0.213438i \(0.0684660\pi\)
\(48\) 0 0
\(49\) 6.98203i 0.997433i
\(50\) −4.34096 + 4.34096i −0.613905 + 0.613905i
\(51\) 0 0
\(52\) 2.33734 5.54390i 0.324131 0.768800i
\(53\) 4.43494i 0.609186i −0.952483 0.304593i \(-0.901480\pi\)
0.952483 0.304593i \(-0.0985204\pi\)
\(54\) 0 0
\(55\) 6.00658 0.809927
\(56\) 0.0850712 0.0113681
\(57\) 0 0
\(58\) 9.15519 9.15519i 1.20214 1.20214i
\(59\) −0.799482 + 0.799482i −0.104084 + 0.104084i −0.757231 0.653147i \(-0.773448\pi\)
0.653147 + 0.757231i \(0.273448\pi\)
\(60\) 0 0
\(61\) −10.9126 −1.39722 −0.698610 0.715502i \(-0.746198\pi\)
−0.698610 + 0.715502i \(0.746198\pi\)
\(62\) −7.20443 −0.914963
\(63\) 0 0
\(64\) 5.16617i 0.645771i
\(65\) −3.89221 9.56648i −0.482770 1.18658i
\(66\) 0 0
\(67\) −4.06338 + 4.06338i −0.496421 + 0.496421i −0.910322 0.413901i \(-0.864166\pi\)
0.413901 + 0.910322i \(0.364166\pi\)
\(68\) 7.82889i 0.949392i
\(69\) 0 0
\(70\) −0.520054 + 0.520054i −0.0621584 + 0.0621584i
\(71\) 5.81968 + 5.81968i 0.690669 + 0.690669i 0.962379 0.271710i \(-0.0875891\pi\)
−0.271710 + 0.962379i \(0.587589\pi\)
\(72\) 0 0
\(73\) −8.62828 8.62828i −1.00986 1.00986i −0.999951 0.00991275i \(-0.996845\pi\)
−0.00991275 0.999951i \(-0.503155\pi\)
\(74\) 10.9824i 1.27667i
\(75\) 0 0
\(76\) −7.65968 7.65968i −0.878626 0.878626i
\(77\) 0.281093 0.0320336
\(78\) 0 0
\(79\) −4.32835 −0.486978 −0.243489 0.969904i \(-0.578292\pi\)
−0.243489 + 0.969904i \(0.578292\pi\)
\(80\) 9.22177 + 9.22177i 1.03103 + 1.03103i
\(81\) 0 0
\(82\) 4.01641i 0.443539i
\(83\) 11.0492 + 11.0492i 1.21281 + 1.21281i 0.970098 + 0.242712i \(0.0780370\pi\)
0.242712 + 0.970098i \(0.421963\pi\)
\(84\) 0 0
\(85\) −9.50294 9.50294i −1.03074 1.03074i
\(86\) 10.0970 10.0970i 1.08879 1.08879i
\(87\) 0 0
\(88\) 1.33076i 0.141860i
\(89\) −3.25148 + 3.25148i −0.344656 + 0.344656i −0.858114 0.513458i \(-0.828364\pi\)
0.513458 + 0.858114i \(0.328364\pi\)
\(90\) 0 0
\(91\) −0.182146 0.447688i −0.0190941 0.0469305i
\(92\) 6.33127i 0.660081i
\(93\) 0 0
\(94\) 14.1788 1.46243
\(95\) −18.5951 −1.90782
\(96\) 0 0
\(97\) 11.1238 11.1238i 1.12945 1.12945i 0.139183 0.990267i \(-0.455552\pi\)
0.990267 0.139183i \(-0.0444475\pi\)
\(98\) 9.45630 9.45630i 0.955230 0.955230i
\(99\) 0 0
\(100\) −5.34831 −0.534831
\(101\) 17.7421 1.76540 0.882701 0.469935i \(-0.155723\pi\)
0.882701 + 0.469935i \(0.155723\pi\)
\(102\) 0 0
\(103\) 16.9192i 1.66710i 0.552444 + 0.833550i \(0.313695\pi\)
−0.552444 + 0.833550i \(0.686305\pi\)
\(104\) −2.11946 + 0.862323i −0.207830 + 0.0845577i
\(105\) 0 0
\(106\) 6.00658 6.00658i 0.583410 0.583410i
\(107\) 11.9649i 1.15669i 0.815791 + 0.578346i \(0.196302\pi\)
−0.815791 + 0.578346i \(0.803698\pi\)
\(108\) 0 0
\(109\) −3.56787 + 3.56787i −0.341740 + 0.341740i −0.857021 0.515281i \(-0.827688\pi\)
0.515281 + 0.857021i \(0.327688\pi\)
\(110\) 8.13516 + 8.13516i 0.775658 + 0.775658i
\(111\) 0 0
\(112\) 0.431557 + 0.431557i 0.0407783 + 0.0407783i
\(113\) 15.8863i 1.49446i 0.664564 + 0.747231i \(0.268617\pi\)
−0.664564 + 0.747231i \(0.731383\pi\)
\(114\) 0 0
\(115\) 7.68508 + 7.68508i 0.716638 + 0.716638i
\(116\) 11.2797 1.04730
\(117\) 0 0
\(118\) −2.16560 −0.199359
\(119\) −0.444715 0.444715i −0.0407669 0.0407669i
\(120\) 0 0
\(121\) 6.60288i 0.600262i
\(122\) −14.7798 14.7798i −1.33810 1.33810i
\(123\) 0 0
\(124\) −4.43813 4.43813i −0.398556 0.398556i
\(125\) 3.63546 3.63546i 0.325165 0.325165i
\(126\) 0 0
\(127\) 2.87981i 0.255542i 0.991804 + 0.127771i \(0.0407823\pi\)
−0.991804 + 0.127771i \(0.959218\pi\)
\(128\) 3.54071 3.54071i 0.312957 0.312957i
\(129\) 0 0
\(130\) 7.68508 18.2281i 0.674026 1.59871i
\(131\) 18.0232i 1.57469i −0.616512 0.787345i \(-0.711455\pi\)
0.616512 0.787345i \(-0.288545\pi\)
\(132\) 0 0
\(133\) −0.870206 −0.0754564
\(134\) −11.0067 −0.950834
\(135\) 0 0
\(136\) −2.10538 + 2.10538i −0.180535 + 0.180535i
\(137\) −13.6600 + 13.6600i −1.16705 + 1.16705i −0.184152 + 0.982898i \(0.558954\pi\)
−0.982898 + 0.184152i \(0.941046\pi\)
\(138\) 0 0
\(139\) −11.7207 −0.994133 −0.497067 0.867712i \(-0.665590\pi\)
−0.497067 + 0.867712i \(0.665590\pi\)
\(140\) −0.640737 −0.0541521
\(141\) 0 0
\(142\) 15.7641i 1.32289i
\(143\) −7.00315 + 2.84930i −0.585632 + 0.238270i
\(144\) 0 0
\(145\) 13.6917 13.6917i 1.13703 1.13703i
\(146\) 23.3719i 1.93427i
\(147\) 0 0
\(148\) −6.76545 + 6.76545i −0.556116 + 0.556116i
\(149\) −7.55919 7.55919i −0.619273 0.619273i 0.326072 0.945345i \(-0.394275\pi\)
−0.945345 + 0.326072i \(0.894275\pi\)
\(150\) 0 0
\(151\) 1.94702 + 1.94702i 0.158447 + 0.158447i 0.781878 0.623431i \(-0.214262\pi\)
−0.623431 + 0.781878i \(0.714262\pi\)
\(152\) 4.11976i 0.334156i
\(153\) 0 0
\(154\) 0.380706 + 0.380706i 0.0306782 + 0.0306782i
\(155\) −10.7743 −0.865411
\(156\) 0 0
\(157\) −4.46410 −0.356274 −0.178137 0.984006i \(-0.557007\pi\)
−0.178137 + 0.984006i \(0.557007\pi\)
\(158\) −5.86222 5.86222i −0.466373 0.466373i
\(159\) 0 0
\(160\) 21.3438i 1.68737i
\(161\) 0.359643 + 0.359643i 0.0283439 + 0.0283439i
\(162\) 0 0
\(163\) 8.85224 + 8.85224i 0.693361 + 0.693361i 0.962970 0.269609i \(-0.0868945\pi\)
−0.269609 + 0.962970i \(0.586895\pi\)
\(164\) 2.47423 2.47423i 0.193205 0.193205i
\(165\) 0 0
\(166\) 29.9296i 2.32299i
\(167\) −13.3740 + 13.3740i −1.03491 + 1.03491i −0.0355431 + 0.999368i \(0.511316\pi\)
−0.999368 + 0.0355431i \(0.988684\pi\)
\(168\) 0 0
\(169\) 9.07597 + 9.30735i 0.698151 + 0.715950i
\(170\) 25.7411i 1.97425i
\(171\) 0 0
\(172\) 12.4401 0.948551
\(173\) −15.5024 −1.17862 −0.589312 0.807906i \(-0.700601\pi\)
−0.589312 + 0.807906i \(0.700601\pi\)
\(174\) 0 0
\(175\) −0.303807 + 0.303807i −0.0229657 + 0.0229657i
\(176\) 6.75080 6.75080i 0.508861 0.508861i
\(177\) 0 0
\(178\) −8.80745 −0.660146
\(179\) −2.76949 −0.207001 −0.103501 0.994629i \(-0.533004\pi\)
−0.103501 + 0.994629i \(0.533004\pi\)
\(180\) 0 0
\(181\) 11.0448i 0.820957i −0.911870 0.410478i \(-0.865362\pi\)
0.911870 0.410478i \(-0.134638\pi\)
\(182\) 0.359643 0.853033i 0.0266585 0.0632310i
\(183\) 0 0
\(184\) 1.70264 1.70264i 0.125520 0.125520i
\(185\) 16.4242i 1.20753i
\(186\) 0 0
\(187\) −6.95663 + 6.95663i −0.508719 + 0.508719i
\(188\) 8.73452 + 8.73452i 0.637030 + 0.637030i
\(189\) 0 0
\(190\) −25.1848 25.1848i −1.82709 1.82709i
\(191\) 21.4577i 1.55263i −0.630347 0.776313i \(-0.717088\pi\)
0.630347 0.776313i \(-0.282912\pi\)
\(192\) 0 0
\(193\) −7.92460 7.92460i −0.570425 0.570425i 0.361822 0.932247i \(-0.382155\pi\)
−0.932247 + 0.361822i \(0.882155\pi\)
\(194\) 30.1316 2.16332
\(195\) 0 0
\(196\) 11.6507 0.832193
\(197\) −3.76499 3.76499i −0.268244 0.268244i 0.560148 0.828393i \(-0.310744\pi\)
−0.828393 + 0.560148i \(0.810744\pi\)
\(198\) 0 0
\(199\) 10.3767i 0.735588i 0.929907 + 0.367794i \(0.119887\pi\)
−0.929907 + 0.367794i \(0.880113\pi\)
\(200\) 1.43829 + 1.43829i 0.101703 + 0.101703i
\(201\) 0 0
\(202\) 24.0294 + 24.0294i 1.69071 + 1.69071i
\(203\) 0.640737 0.640737i 0.0449709 0.0449709i
\(204\) 0 0
\(205\) 6.00658i 0.419518i
\(206\) −22.9150 + 22.9150i −1.59656 + 1.59656i
\(207\) 0 0
\(208\) −15.1262 6.37731i −1.04882 0.442187i
\(209\) 13.6126i 0.941600i
\(210\) 0 0
\(211\) −2.37674 −0.163622 −0.0818109 0.996648i \(-0.526070\pi\)
−0.0818109 + 0.996648i \(0.526070\pi\)
\(212\) 7.40045 0.508265
\(213\) 0 0
\(214\) −16.2050 + 16.2050i −1.10775 + 1.10775i
\(215\) 15.1002 15.1002i 1.02982 1.02982i
\(216\) 0 0
\(217\) −0.504210 −0.0342280
\(218\) −9.66449 −0.654562
\(219\) 0 0
\(220\) 10.0230i 0.675750i
\(221\) 15.5874 + 6.57175i 1.04852 + 0.442064i
\(222\) 0 0
\(223\) −1.83285 + 1.83285i −0.122736 + 0.122736i −0.765807 0.643071i \(-0.777660\pi\)
0.643071 + 0.765807i \(0.277660\pi\)
\(224\) 0.998838i 0.0667376i
\(225\) 0 0
\(226\) −21.5161 + 21.5161i −1.43123 + 1.43123i
\(227\) 1.66584 + 1.66584i 0.110565 + 0.110565i 0.760225 0.649660i \(-0.225089\pi\)
−0.649660 + 0.760225i \(0.725089\pi\)
\(228\) 0 0
\(229\) −6.20959 6.20959i −0.410341 0.410341i 0.471516 0.881857i \(-0.343707\pi\)
−0.881857 + 0.471516i \(0.843707\pi\)
\(230\) 20.8170i 1.37263i
\(231\) 0 0
\(232\) −3.03340 3.03340i −0.199152 0.199152i
\(233\) 9.34124 0.611965 0.305982 0.952037i \(-0.401015\pi\)
0.305982 + 0.952037i \(0.401015\pi\)
\(234\) 0 0
\(235\) 21.2044 1.38322
\(236\) −1.33407 1.33407i −0.0868406 0.0868406i
\(237\) 0 0
\(238\) 1.20462i 0.0780840i
\(239\) 2.09915 + 2.09915i 0.135783 + 0.135783i 0.771731 0.635949i \(-0.219391\pi\)
−0.635949 + 0.771731i \(0.719391\pi\)
\(240\) 0 0
\(241\) 15.1118 + 15.1118i 0.973438 + 0.973438i 0.999656 0.0262181i \(-0.00834642\pi\)
−0.0262181 + 0.999656i \(0.508346\pi\)
\(242\) −8.94278 + 8.94278i −0.574864 + 0.574864i
\(243\) 0 0
\(244\) 18.2096i 1.16575i
\(245\) 14.1420 14.1420i 0.903497 0.903497i
\(246\) 0 0
\(247\) 21.6803 8.82083i 1.37948 0.561256i
\(248\) 2.38705i 0.151578i
\(249\) 0 0
\(250\) 9.84756 0.622814
\(251\) −8.71832 −0.550295 −0.275148 0.961402i \(-0.588727\pi\)
−0.275148 + 0.961402i \(0.588727\pi\)
\(252\) 0 0
\(253\) 5.62587 5.62587i 0.353695 0.353695i
\(254\) −3.90035 + 3.90035i −0.244730 + 0.244730i
\(255\) 0 0
\(256\) 19.9232 1.24520
\(257\) 22.0741 1.37695 0.688473 0.725262i \(-0.258281\pi\)
0.688473 + 0.725262i \(0.258281\pi\)
\(258\) 0 0
\(259\) 0.768613i 0.0477593i
\(260\) 15.9633 6.49482i 0.990001 0.402792i
\(261\) 0 0
\(262\) 24.4101 24.4101i 1.50806 1.50806i
\(263\) 15.2213i 0.938584i 0.883043 + 0.469292i \(0.155491\pi\)
−0.883043 + 0.469292i \(0.844509\pi\)
\(264\) 0 0
\(265\) 8.98288 8.98288i 0.551814 0.551814i
\(266\) −1.17859 1.17859i −0.0722638 0.0722638i
\(267\) 0 0
\(268\) −6.78044 6.78044i −0.414181 0.414181i
\(269\) 4.80110i 0.292729i 0.989231 + 0.146364i \(0.0467572\pi\)
−0.989231 + 0.146364i \(0.953243\pi\)
\(270\) 0 0
\(271\) −13.5789 13.5789i −0.824860 0.824860i 0.161941 0.986800i \(-0.448225\pi\)
−0.986800 + 0.161941i \(0.948225\pi\)
\(272\) −21.3607 −1.29518
\(273\) 0 0
\(274\) −37.0015 −2.23534
\(275\) 4.75243 + 4.75243i 0.286582 + 0.286582i
\(276\) 0 0
\(277\) 5.59871i 0.336394i −0.985753 0.168197i \(-0.946206\pi\)
0.985753 0.168197i \(-0.0537945\pi\)
\(278\) −15.8742 15.8742i −0.952070 0.952070i
\(279\) 0 0
\(280\) 0.172310 + 0.172310i 0.0102975 + 0.0102975i
\(281\) 7.31576 7.31576i 0.436422 0.436422i −0.454384 0.890806i \(-0.650141\pi\)
0.890806 + 0.454384i \(0.150141\pi\)
\(282\) 0 0
\(283\) 26.6692i 1.58532i 0.609666 + 0.792658i \(0.291304\pi\)
−0.609666 + 0.792658i \(0.708696\pi\)
\(284\) −9.71113 + 9.71113i −0.576249 + 0.576249i
\(285\) 0 0
\(286\) −13.3439 5.62587i −0.789042 0.332665i
\(287\) 0.281093i 0.0165924i
\(288\) 0 0
\(289\) 5.01202 0.294824
\(290\) 37.0873 2.17784
\(291\) 0 0
\(292\) 14.3977 14.3977i 0.842564 0.842564i
\(293\) 2.50747 2.50747i 0.146488 0.146488i −0.630059 0.776547i \(-0.716969\pi\)
0.776547 + 0.630059i \(0.216969\pi\)
\(294\) 0 0
\(295\) −3.23867 −0.188563
\(296\) 3.63879 0.211501
\(297\) 0 0
\(298\) 20.4760i 1.18614i
\(299\) −12.6057 5.31462i −0.729004 0.307352i
\(300\) 0 0
\(301\) 0.706653 0.706653i 0.0407308 0.0407308i
\(302\) 5.27401i 0.303485i
\(303\) 0 0
\(304\) −20.8991 + 20.8991i −1.19864 + 1.19864i
\(305\) −22.1033 22.1033i −1.26563 1.26563i
\(306\) 0 0
\(307\) 13.4371 + 13.4371i 0.766899 + 0.766899i 0.977559 0.210661i \(-0.0675615\pi\)
−0.210661 + 0.977559i \(0.567562\pi\)
\(308\) 0.469052i 0.0267267i
\(309\) 0 0
\(310\) −14.5924 14.5924i −0.828794 0.828794i
\(311\) 13.8005 0.782556 0.391278 0.920273i \(-0.372033\pi\)
0.391278 + 0.920273i \(0.372033\pi\)
\(312\) 0 0
\(313\) −13.2290 −0.747746 −0.373873 0.927480i \(-0.621970\pi\)
−0.373873 + 0.927480i \(0.621970\pi\)
\(314\) −6.04607 6.04607i −0.341200 0.341200i
\(315\) 0 0
\(316\) 7.22259i 0.406302i
\(317\) 15.6673 + 15.6673i 0.879961 + 0.879961i 0.993530 0.113570i \(-0.0362285\pi\)
−0.113570 + 0.993530i \(0.536228\pi\)
\(318\) 0 0
\(319\) −10.0230 10.0230i −0.561180 0.561180i
\(320\) −10.4640 + 10.4640i −0.584954 + 0.584954i
\(321\) 0 0
\(322\) 0.974185i 0.0542892i
\(323\) 21.5363 21.5363i 1.19831 1.19831i
\(324\) 0 0
\(325\) 4.48950 10.6486i 0.249033 0.590677i
\(326\) 23.9785i 1.32805i
\(327\) 0 0
\(328\) −1.33076 −0.0734790
\(329\) 0.992316 0.0547082
\(330\) 0 0
\(331\) 22.4676 22.4676i 1.23493 1.23493i 0.272882 0.962048i \(-0.412023\pi\)
0.962048 0.272882i \(-0.0879767\pi\)
\(332\) −18.4375 + 18.4375i −1.01189 + 1.01189i
\(333\) 0 0
\(334\) −36.2269 −1.98225
\(335\) −16.4606 −0.899338
\(336\) 0 0
\(337\) 2.97375i 0.161990i 0.996714 + 0.0809952i \(0.0258099\pi\)
−0.996714 + 0.0809952i \(0.974190\pi\)
\(338\) −0.313385 + 24.8979i −0.0170459 + 1.35427i
\(339\) 0 0
\(340\) 15.8573 15.8573i 0.859981 0.859981i
\(341\) 7.88732i 0.427122i
\(342\) 0 0
\(343\) 1.32532 1.32532i 0.0715607 0.0715607i
\(344\) −3.34546 3.34546i −0.180375 0.180375i
\(345\) 0 0
\(346\) −20.9960 20.9960i −1.12875 1.12875i
\(347\) 24.7141i 1.32672i −0.748300 0.663361i \(-0.769130\pi\)
0.748300 0.663361i \(-0.230870\pi\)
\(348\) 0 0
\(349\) 2.55203 + 2.55203i 0.136607 + 0.136607i 0.772104 0.635497i \(-0.219205\pi\)
−0.635497 + 0.772104i \(0.719205\pi\)
\(350\) −0.822938 −0.0439879
\(351\) 0 0
\(352\) 15.6247 0.832801
\(353\) 2.59742 + 2.59742i 0.138247 + 0.138247i 0.772843 0.634597i \(-0.218834\pi\)
−0.634597 + 0.772843i \(0.718834\pi\)
\(354\) 0 0
\(355\) 23.5753i 1.25125i
\(356\) −5.42564 5.42564i −0.287558 0.287558i
\(357\) 0 0
\(358\) −3.75093 3.75093i −0.198243 0.198243i
\(359\) −4.93025 + 4.93025i −0.260209 + 0.260209i −0.825139 0.564930i \(-0.808903\pi\)
0.564930 + 0.825139i \(0.308903\pi\)
\(360\) 0 0
\(361\) 23.1416i 1.21798i
\(362\) 14.9589 14.9589i 0.786221 0.786221i
\(363\) 0 0
\(364\) 0.747043 0.303942i 0.0391557 0.0159309i
\(365\) 34.9528i 1.82951i
\(366\) 0 0
\(367\) 14.3492 0.749020 0.374510 0.927223i \(-0.377811\pi\)
0.374510 + 0.927223i \(0.377811\pi\)
\(368\) 17.2746 0.900499
\(369\) 0 0
\(370\) −22.2445 + 22.2445i −1.15644 + 1.15644i
\(371\) 0.420377 0.420377i 0.0218249 0.0218249i
\(372\) 0 0
\(373\) 1.81879 0.0941732 0.0470866 0.998891i \(-0.485006\pi\)
0.0470866 + 0.998891i \(0.485006\pi\)
\(374\) −18.8438 −0.974389
\(375\) 0 0
\(376\) 4.69786i 0.242273i
\(377\) −9.46846 + 22.4581i −0.487651 + 1.15665i
\(378\) 0 0
\(379\) −3.03283 + 3.03283i −0.155786 + 0.155786i −0.780696 0.624911i \(-0.785135\pi\)
0.624911 + 0.780696i \(0.285135\pi\)
\(380\) 31.0291i 1.59176i
\(381\) 0 0
\(382\) 29.0618 29.0618i 1.48693 1.48693i
\(383\) −8.54138 8.54138i −0.436444 0.436444i 0.454369 0.890813i \(-0.349865\pi\)
−0.890813 + 0.454369i \(0.849865\pi\)
\(384\) 0 0
\(385\) 0.569349 + 0.569349i 0.0290167 + 0.0290167i
\(386\) 21.4658i 1.09258i
\(387\) 0 0
\(388\) 18.5619 + 18.5619i 0.942339 + 0.942339i
\(389\) −30.5259 −1.54773 −0.773863 0.633353i \(-0.781678\pi\)
−0.773863 + 0.633353i \(0.781678\pi\)
\(390\) 0 0
\(391\) −17.8013 −0.900248
\(392\) −3.13316 3.13316i −0.158249 0.158249i
\(393\) 0 0
\(394\) 10.1984i 0.513789i
\(395\) −8.76699 8.76699i −0.441115 0.441115i
\(396\) 0 0
\(397\) −20.0700 20.0700i −1.00728 1.00728i −0.999973 0.00730907i \(-0.997673\pi\)
−0.00730907 0.999973i \(-0.502327\pi\)
\(398\) −14.0540 + 14.0540i −0.704464 + 0.704464i
\(399\) 0 0
\(400\) 14.5926i 0.729630i
\(401\) 14.4906 14.4906i 0.723626 0.723626i −0.245716 0.969342i \(-0.579023\pi\)
0.969342 + 0.245716i \(0.0790231\pi\)
\(402\) 0 0
\(403\) 12.5619 5.11092i 0.625751 0.254593i
\(404\) 29.6056i 1.47294i
\(405\) 0 0
\(406\) 1.73560 0.0861362
\(407\) 12.0233 0.595975
\(408\) 0 0
\(409\) 20.7783 20.7783i 1.02742 1.02742i 0.0278083 0.999613i \(-0.491147\pi\)
0.999613 0.0278083i \(-0.00885278\pi\)
\(410\) 8.13516 8.13516i 0.401767 0.401767i
\(411\) 0 0
\(412\) −28.2326 −1.39092
\(413\) −0.151562 −0.00745787
\(414\) 0 0
\(415\) 44.7600i 2.19718i
\(416\) −10.1247 24.8850i −0.496404 1.22009i
\(417\) 0 0
\(418\) −18.4365 + 18.4365i −0.901760 + 0.901760i
\(419\) 17.8086i 0.870005i 0.900429 + 0.435003i \(0.143253\pi\)
−0.900429 + 0.435003i \(0.856747\pi\)
\(420\) 0 0
\(421\) 3.61130 3.61130i 0.176004 0.176004i −0.613607 0.789611i \(-0.710282\pi\)
0.789611 + 0.613607i \(0.210282\pi\)
\(422\) −3.21900 3.21900i −0.156699 0.156699i
\(423\) 0 0
\(424\) −1.99016 1.99016i −0.0966509 0.0966509i
\(425\) 15.0375i 0.729427i
\(426\) 0 0
\(427\) −1.03438 1.03438i −0.0500573 0.0500573i
\(428\) −19.9655 −0.965069
\(429\) 0 0
\(430\) 40.9027 1.97250
\(431\) 0.439838 + 0.439838i 0.0211863 + 0.0211863i 0.717621 0.696434i \(-0.245231\pi\)
−0.696434 + 0.717621i \(0.745231\pi\)
\(432\) 0 0
\(433\) 7.76842i 0.373327i −0.982424 0.186663i \(-0.940233\pi\)
0.982424 0.186663i \(-0.0597674\pi\)
\(434\) −0.682890 0.682890i −0.0327798 0.0327798i
\(435\) 0 0
\(436\) −5.95360 5.95360i −0.285126 0.285126i
\(437\) −17.4165 + 17.4165i −0.833145 + 0.833145i
\(438\) 0 0
\(439\) 6.99519i 0.333862i −0.985969 0.166931i \(-0.946614\pi\)
0.985969 0.166931i \(-0.0533857\pi\)
\(440\) 2.69543 2.69543i 0.128500 0.128500i
\(441\) 0 0
\(442\) 12.2106 + 30.0119i 0.580800 + 1.42752i
\(443\) 24.9020i 1.18313i 0.806257 + 0.591566i \(0.201490\pi\)
−0.806257 + 0.591566i \(0.798510\pi\)
\(444\) 0 0
\(445\) −13.1716 −0.624394
\(446\) −4.96473 −0.235087
\(447\) 0 0
\(448\) −0.489689 + 0.489689i −0.0231356 + 0.0231356i
\(449\) 1.53630 1.53630i 0.0725027 0.0725027i −0.669926 0.742428i \(-0.733674\pi\)
0.742428 + 0.669926i \(0.233674\pi\)
\(450\) 0 0
\(451\) −4.39712 −0.207052
\(452\) −26.5091 −1.24688
\(453\) 0 0
\(454\) 4.51234i 0.211775i
\(455\) 0.537849 1.27572i 0.0252148 0.0598065i
\(456\) 0 0
\(457\) 5.13518 5.13518i 0.240214 0.240214i −0.576725 0.816938i \(-0.695670\pi\)
0.816938 + 0.576725i \(0.195670\pi\)
\(458\) 16.8202i 0.785958i
\(459\) 0 0
\(460\) −12.8239 + 12.8239i −0.597916 + 0.597916i
\(461\) −1.56744 1.56744i −0.0730031 0.0730031i 0.669662 0.742666i \(-0.266439\pi\)
−0.742666 + 0.669662i \(0.766439\pi\)
\(462\) 0 0
\(463\) 25.0408 + 25.0408i 1.16375 + 1.16375i 0.983649 + 0.180097i \(0.0576412\pi\)
0.180097 + 0.983649i \(0.442359\pi\)
\(464\) 30.7762i 1.42875i
\(465\) 0 0
\(466\) 12.6516 + 12.6516i 0.586072 + 0.586072i
\(467\) 9.82811 0.454791 0.227395 0.973803i \(-0.426979\pi\)
0.227395 + 0.973803i \(0.426979\pi\)
\(468\) 0 0
\(469\) −0.770316 −0.0355699
\(470\) 28.7188 + 28.7188i 1.32470 + 1.32470i
\(471\) 0 0
\(472\) 0.717529i 0.0330270i
\(473\) −11.0541 11.0541i −0.508268 0.508268i
\(474\) 0 0
\(475\) −14.7125 14.7125i −0.675057 0.675057i
\(476\) 0.742082 0.742082i 0.0340133 0.0340133i
\(477\) 0 0
\(478\) 5.68609i 0.260076i
\(479\) 24.6241 24.6241i 1.12511 1.12511i 0.134143 0.990962i \(-0.457172\pi\)
0.990962 0.134143i \(-0.0428282\pi\)
\(480\) 0 0
\(481\) −7.79103 19.1492i −0.355241 0.873128i
\(482\) 40.9342i 1.86450i
\(483\) 0 0
\(484\) −11.0180 −0.500819
\(485\) 45.0620 2.04616
\(486\) 0 0
\(487\) 11.7321 11.7321i 0.531630 0.531630i −0.389427 0.921057i \(-0.627327\pi\)
0.921057 + 0.389427i \(0.127327\pi\)
\(488\) −4.89701 + 4.89701i −0.221677 + 0.221677i
\(489\) 0 0
\(490\) 38.3071 1.73054
\(491\) 1.02472 0.0462449 0.0231224 0.999733i \(-0.492639\pi\)
0.0231224 + 0.999733i \(0.492639\pi\)
\(492\) 0 0
\(493\) 31.7145i 1.42835i
\(494\) 41.3100 + 17.4165i 1.85862 + 0.783606i
\(495\) 0 0
\(496\) −12.1092 + 12.1092i −0.543720 + 0.543720i
\(497\) 1.10327i 0.0494883i
\(498\) 0 0
\(499\) −4.95006 + 4.95006i −0.221595 + 0.221595i −0.809170 0.587575i \(-0.800083\pi\)
0.587575 + 0.809170i \(0.300083\pi\)
\(500\) 6.06638 + 6.06638i 0.271297 + 0.271297i
\(501\) 0 0
\(502\) −11.8079 11.8079i −0.527012 0.527012i
\(503\) 29.3272i 1.30764i 0.756652 + 0.653818i \(0.226834\pi\)
−0.756652 + 0.653818i \(0.773166\pi\)
\(504\) 0 0
\(505\) 35.9362 + 35.9362i 1.59914 + 1.59914i
\(506\) 15.2391 0.677460
\(507\) 0 0
\(508\) −4.80546 −0.213208
\(509\) −9.77877 9.77877i −0.433436 0.433436i 0.456359 0.889796i \(-0.349153\pi\)
−0.889796 + 0.456359i \(0.849153\pi\)
\(510\) 0 0
\(511\) 1.63571i 0.0723594i
\(512\) 19.9021 + 19.9021i 0.879559 + 0.879559i
\(513\) 0 0
\(514\) 29.8967 + 29.8967i 1.31869 + 1.31869i
\(515\) −34.2695 + 34.2695i −1.51010 + 1.51010i
\(516\) 0 0
\(517\) 15.5227i 0.682689i
\(518\) −1.04099 + 1.04099i −0.0457385 + 0.0457385i
\(519\) 0 0
\(520\) −6.03954 2.54630i −0.264851 0.111663i
\(521\) 31.4316i 1.37704i 0.725215 + 0.688522i \(0.241740\pi\)
−0.725215 + 0.688522i \(0.758260\pi\)
\(522\) 0 0
\(523\) −10.7925 −0.471921 −0.235961 0.971763i \(-0.575824\pi\)
−0.235961 + 0.971763i \(0.575824\pi\)
\(524\) 30.0747 1.31382
\(525\) 0 0
\(526\) −20.6153 + 20.6153i −0.898871 + 0.898871i
\(527\) 12.4784 12.4784i 0.543569 0.543569i
\(528\) 0 0
\(529\) −8.60402 −0.374088
\(530\) 24.3324 1.05693
\(531\) 0 0
\(532\) 1.45209i 0.0629559i
\(533\) 2.84930 + 7.00315i 0.123417 + 0.303340i
\(534\) 0 0
\(535\) −24.2347 + 24.2347i −1.04776 + 1.04776i
\(536\) 3.64686i 0.157520i
\(537\) 0 0
\(538\) −6.50250 + 6.50250i −0.280343 + 0.280343i
\(539\) −10.3526 10.3526i −0.445920 0.445920i
\(540\) 0 0
\(541\) 8.05355 + 8.05355i 0.346249 + 0.346249i 0.858710 0.512461i \(-0.171266\pi\)
−0.512461 + 0.858710i \(0.671266\pi\)
\(542\) 36.7819i 1.57992i
\(543\) 0 0
\(544\) −24.7197 24.7197i −1.05985 1.05985i
\(545\) −14.4533 −0.619112
\(546\) 0 0
\(547\) −29.1250 −1.24529 −0.622647 0.782503i \(-0.713943\pi\)
−0.622647 + 0.782503i \(0.713943\pi\)
\(548\) −22.7940 22.7940i −0.973710 0.973710i
\(549\) 0 0
\(550\) 12.8732i 0.548913i
\(551\) 31.0291 + 31.0291i 1.32188 + 1.32188i
\(552\) 0 0
\(553\) −0.410274 0.410274i −0.0174466 0.0174466i
\(554\) 7.58276 7.58276i 0.322161 0.322161i
\(555\) 0 0
\(556\) 19.5579i 0.829440i
\(557\) 2.05469 2.05469i 0.0870602 0.0870602i −0.662236 0.749296i \(-0.730392\pi\)
0.749296 + 0.662236i \(0.230392\pi\)
\(558\) 0 0
\(559\) −10.4425 + 24.7685i −0.441672 + 1.04760i
\(560\) 1.74822i 0.0738757i
\(561\) 0 0
\(562\) 19.8166 0.835912
\(563\) 37.2590 1.57028 0.785140 0.619319i \(-0.212591\pi\)
0.785140 + 0.619319i \(0.212591\pi\)
\(564\) 0 0
\(565\) −32.1775 + 32.1775i −1.35372 + 1.35372i
\(566\) −36.1201 + 36.1201i −1.51824 + 1.51824i
\(567\) 0 0
\(568\) 5.22312 0.219157
\(569\) 5.88656 0.246777 0.123389 0.992358i \(-0.460624\pi\)
0.123389 + 0.992358i \(0.460624\pi\)
\(570\) 0 0
\(571\) 6.89581i 0.288581i 0.989535 + 0.144290i \(0.0460899\pi\)
−0.989535 + 0.144290i \(0.953910\pi\)
\(572\) −4.75454 11.6859i −0.198797 0.488613i
\(573\) 0 0
\(574\) 0.380706 0.380706i 0.0158904 0.0158904i
\(575\) 12.1609i 0.507146i
\(576\) 0 0
\(577\) 0.568497 0.568497i 0.0236669 0.0236669i −0.695174 0.718841i \(-0.744673\pi\)
0.718841 + 0.695174i \(0.244673\pi\)
\(578\) 6.78815 + 6.78815i 0.282350 + 0.282350i
\(579\) 0 0
\(580\) 22.8469 + 22.8469i 0.948664 + 0.948664i
\(581\) 2.09466i 0.0869011i
\(582\) 0 0
\(583\) −6.57593 6.57593i −0.272347 0.272347i
\(584\) −7.74382 −0.320441
\(585\) 0 0
\(586\) 6.79212 0.280580
\(587\) −9.19839 9.19839i −0.379658 0.379658i 0.491321 0.870979i \(-0.336514\pi\)
−0.870979 + 0.491321i \(0.836514\pi\)
\(588\) 0 0
\(589\) 24.4175i 1.00610i
\(590\) −4.38638 4.38638i −0.180584 0.180584i
\(591\) 0 0
\(592\) 18.4592 + 18.4592i 0.758668 + 0.758668i
\(593\) 28.1213 28.1213i 1.15481 1.15481i 0.169228 0.985577i \(-0.445872\pi\)
0.985577 0.169228i \(-0.0541276\pi\)
\(594\) 0 0
\(595\) 1.80152i 0.0738552i
\(596\) 12.6138 12.6138i 0.516681 0.516681i
\(597\) 0 0
\(598\) −9.87481 24.2708i −0.403811 0.992506i
\(599\) 5.76908i 0.235718i −0.993030 0.117859i \(-0.962397\pi\)
0.993030 0.117859i \(-0.0376031\pi\)
\(600\) 0 0
\(601\) 14.3439 0.585101 0.292550 0.956250i \(-0.405496\pi\)
0.292550 + 0.956250i \(0.405496\pi\)
\(602\) 1.91415 0.0780148
\(603\) 0 0
\(604\) −3.24894 + 3.24894i −0.132197 + 0.132197i
\(605\) −13.3740 + 13.3740i −0.543730 + 0.543730i
\(606\) 0 0
\(607\) 42.3384 1.71846 0.859231 0.511587i \(-0.170942\pi\)
0.859231 + 0.511587i \(0.170942\pi\)
\(608\) −48.3709 −1.96170
\(609\) 0 0
\(610\) 59.8725i 2.42416i
\(611\) −24.7225 + 10.0586i −1.00017 + 0.406927i
\(612\) 0 0
\(613\) −25.9886 + 25.9886i −1.04967 + 1.04967i −0.0509698 + 0.998700i \(0.516231\pi\)
−0.998700 + 0.0509698i \(0.983769\pi\)
\(614\) 36.3979i 1.46890i
\(615\) 0 0
\(616\) 0.126140 0.126140i 0.00508231 0.00508231i
\(617\) −31.8840 31.8840i −1.28360 1.28360i −0.938603 0.345000i \(-0.887879\pi\)
−0.345000 0.938603i \(-0.612121\pi\)
\(618\) 0 0
\(619\) −26.7918 26.7918i −1.07685 1.07685i −0.996790 0.0800615i \(-0.974488\pi\)
−0.0800615 0.996790i \(-0.525512\pi\)
\(620\) 17.9787i 0.722042i
\(621\) 0 0
\(622\) 18.6911 + 18.6911i 0.749444 + 0.749444i
\(623\) −0.616399 −0.0246955
\(624\) 0 0
\(625\) 30.7528 1.23011
\(626\) −17.9170 17.9170i −0.716108 0.716108i
\(627\) 0 0
\(628\) 7.44911i 0.297252i
\(629\) −19.0220 19.0220i −0.758457 0.758457i
\(630\) 0 0
\(631\) −6.22813 6.22813i −0.247938 0.247938i 0.572186 0.820124i \(-0.306096\pi\)
−0.820124 + 0.572186i \(0.806096\pi\)
\(632\) −1.94233 + 1.94233i −0.0772619 + 0.0772619i
\(633\) 0 0
\(634\) 42.4387i 1.68546i
\(635\) −5.83301 + 5.83301i −0.231476 + 0.231476i
\(636\) 0 0
\(637\) −9.77987 + 23.1967i −0.387493 + 0.919088i
\(638\) 27.1498i 1.07487i
\(639\) 0 0
\(640\) 14.3433 0.566967
\(641\) −19.2034 −0.758490 −0.379245 0.925296i \(-0.623816\pi\)
−0.379245 + 0.925296i \(0.623816\pi\)
\(642\) 0 0
\(643\) 19.7368 19.7368i 0.778343 0.778343i −0.201206 0.979549i \(-0.564486\pi\)
0.979549 + 0.201206i \(0.0644860\pi\)
\(644\) −0.600126 + 0.600126i −0.0236483 + 0.0236483i
\(645\) 0 0
\(646\) 58.3364 2.29522
\(647\) −4.50220 −0.177000 −0.0884998 0.996076i \(-0.528207\pi\)
−0.0884998 + 0.996076i \(0.528207\pi\)
\(648\) 0 0
\(649\) 2.37087i 0.0930648i
\(650\) 20.5026 8.34170i 0.804180 0.327189i
\(651\) 0 0
\(652\) −14.7715 + 14.7715i −0.578495 + 0.578495i
\(653\) 10.0849i 0.394651i 0.980338 + 0.197326i \(0.0632256\pi\)
−0.980338 + 0.197326i \(0.936774\pi\)
\(654\) 0 0
\(655\) 36.5056 36.5056i 1.42639 1.42639i
\(656\) −6.75080 6.75080i −0.263575 0.263575i
\(657\) 0 0
\(658\) 1.34397 + 1.34397i 0.0523934 + 0.0523934i
\(659\) 17.4772i 0.680817i −0.940278 0.340408i \(-0.889435\pi\)
0.940278 0.340408i \(-0.110565\pi\)
\(660\) 0 0
\(661\) −24.6426 24.6426i −0.958485 0.958485i 0.0406872 0.999172i \(-0.487045\pi\)
−0.999172 + 0.0406872i \(0.987045\pi\)
\(662\) 60.8591 2.36536
\(663\) 0 0
\(664\) 9.91660 0.384839
\(665\) −1.76258 1.76258i −0.0683501 0.0683501i
\(666\) 0 0
\(667\) 25.6477i 0.993084i
\(668\) −22.3168 22.3168i −0.863462 0.863462i
\(669\) 0 0
\(670\) −22.2938 22.2938i −0.861286 0.861286i
\(671\) −16.1808 + 16.1808i −0.624651 + 0.624651i
\(672\) 0 0
\(673\) 23.6387i 0.911206i 0.890183 + 0.455603i \(0.150576\pi\)
−0.890183 + 0.455603i \(0.849424\pi\)
\(674\) −4.02758 + 4.02758i −0.155136 + 0.155136i
\(675\) 0 0
\(676\) −15.5309 + 15.1448i −0.597342 + 0.582492i
\(677\) 4.39279i 0.168829i −0.996431 0.0844143i \(-0.973098\pi\)
0.996431 0.0844143i \(-0.0269019\pi\)
\(678\) 0 0
\(679\) 2.10879 0.0809281
\(680\) −8.52882 −0.327065
\(681\) 0 0
\(682\) −10.6824 + 10.6824i −0.409050 + 0.409050i
\(683\) 31.9691 31.9691i 1.22326 1.22326i 0.256799 0.966465i \(-0.417332\pi\)
0.966465 0.256799i \(-0.0826678\pi\)
\(684\) 0 0
\(685\) −55.3360 −2.11428
\(686\) 3.58997 0.137066
\(687\) 0 0
\(688\) 33.9423i 1.29404i
\(689\) −6.21211 + 14.7344i −0.236663 + 0.561336i
\(690\) 0 0
\(691\) −6.85195 + 6.85195i −0.260661 + 0.260661i −0.825322 0.564662i \(-0.809007\pi\)
0.564662 + 0.825322i \(0.309007\pi\)
\(692\) 25.8683i 0.983366i
\(693\) 0 0
\(694\) 33.4722 33.4722i 1.27059 1.27059i
\(695\) −23.7400 23.7400i −0.900508 0.900508i
\(696\) 0 0
\(697\) 6.95663 + 6.95663i 0.263501 + 0.263501i
\(698\) 6.91282i 0.261654i
\(699\) 0 0
\(700\) −0.506954 0.506954i −0.0191611 0.0191611i
\(701\) −41.0030 −1.54866 −0.774331 0.632781i \(-0.781913\pi\)
−0.774331 + 0.632781i \(0.781913\pi\)
\(702\) 0 0
\(703\) −37.2218 −1.40385
\(704\) 7.66016 + 7.66016i 0.288703 + 0.288703i
\(705\) 0 0
\(706\) 7.03576i 0.264794i
\(707\) 1.68173 + 1.68173i 0.0632479 + 0.0632479i
\(708\) 0 0
\(709\) −3.13935 3.13935i −0.117901 0.117901i 0.645695 0.763596i \(-0.276568\pi\)
−0.763596 + 0.645695i \(0.776568\pi\)
\(710\) −31.9298 + 31.9298i −1.19831 + 1.19831i
\(711\) 0 0
\(712\) 2.91818i 0.109363i
\(713\) −10.0914 + 10.0914i −0.377925 + 0.377925i
\(714\) 0 0
\(715\) −19.9559 8.41353i −0.746309 0.314648i
\(716\) 4.62136i 0.172708i
\(717\) 0 0
\(718\) −13.3548 −0.498398
\(719\) −28.1080 −1.04825 −0.524126 0.851641i \(-0.675608\pi\)
−0.524126 + 0.851641i \(0.675608\pi\)
\(720\) 0 0
\(721\) −1.60373 + 1.60373i −0.0597261 + 0.0597261i
\(722\) 31.3425 31.3425i 1.16645 1.16645i
\(723\) 0 0
\(724\) 18.4302 0.684953
\(725\) 21.6658 0.804648
\(726\) 0 0
\(727\) 40.5328i 1.50328i −0.659575 0.751639i \(-0.729264\pi\)
0.659575 0.751639i \(-0.270736\pi\)
\(728\) −0.282636 0.119161i −0.0104752 0.00441640i
\(729\) 0 0
\(730\) 47.3392 47.3392i 1.75210 1.75210i
\(731\) 34.9771i 1.29368i
\(732\) 0 0
\(733\) −21.5128 + 21.5128i −0.794592 + 0.794592i −0.982237 0.187645i \(-0.939915\pi\)
0.187645 + 0.982237i \(0.439915\pi\)
\(734\) 19.4342 + 19.4342i 0.717328 + 0.717328i
\(735\) 0 0
\(736\) 19.9910 + 19.9910i 0.736877 + 0.736877i
\(737\) 12.0500i 0.443867i
\(738\) 0 0
\(739\) 19.0690 + 19.0690i 0.701463 + 0.701463i 0.964725 0.263261i \(-0.0847981\pi\)
−0.263261 + 0.964725i \(0.584798\pi\)
\(740\) −27.4066 −1.00748
\(741\) 0 0
\(742\) 1.13870 0.0418029
\(743\) 36.3797 + 36.3797i 1.33464 + 1.33464i 0.901164 + 0.433478i \(0.142714\pi\)
0.433478 + 0.901164i \(0.357286\pi\)
\(744\) 0 0
\(745\) 30.6220i 1.12190i
\(746\) 2.46332 + 2.46332i 0.0901886 + 0.0901886i
\(747\) 0 0
\(748\) −11.6083 11.6083i −0.424442 0.424442i
\(749\) −1.13413 + 1.13413i −0.0414401 + 0.0414401i
\(750\) 0 0
\(751\) 15.6238i 0.570121i −0.958510 0.285060i \(-0.907986\pi\)
0.958510 0.285060i \(-0.0920136\pi\)
\(752\) 23.8317 23.8317i 0.869053 0.869053i
\(753\) 0 0
\(754\) −43.2406 + 17.5929i −1.57473 + 0.640694i
\(755\) 7.88732i 0.287049i
\(756\) 0 0
\(757\) −26.7775 −0.973245 −0.486623 0.873612i \(-0.661771\pi\)
−0.486623 + 0.873612i \(0.661771\pi\)
\(758\) −8.21518 −0.298389
\(759\) 0 0
\(760\) −8.34449 + 8.34449i −0.302686 + 0.302686i
\(761\) −8.72446 + 8.72446i −0.316261 + 0.316261i −0.847329 0.531068i \(-0.821791\pi\)
0.531068 + 0.847329i \(0.321791\pi\)
\(762\) 0 0
\(763\) −0.676380 −0.0244866
\(764\) 35.8058 1.29541
\(765\) 0 0
\(766\) 23.1365i 0.835955i
\(767\) 3.77601 1.53630i 0.136344 0.0554728i
\(768\) 0 0
\(769\) 2.91922 2.91922i 0.105270 0.105270i −0.652510 0.757780i \(-0.726284\pi\)
0.757780 + 0.652510i \(0.226284\pi\)
\(770\) 1.54223i 0.0555779i
\(771\) 0 0
\(772\) 13.2235 13.2235i 0.475926 0.475926i
\(773\) 14.8123 + 14.8123i 0.532761 + 0.532761i 0.921393 0.388632i \(-0.127052\pi\)
−0.388632 + 0.921393i \(0.627052\pi\)
\(774\) 0 0
\(775\) −8.52465 8.52465i −0.306215 0.306215i
\(776\) 9.98352i 0.358387i
\(777\) 0 0
\(778\) −41.3436 41.3436i −1.48224 1.48224i
\(779\) 13.6126 0.487721
\(780\) 0 0
\(781\) 17.2583 0.617551
\(782\) −24.1096 24.1096i −0.862157 0.862157i
\(783\) 0 0
\(784\) 31.7884i 1.13530i
\(785\) −9.04195 9.04195i −0.322721 0.322721i
\(786\) 0 0
\(787\) −1.79401 1.79401i −0.0639496 0.0639496i 0.674409 0.738358i \(-0.264399\pi\)
−0.738358 + 0.674409i \(0.764399\pi\)
\(788\) 6.28252 6.28252i 0.223806 0.223806i
\(789\) 0 0
\(790\) 23.7476i 0.844902i
\(791\) −1.50583 + 1.50583i −0.0535411 + 0.0535411i
\(792\) 0 0
\(793\) 36.2556 + 15.2856i 1.28747 + 0.542806i
\(794\) 54.3645i 1.92933i
\(795\) 0 0
\(796\) −17.3154 −0.613726
\(797\) −7.36405 −0.260848 −0.130424 0.991458i \(-0.541634\pi\)
−0.130424 + 0.991458i \(0.541634\pi\)
\(798\) 0 0
\(799\) −24.5583 + 24.5583i −0.868811 + 0.868811i
\(800\) −16.8873 + 16.8873i −0.597056 + 0.597056i
\(801\) 0 0
\(802\) 39.2514 1.38602
\(803\) −25.5872 −0.902954
\(804\) 0 0
\(805\) 1.45690i 0.0513490i
\(806\) 23.9356 + 10.0914i 0.843095 + 0.355454i
\(807\) 0 0
\(808\) 7.96169 7.96169i 0.280091 0.280091i
\(809\) 41.0718i 1.44401i −0.691889 0.722004i \(-0.743221\pi\)
0.691889 0.722004i \(-0.256779\pi\)
\(810\) 0 0
\(811\) −3.35971 + 3.35971i −0.117975 + 0.117975i −0.763630 0.645654i \(-0.776585\pi\)
0.645654 + 0.763630i \(0.276585\pi\)
\(812\) 1.06918 + 1.06918i 0.0375208 + 0.0375208i
\(813\) 0 0
\(814\) 16.2841 + 16.2841i 0.570759 + 0.570759i
\(815\) 35.8601i 1.25612i
\(816\) 0 0
\(817\) 34.2212 + 34.2212i 1.19725 + 1.19725i
\(818\) 56.2833 1.96790
\(819\) 0 0
\(820\) 10.0230 0.350018
\(821\) −11.0784 11.0784i −0.386640 0.386640i 0.486847 0.873487i \(-0.338147\pi\)
−0.873487 + 0.486847i \(0.838147\pi\)
\(822\) 0 0
\(823\) 31.0471i 1.08223i 0.840947 + 0.541117i \(0.181999\pi\)
−0.840947 + 0.541117i \(0.818001\pi\)
\(824\) 7.59244 + 7.59244i 0.264495 + 0.264495i
\(825\) 0 0
\(826\) −0.205272 0.205272i −0.00714232 0.00714232i
\(827\) 20.9575 20.9575i 0.728765 0.728765i −0.241609 0.970374i \(-0.577675\pi\)
0.970374 + 0.241609i \(0.0776751\pi\)
\(828\) 0 0
\(829\) 53.7940i 1.86834i −0.356823 0.934172i \(-0.616140\pi\)
0.356823 0.934172i \(-0.383860\pi\)
\(830\) −60.6219 + 60.6219i −2.10422 + 2.10422i
\(831\) 0 0
\(832\) 7.23635 17.1638i 0.250875 0.595048i
\(833\) 32.7576i 1.13498i
\(834\) 0 0
\(835\) −54.1775 −1.87489
\(836\) −22.7149 −0.785610
\(837\) 0 0
\(838\) −24.1195 + 24.1195i −0.833194 + 0.833194i
\(839\) 10.4530 10.4530i 0.360876 0.360876i −0.503259 0.864135i \(-0.667866\pi\)
0.864135 + 0.503259i \(0.167866\pi\)
\(840\) 0 0
\(841\) −16.6937 −0.575645
\(842\) 9.78210 0.337114
\(843\) 0 0
\(844\) 3.96600i 0.136515i
\(845\) −0.468670 + 37.2350i −0.0161227 + 1.28092i
\(846\) 0 0
\(847\) −0.625871 + 0.625871i −0.0215052 + 0.0215052i
\(848\) 20.1918i 0.693388i
\(849\) 0 0
\(850\) 20.3665 20.3665i 0.698564 0.698564i
\(851\) 15.3832 + 15.3832i 0.527330 + 0.527330i
\(852\) 0 0
\(853\) 14.9996 + 14.9996i 0.513576 + 0.513576i 0.915620 0.402044i \(-0.131700\pi\)
−0.402044 + 0.915620i \(0.631700\pi\)
\(854\) 2.80189i 0.0958786i
\(855\) 0 0
\(856\) 5.36922 + 5.36922i 0.183516 + 0.183516i
\(857\) 45.9861 1.57086 0.785428 0.618953i \(-0.212443\pi\)
0.785428 + 0.618953i \(0.212443\pi\)
\(858\) 0 0
\(859\) 6.37149 0.217393 0.108696 0.994075i \(-0.465332\pi\)
0.108696 + 0.994075i \(0.465332\pi\)
\(860\) 25.1972 + 25.1972i 0.859218 + 0.859218i
\(861\) 0 0
\(862\) 1.19141i 0.0405797i
\(863\) −31.1988 31.1988i −1.06202 1.06202i −0.997945 0.0640756i \(-0.979590\pi\)
−0.0640756 0.997945i \(-0.520410\pi\)
\(864\) 0 0
\(865\) −31.3997 31.3997i −1.06762 1.06762i
\(866\) 10.5214 10.5214i 0.357531 0.357531i
\(867\) 0 0
\(868\) 0.841360i 0.0285576i
\(869\) −6.41788 + 6.41788i −0.217712 + 0.217712i
\(870\) 0 0
\(871\) 19.1916 7.80830i 0.650283 0.264574i
\(872\) 3.20214i 0.108438i
\(873\) 0 0
\(874\) −47.1770 −1.59579
\(875\) 0.689193 0.0232990
\(876\) 0 0
\(877\) 4.71190 4.71190i 0.159110 0.159110i −0.623062 0.782172i \(-0.714112\pi\)
0.782172 + 0.623062i \(0.214112\pi\)
\(878\) 9.47411 9.47411i 0.319736 0.319736i
\(879\) 0 0
\(880\) 27.3472 0.921875
\(881\) −1.54054 −0.0519020 −0.0259510 0.999663i \(-0.508261\pi\)
−0.0259510 + 0.999663i \(0.508261\pi\)
\(882\) 0 0
\(883\) 5.61774i 0.189052i −0.995522 0.0945260i \(-0.969866\pi\)
0.995522 0.0945260i \(-0.0301335\pi\)
\(884\) −10.9661 + 26.0103i −0.368829 + 0.874820i
\(885\) 0 0
\(886\) −33.7267 + 33.7267i −1.13307 + 1.13307i
\(887\) 10.3838i 0.348653i −0.984688 0.174326i \(-0.944225\pi\)
0.984688 0.174326i \(-0.0557748\pi\)
\(888\) 0 0
\(889\) −0.272971 + 0.272971i −0.00915514 + 0.00915514i
\(890\) −17.8393 17.8393i −0.597975 0.597975i
\(891\) 0 0
\(892\) −3.05841 3.05841i −0.102403 0.102403i
\(893\) 48.0551i 1.60810i
\(894\) 0 0
\(895\) −5.60954 5.60954i −0.187506 0.187506i
\(896\) 0.671230 0.0224242
\(897\) 0 0
\(898\) 4.16147 0.138870
\(899\) 17.9787 + 17.9787i 0.599623 + 0.599623i
\(900\) 0 0
\(901\) 20.8074i 0.693195i
\(902\) −5.95535 5.95535i −0.198292 0.198292i
\(903\) 0 0
\(904\) 7.12894 + 7.12894i 0.237105 + 0.237105i
\(905\) 22.3711 22.3711i 0.743641 0.743641i
\(906\) 0 0
\(907\) 4.54380i 0.150875i 0.997151 + 0.0754373i \(0.0240353\pi\)
−0.997151 + 0.0754373i \(0.975965\pi\)
\(908\) −2.77973 + 2.77973i −0.0922486 + 0.0922486i
\(909\) 0 0
\(910\) 2.45625 0.999350i 0.0814239 0.0331281i
\(911\) 41.6008i 1.37830i −0.724621 0.689148i \(-0.757985\pi\)
0.724621 0.689148i \(-0.242015\pi\)
\(912\) 0 0
\(913\) 32.7666 1.08442
\(914\) 13.9099 0.460099
\(915\) 0 0
\(916\) 10.3618 10.3618i 0.342362 0.342362i
\(917\) 1.70837 1.70837i 0.0564154 0.0564154i
\(918\) 0 0
\(919\) −45.8945 −1.51392 −0.756960 0.653462i \(-0.773316\pi\)
−0.756960 + 0.653462i \(0.773316\pi\)
\(920\) 6.89731 0.227397
\(921\) 0 0
\(922\) 4.24582i 0.139828i
\(923\) −11.1833 27.4867i −0.368101 0.904737i
\(924\) 0 0
\(925\) −12.9949 + 12.9949i −0.427270 + 0.427270i
\(926\) 67.8294i 2.22901i
\(927\) 0 0
\(928\) 35.6157 35.6157i 1.16914 1.16914i
\(929\) 35.3235 + 35.3235i 1.15893 + 1.15893i 0.984707 + 0.174218i \(0.0557398\pi\)
0.174218 + 0.984707i \(0.444260\pi\)
\(930\) 0 0
\(931\) 32.0496 + 32.0496i 1.05038 + 1.05038i
\(932\) 15.5874i 0.510584i
\(933\) 0 0
\(934\) 13.3110 + 13.3110i 0.435548 + 0.435548i
\(935\) −28.1810 −0.921618
\(936\) 0 0
\(937\) 13.8756 0.453298 0.226649 0.973977i \(-0.427223\pi\)
0.226649 + 0.973977i \(0.427223\pi\)
\(938\) −1.04330 1.04330i −0.0340649 0.0340649i
\(939\) 0 0
\(940\) 35.3832i 1.15407i
\(941\) 15.7013 + 15.7013i 0.511849 + 0.511849i 0.915093 0.403244i \(-0.132117\pi\)
−0.403244 + 0.915093i \(0.632117\pi\)
\(942\) 0 0
\(943\) −5.62587 5.62587i −0.183204 0.183204i
\(944\) −3.63995 + 3.63995i −0.118470 + 0.118470i
\(945\) 0 0
\(946\) 29.9428i 0.973525i
\(947\) 2.20242 2.20242i 0.0715691 0.0715691i −0.670416 0.741985i \(-0.733884\pi\)
0.741985 + 0.670416i \(0.233884\pi\)
\(948\) 0 0
\(949\) 16.5803 + 40.7519i 0.538220 + 1.32286i
\(950\) 39.8526i 1.29299i
\(951\) 0 0
\(952\) −0.399128 −0.0129358
\(953\) 39.5636 1.28159 0.640796 0.767711i \(-0.278604\pi\)
0.640796 + 0.767711i \(0.278604\pi\)
\(954\) 0 0
\(955\) 43.4622 43.4622i 1.40640 1.40640i
\(956\) −3.50279 + 3.50279i −0.113288 + 0.113288i
\(957\) 0 0
\(958\) 66.7007 2.15500
\(959\) −2.58959 −0.0836223
\(960\) 0 0
\(961\) 16.8522i 0.543618i
\(962\) 15.3832 36.4872i 0.495975 1.17639i
\(963\) 0 0
\(964\) −25.2166 + 25.2166i −0.812173 + 0.812173i
\(965\) 32.1022i 1.03341i
\(966\) 0 0
\(967\) 12.3885 12.3885i 0.398387 0.398387i −0.479277 0.877664i \(-0.659101\pi\)
0.877664 + 0.479277i \(0.159101\pi\)
\(968\) 2.96302 + 2.96302i 0.0952350 + 0.0952350i
\(969\) 0 0
\(970\) 61.0309 + 61.0309i 1.95958 + 1.95958i
\(971\) 22.7133i 0.728905i 0.931222 + 0.364452i \(0.118744\pi\)
−0.931222 + 0.364452i \(0.881256\pi\)
\(972\) 0 0
\(973\) −1.11097 1.11097i −0.0356162 0.0356162i
\(974\) 31.7792 1.01827
\(975\) 0 0
\(976\) −49.6840 −1.59034
\(977\) −15.5894 15.5894i −0.498748 0.498748i 0.412300 0.911048i \(-0.364726\pi\)
−0.911048 + 0.412300i \(0.864726\pi\)
\(978\) 0 0
\(979\) 9.64228i 0.308169i
\(980\) 23.5983 + 23.5983i 0.753819 + 0.753819i
\(981\) 0 0
\(982\) 1.38785 + 1.38785i 0.0442882 + 0.0442882i
\(983\) 31.8104 31.8104i 1.01459 1.01459i 0.0147009 0.999892i \(-0.495320\pi\)
0.999892 0.0147009i \(-0.00467960\pi\)
\(984\) 0 0
\(985\) 15.2518i 0.485963i
\(986\) −42.9534 + 42.9534i −1.36791 + 1.36791i
\(987\) 0 0
\(988\) 14.7190 + 36.1772i 0.468275 + 1.15095i
\(989\) 28.2862i 0.899450i
\(990\) 0 0
\(991\) −22.7905 −0.723964 −0.361982 0.932185i \(-0.617900\pi\)
−0.361982 + 0.932185i \(0.617900\pi\)
\(992\) −28.0268 −0.889852
\(993\) 0 0
\(994\) −1.49424 + 1.49424i −0.0473944 + 0.0473944i
\(995\) −21.0179 + 21.0179i −0.666312 + 0.666312i
\(996\) 0 0
\(997\) −58.2891 −1.84603 −0.923017 0.384758i \(-0.874285\pi\)
−0.923017 + 0.384758i \(0.874285\pi\)
\(998\) −13.4085 −0.424438
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 351.2.i.b.161.7 yes 16
3.2 odd 2 inner 351.2.i.b.161.2 16
13.8 odd 4 inner 351.2.i.b.242.2 yes 16
39.8 even 4 inner 351.2.i.b.242.7 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
351.2.i.b.161.2 16 3.2 odd 2 inner
351.2.i.b.161.7 yes 16 1.1 even 1 trivial
351.2.i.b.242.2 yes 16 13.8 odd 4 inner
351.2.i.b.242.7 yes 16 39.8 even 4 inner