Properties

Label 351.2.i.b.161.5
Level $351$
Weight $2$
Character 351.161
Analytic conductor $2.803$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [351,2,Mod(161,351)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(351, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("351.161"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.i (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.80274911095\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 24x^{14} + 184x^{12} + 600x^{10} + 894x^{8} + 600x^{6} + 184x^{4} + 24x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 161.5
Root \(-0.743961i\) of defining polynomial
Character \(\chi\) \(=\) 351.161
Dual form 351.2.i.b.242.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.04406 + 1.04406i) q^{2} +0.180117i q^{4} +(-1.27342 - 1.27342i) q^{5} +(2.33225 + 2.33225i) q^{7} +(1.90006 - 1.90006i) q^{8} -2.65906i q^{10} +(3.47906 - 3.47906i) q^{11} +(0.619491 + 3.55193i) q^{13} +4.87000i q^{14} +4.32779 q^{16} +3.61673 q^{17} +(-4.11256 + 4.11256i) q^{19} +(0.229366 - 0.229366i) q^{20} +7.26469 q^{22} -7.41685 q^{23} -1.75678i q^{25} +(-3.06164 + 4.35521i) q^{26} +(-0.420078 + 0.420078i) q^{28} +0.458732i q^{29} +(4.25926 - 4.25926i) q^{31} +(0.718341 + 0.718341i) q^{32} +(3.77607 + 3.77607i) q^{34} -5.93988i q^{35} +(-3.35154 - 3.35154i) q^{37} -8.58751 q^{38} -4.83918 q^{40} +(-3.47906 - 3.47906i) q^{41} +4.90348i q^{43} +(0.626640 + 0.626640i) q^{44} +(-7.74363 - 7.74363i) q^{46} +(-8.36921 + 8.36921i) q^{47} +3.87875i q^{49} +(1.83418 - 1.83418i) q^{50} +(-0.639765 + 0.111581i) q^{52} +8.48673i q^{53} -8.86065 q^{55} +8.86284 q^{56} +(-0.478943 + 0.478943i) q^{58} +(-0.117519 + 0.117519i) q^{59} -6.49307 q^{61} +8.89383 q^{62} -7.15560i q^{64} +(3.73424 - 5.31200i) q^{65} +(-2.08783 + 2.08783i) q^{67} +0.651435i q^{68} +(6.20158 - 6.20158i) q^{70} +(-8.69028 - 8.69028i) q^{71} +(2.50367 + 2.50367i) q^{73} -6.99841i q^{74} +(-0.740744 - 0.740744i) q^{76} +16.2281 q^{77} +4.07914 q^{79} +(-5.51112 - 5.51112i) q^{80} -7.26469i q^{82} +(8.79106 + 8.79106i) q^{83} +(-4.60563 - 4.60563i) q^{85} +(-5.11952 + 5.11952i) q^{86} -13.2209i q^{88} +(2.66437 - 2.66437i) q^{89} +(-6.83918 + 9.72879i) q^{91} -1.33590i q^{92} -17.4759 q^{94} +10.4741 q^{95} +(-2.72336 + 2.72336i) q^{97} +(-4.04964 + 4.04964i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{7} + 16 q^{13} - 8 q^{16} - 32 q^{19} + 8 q^{22} + 40 q^{28} + 16 q^{31} + 24 q^{34} - 32 q^{37} - 72 q^{40} + 48 q^{46} + 48 q^{52} + 32 q^{55} + 56 q^{58} - 64 q^{61} - 32 q^{67} - 40 q^{70}+ \cdots + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.04406 + 1.04406i 0.738261 + 0.738261i 0.972241 0.233980i \(-0.0751751\pi\)
−0.233980 + 0.972241i \(0.575175\pi\)
\(3\) 0 0
\(4\) 0.180117i 0.0900587i
\(5\) −1.27342 1.27342i −0.569493 0.569493i 0.362493 0.931986i \(-0.381926\pi\)
−0.931986 + 0.362493i \(0.881926\pi\)
\(6\) 0 0
\(7\) 2.33225 + 2.33225i 0.881506 + 0.881506i 0.993688 0.112181i \(-0.0357838\pi\)
−0.112181 + 0.993688i \(0.535784\pi\)
\(8\) 1.90006 1.90006i 0.671774 0.671774i
\(9\) 0 0
\(10\) 2.65906i 0.840869i
\(11\) 3.47906 3.47906i 1.04898 1.04898i 0.0502392 0.998737i \(-0.484002\pi\)
0.998737 0.0502392i \(-0.0159984\pi\)
\(12\) 0 0
\(13\) 0.619491 + 3.55193i 0.171816 + 0.985129i
\(14\) 4.87000i 1.30156i
\(15\) 0 0
\(16\) 4.32779 1.08195
\(17\) 3.61673 0.877185 0.438592 0.898686i \(-0.355477\pi\)
0.438592 + 0.898686i \(0.355477\pi\)
\(18\) 0 0
\(19\) −4.11256 + 4.11256i −0.943486 + 0.943486i −0.998486 0.0550004i \(-0.982484\pi\)
0.0550004 + 0.998486i \(0.482484\pi\)
\(20\) 0.229366 0.229366i 0.0512878 0.0512878i
\(21\) 0 0
\(22\) 7.26469 1.54884
\(23\) −7.41685 −1.54652 −0.773261 0.634088i \(-0.781376\pi\)
−0.773261 + 0.634088i \(0.781376\pi\)
\(24\) 0 0
\(25\) 1.75678i 0.351356i
\(26\) −3.06164 + 4.35521i −0.600437 + 0.854127i
\(27\) 0 0
\(28\) −0.420078 + 0.420078i −0.0793873 + 0.0793873i
\(29\) 0.458732i 0.0851844i 0.999093 + 0.0425922i \(0.0135616\pi\)
−0.999093 + 0.0425922i \(0.986438\pi\)
\(30\) 0 0
\(31\) 4.25926 4.25926i 0.764985 0.764985i −0.212234 0.977219i \(-0.568074\pi\)
0.977219 + 0.212234i \(0.0680739\pi\)
\(32\) 0.718341 + 0.718341i 0.126986 + 0.126986i
\(33\) 0 0
\(34\) 3.77607 + 3.77607i 0.647591 + 0.647591i
\(35\) 5.93988i 1.00402i
\(36\) 0 0
\(37\) −3.35154 3.35154i −0.550990 0.550990i 0.375736 0.926727i \(-0.377390\pi\)
−0.926727 + 0.375736i \(0.877390\pi\)
\(38\) −8.58751 −1.39308
\(39\) 0 0
\(40\) −4.83918 −0.765141
\(41\) −3.47906 3.47906i −0.543338 0.543338i 0.381168 0.924506i \(-0.375522\pi\)
−0.924506 + 0.381168i \(0.875522\pi\)
\(42\) 0 0
\(43\) 4.90348i 0.747773i 0.927474 + 0.373886i \(0.121975\pi\)
−0.927474 + 0.373886i \(0.878025\pi\)
\(44\) 0.626640 + 0.626640i 0.0944695 + 0.0944695i
\(45\) 0 0
\(46\) −7.74363 7.74363i −1.14174 1.14174i
\(47\) −8.36921 + 8.36921i −1.22077 + 1.22077i −0.253418 + 0.967357i \(0.581555\pi\)
−0.967357 + 0.253418i \(0.918445\pi\)
\(48\) 0 0
\(49\) 3.87875i 0.554107i
\(50\) 1.83418 1.83418i 0.259392 0.259392i
\(51\) 0 0
\(52\) −0.639765 + 0.111581i −0.0887195 + 0.0154735i
\(53\) 8.48673i 1.16574i 0.812565 + 0.582871i \(0.198071\pi\)
−0.812565 + 0.582871i \(0.801929\pi\)
\(54\) 0 0
\(55\) −8.86065 −1.19477
\(56\) 8.86284 1.18435
\(57\) 0 0
\(58\) −0.478943 + 0.478943i −0.0628883 + 0.0628883i
\(59\) −0.117519 + 0.117519i −0.0152997 + 0.0152997i −0.714715 0.699416i \(-0.753444\pi\)
0.699416 + 0.714715i \(0.253444\pi\)
\(60\) 0 0
\(61\) −6.49307 −0.831352 −0.415676 0.909513i \(-0.636455\pi\)
−0.415676 + 0.909513i \(0.636455\pi\)
\(62\) 8.89383 1.12952
\(63\) 0 0
\(64\) 7.15560i 0.894451i
\(65\) 3.73424 5.31200i 0.463176 0.658872i
\(66\) 0 0
\(67\) −2.08783 + 2.08783i −0.255069 + 0.255069i −0.823045 0.567976i \(-0.807727\pi\)
0.567976 + 0.823045i \(0.307727\pi\)
\(68\) 0.651435i 0.0789981i
\(69\) 0 0
\(70\) 6.20158 6.20158i 0.741231 0.741231i
\(71\) −8.69028 8.69028i −1.03135 1.03135i −0.999493 0.0318539i \(-0.989859\pi\)
−0.0318539 0.999493i \(-0.510141\pi\)
\(72\) 0 0
\(73\) 2.50367 + 2.50367i 0.293033 + 0.293033i 0.838277 0.545245i \(-0.183563\pi\)
−0.545245 + 0.838277i \(0.683563\pi\)
\(74\) 6.99841i 0.813549i
\(75\) 0 0
\(76\) −0.740744 0.740744i −0.0849691 0.0849691i
\(77\) 16.2281 1.84936
\(78\) 0 0
\(79\) 4.07914 0.458939 0.229469 0.973316i \(-0.426301\pi\)
0.229469 + 0.973316i \(0.426301\pi\)
\(80\) −5.51112 5.51112i −0.616162 0.616162i
\(81\) 0 0
\(82\) 7.26469i 0.802251i
\(83\) 8.79106 + 8.79106i 0.964944 + 0.964944i 0.999406 0.0344622i \(-0.0109718\pi\)
−0.0344622 + 0.999406i \(0.510972\pi\)
\(84\) 0 0
\(85\) −4.60563 4.60563i −0.499551 0.499551i
\(86\) −5.11952 + 5.11952i −0.552052 + 0.552052i
\(87\) 0 0
\(88\) 13.2209i 1.40935i
\(89\) 2.66437 2.66437i 0.282422 0.282422i −0.551652 0.834074i \(-0.686002\pi\)
0.834074 + 0.551652i \(0.186002\pi\)
\(90\) 0 0
\(91\) −6.83918 + 9.72879i −0.716941 + 1.01985i
\(92\) 1.33590i 0.139278i
\(93\) 0 0
\(94\) −17.4759 −1.80250
\(95\) 10.4741 1.07462
\(96\) 0 0
\(97\) −2.72336 + 2.72336i −0.276515 + 0.276515i −0.831716 0.555201i \(-0.812641\pi\)
0.555201 + 0.831716i \(0.312641\pi\)
\(98\) −4.04964 + 4.04964i −0.409075 + 0.409075i
\(99\) 0 0
\(100\) 0.316426 0.0316426
\(101\) −7.45715 −0.742014 −0.371007 0.928630i \(-0.620987\pi\)
−0.371007 + 0.928630i \(0.620987\pi\)
\(102\) 0 0
\(103\) 2.36758i 0.233284i −0.993174 0.116642i \(-0.962787\pi\)
0.993174 0.116642i \(-0.0372131\pi\)
\(104\) 7.92598 + 5.57183i 0.777206 + 0.546363i
\(105\) 0 0
\(106\) −8.86065 + 8.86065i −0.860622 + 0.860622i
\(107\) 5.66455i 0.547613i 0.961785 + 0.273806i \(0.0882828\pi\)
−0.961785 + 0.273806i \(0.911717\pi\)
\(108\) 0 0
\(109\) −4.30752 + 4.30752i −0.412585 + 0.412585i −0.882638 0.470053i \(-0.844235\pi\)
0.470053 + 0.882638i \(0.344235\pi\)
\(110\) −9.25103 9.25103i −0.882052 0.882052i
\(111\) 0 0
\(112\) 10.0935 + 10.0935i 0.953744 + 0.953744i
\(113\) 12.5622i 1.18175i −0.806763 0.590876i \(-0.798782\pi\)
0.806763 0.590876i \(-0.201218\pi\)
\(114\) 0 0
\(115\) 9.44481 + 9.44481i 0.880733 + 0.880733i
\(116\) −0.0826256 −0.00767160
\(117\) 0 0
\(118\) −0.245393 −0.0225903
\(119\) 8.43510 + 8.43510i 0.773244 + 0.773244i
\(120\) 0 0
\(121\) 13.2077i 1.20070i
\(122\) −6.77915 6.77915i −0.613755 0.613755i
\(123\) 0 0
\(124\) 0.767166 + 0.767166i 0.0688936 + 0.0688936i
\(125\) −8.60425 + 8.60425i −0.769587 + 0.769587i
\(126\) 0 0
\(127\) 8.03631i 0.713107i −0.934275 0.356554i \(-0.883952\pi\)
0.934275 0.356554i \(-0.116048\pi\)
\(128\) 8.90755 8.90755i 0.787324 0.787324i
\(129\) 0 0
\(130\) 9.44481 1.64726i 0.828364 0.144475i
\(131\) 8.77091i 0.766318i −0.923682 0.383159i \(-0.874836\pi\)
0.923682 0.383159i \(-0.125164\pi\)
\(132\) 0 0
\(133\) −19.1830 −1.66338
\(134\) −4.35964 −0.376615
\(135\) 0 0
\(136\) 6.87201 6.87201i 0.589270 0.589270i
\(137\) −7.19656 + 7.19656i −0.614844 + 0.614844i −0.944204 0.329360i \(-0.893167\pi\)
0.329360 + 0.944204i \(0.393167\pi\)
\(138\) 0 0
\(139\) 17.4714 1.48191 0.740954 0.671555i \(-0.234374\pi\)
0.740954 + 0.671555i \(0.234374\pi\)
\(140\) 1.06988 0.0904210
\(141\) 0 0
\(142\) 18.1463i 1.52281i
\(143\) 14.5126 + 10.2021i 1.21361 + 0.853146i
\(144\) 0 0
\(145\) 0.584161 0.584161i 0.0485119 0.0485119i
\(146\) 5.22796i 0.432669i
\(147\) 0 0
\(148\) 0.603671 0.603671i 0.0496215 0.0496215i
\(149\) 0.341213 + 0.341213i 0.0279533 + 0.0279533i 0.720945 0.692992i \(-0.243708\pi\)
−0.692992 + 0.720945i \(0.743708\pi\)
\(150\) 0 0
\(151\) 11.6365 + 11.6365i 0.946965 + 0.946965i 0.998663 0.0516975i \(-0.0164632\pi\)
−0.0516975 + 0.998663i \(0.516463\pi\)
\(152\) 15.6283i 1.26762i
\(153\) 0 0
\(154\) 16.9430 + 16.9430i 1.36531 + 1.36531i
\(155\) −10.8477 −0.871307
\(156\) 0 0
\(157\) 2.46410 0.196657 0.0983284 0.995154i \(-0.468650\pi\)
0.0983284 + 0.995154i \(0.468650\pi\)
\(158\) 4.25886 + 4.25886i 0.338817 + 0.338817i
\(159\) 0 0
\(160\) 1.82951i 0.144635i
\(161\) −17.2979 17.2979i −1.36327 1.36327i
\(162\) 0 0
\(163\) 16.3043 + 16.3043i 1.27705 + 1.27705i 0.942312 + 0.334736i \(0.108647\pi\)
0.334736 + 0.942312i \(0.391353\pi\)
\(164\) 0.626640 0.626640i 0.0489323 0.0489323i
\(165\) 0 0
\(166\) 18.3568i 1.42476i
\(167\) −16.8191 + 16.8191i −1.30150 + 1.30150i −0.374115 + 0.927382i \(0.622054\pi\)
−0.927382 + 0.374115i \(0.877946\pi\)
\(168\) 0 0
\(169\) −12.2325 + 4.40078i −0.940959 + 0.338522i
\(170\) 9.61709i 0.737597i
\(171\) 0 0
\(172\) −0.883201 −0.0673435
\(173\) 6.62231 0.503485 0.251742 0.967794i \(-0.418996\pi\)
0.251742 + 0.967794i \(0.418996\pi\)
\(174\) 0 0
\(175\) 4.09724 4.09724i 0.309722 0.309722i
\(176\) 15.0567 15.0567i 1.13494 1.13494i
\(177\) 0 0
\(178\) 5.56351 0.417003
\(179\) 0.407097 0.0304279 0.0152139 0.999884i \(-0.495157\pi\)
0.0152139 + 0.999884i \(0.495157\pi\)
\(180\) 0 0
\(181\) 8.61008i 0.639982i −0.947421 0.319991i \(-0.896320\pi\)
0.947421 0.319991i \(-0.103680\pi\)
\(182\) −17.2979 + 3.01693i −1.28221 + 0.223629i
\(183\) 0 0
\(184\) −14.0925 + 14.0925i −1.03891 + 1.03891i
\(185\) 8.53587i 0.627570i
\(186\) 0 0
\(187\) 12.5828 12.5828i 0.920146 0.920146i
\(188\) −1.50744 1.50744i −0.109941 0.109941i
\(189\) 0 0
\(190\) 10.9355 + 10.9355i 0.793348 + 0.793348i
\(191\) 18.6520i 1.34961i −0.737996 0.674805i \(-0.764228\pi\)
0.737996 0.674805i \(-0.235772\pi\)
\(192\) 0 0
\(193\) −18.8315 18.8315i −1.35552 1.35552i −0.879359 0.476159i \(-0.842029\pi\)
−0.476159 0.879359i \(-0.657971\pi\)
\(194\) −5.68669 −0.408281
\(195\) 0 0
\(196\) −0.698630 −0.0499021
\(197\) −7.07564 7.07564i −0.504119 0.504119i 0.408597 0.912715i \(-0.366018\pi\)
−0.912715 + 0.408597i \(0.866018\pi\)
\(198\) 0 0
\(199\) 0.971033i 0.0688347i −0.999408 0.0344174i \(-0.989042\pi\)
0.999408 0.0344174i \(-0.0109575\pi\)
\(200\) −3.33799 3.33799i −0.236032 0.236032i
\(201\) 0 0
\(202\) −7.78570 7.78570i −0.547800 0.547800i
\(203\) −1.06988 + 1.06988i −0.0750906 + 0.0750906i
\(204\) 0 0
\(205\) 8.86065i 0.618854i
\(206\) 2.47189 2.47189i 0.172225 0.172225i
\(207\) 0 0
\(208\) 2.68103 + 15.3720i 0.185896 + 1.06586i
\(209\) 28.6157i 1.97939i
\(210\) 0 0
\(211\) 8.97103 0.617591 0.308796 0.951128i \(-0.400074\pi\)
0.308796 + 0.951128i \(0.400074\pi\)
\(212\) −1.52861 −0.104985
\(213\) 0 0
\(214\) −5.91413 + 5.91413i −0.404281 + 0.404281i
\(215\) 6.24421 6.24421i 0.425851 0.425851i
\(216\) 0 0
\(217\) 19.8673 1.34868
\(218\) −8.99461 −0.609192
\(219\) 0 0
\(220\) 1.59596i 0.107599i
\(221\) 2.24053 + 12.8464i 0.150714 + 0.864140i
\(222\) 0 0
\(223\) 3.85945 3.85945i 0.258448 0.258448i −0.565975 0.824423i \(-0.691500\pi\)
0.824423 + 0.565975i \(0.191500\pi\)
\(224\) 3.35070i 0.223878i
\(225\) 0 0
\(226\) 13.1157 13.1157i 0.872441 0.872441i
\(227\) 16.0245 + 16.0245i 1.06358 + 1.06358i 0.997836 + 0.0657477i \(0.0209432\pi\)
0.0657477 + 0.997836i \(0.479057\pi\)
\(228\) 0 0
\(229\) 10.8305 + 10.8305i 0.715699 + 0.715699i 0.967721 0.252023i \(-0.0810958\pi\)
−0.252023 + 0.967721i \(0.581096\pi\)
\(230\) 19.7219i 1.30042i
\(231\) 0 0
\(232\) 0.871620 + 0.871620i 0.0572247 + 0.0572247i
\(233\) 12.4393 0.814924 0.407462 0.913222i \(-0.366414\pi\)
0.407462 + 0.913222i \(0.366414\pi\)
\(234\) 0 0
\(235\) 21.3151 1.39045
\(236\) −0.0211672 0.0211672i −0.00137787 0.00137787i
\(237\) 0 0
\(238\) 17.6135i 1.14171i
\(239\) −8.94887 8.94887i −0.578854 0.578854i 0.355733 0.934587i \(-0.384231\pi\)
−0.934587 + 0.355733i \(0.884231\pi\)
\(240\) 0 0
\(241\) −14.0618 14.0618i −0.905797 0.905797i 0.0901326 0.995930i \(-0.471271\pi\)
−0.995930 + 0.0901326i \(0.971271\pi\)
\(242\) 13.7896 13.7896i 0.886432 0.886432i
\(243\) 0 0
\(244\) 1.16951i 0.0748705i
\(245\) 4.93929 4.93929i 0.315560 0.315560i
\(246\) 0 0
\(247\) −17.1552 12.0598i −1.09156 0.767349i
\(248\) 16.1857i 1.02779i
\(249\) 0 0
\(250\) −17.9667 −1.13631
\(251\) 17.5216 1.10596 0.552978 0.833196i \(-0.313491\pi\)
0.552978 + 0.833196i \(0.313491\pi\)
\(252\) 0 0
\(253\) −25.8037 + 25.8037i −1.62226 + 1.62226i
\(254\) 8.39038 8.39038i 0.526459 0.526459i
\(255\) 0 0
\(256\) 4.28881 0.268051
\(257\) 6.22406 0.388246 0.194123 0.980977i \(-0.437814\pi\)
0.194123 + 0.980977i \(0.437814\pi\)
\(258\) 0 0
\(259\) 15.6332i 0.971403i
\(260\) 0.956783 + 0.672603i 0.0593372 + 0.0417130i
\(261\) 0 0
\(262\) 9.15735 9.15735i 0.565743 0.565743i
\(263\) 22.8504i 1.40901i −0.709697 0.704507i \(-0.751168\pi\)
0.709697 0.704507i \(-0.248832\pi\)
\(264\) 0 0
\(265\) 10.8072 10.8072i 0.663882 0.663882i
\(266\) −20.0282 20.0282i −1.22801 1.22801i
\(267\) 0 0
\(268\) −0.376055 0.376055i −0.0229712 0.0229712i
\(269\) 16.6042i 1.01237i 0.862424 + 0.506187i \(0.168945\pi\)
−0.862424 + 0.506187i \(0.831055\pi\)
\(270\) 0 0
\(271\) 12.6268 + 12.6268i 0.767025 + 0.767025i 0.977582 0.210556i \(-0.0675275\pi\)
−0.210556 + 0.977582i \(0.567528\pi\)
\(272\) 15.6524 0.949068
\(273\) 0 0
\(274\) −15.0273 −0.907831
\(275\) −6.11194 6.11194i −0.368564 0.368564i
\(276\) 0 0
\(277\) 20.9529i 1.25894i −0.777025 0.629470i \(-0.783272\pi\)
0.777025 0.629470i \(-0.216728\pi\)
\(278\) 18.2412 + 18.2412i 1.09404 + 1.09404i
\(279\) 0 0
\(280\) −11.2862 11.2862i −0.674477 0.674477i
\(281\) 13.7127 13.7127i 0.818031 0.818031i −0.167792 0.985822i \(-0.553664\pi\)
0.985822 + 0.167792i \(0.0536636\pi\)
\(282\) 0 0
\(283\) 14.8077i 0.880224i −0.897943 0.440112i \(-0.854939\pi\)
0.897943 0.440112i \(-0.145061\pi\)
\(284\) 1.56527 1.56527i 0.0928817 0.0928817i
\(285\) 0 0
\(286\) 4.50041 + 25.8037i 0.266115 + 1.52580i
\(287\) 16.2281i 0.957912i
\(288\) 0 0
\(289\) −3.91930 −0.230547
\(290\) 1.21980 0.0716289
\(291\) 0 0
\(292\) −0.450955 + 0.450955i −0.0263901 + 0.0263901i
\(293\) −3.53070 + 3.53070i −0.206265 + 0.206265i −0.802678 0.596413i \(-0.796592\pi\)
0.596413 + 0.802678i \(0.296592\pi\)
\(294\) 0 0
\(295\) 0.299303 0.0174261
\(296\) −12.7363 −0.740282
\(297\) 0 0
\(298\) 0.712493i 0.0412736i
\(299\) −4.59468 26.3442i −0.265717 1.52352i
\(300\) 0 0
\(301\) −11.4361 + 11.4361i −0.659167 + 0.659167i
\(302\) 24.2984i 1.39822i
\(303\) 0 0
\(304\) −17.7983 + 17.7983i −1.02080 + 1.02080i
\(305\) 8.26843 + 8.26843i 0.473449 + 0.473449i
\(306\) 0 0
\(307\) −9.78222 9.78222i −0.558301 0.558301i 0.370523 0.928823i \(-0.379179\pi\)
−0.928823 + 0.370523i \(0.879179\pi\)
\(308\) 2.92296i 0.166551i
\(309\) 0 0
\(310\) −11.3256 11.3256i −0.643252 0.643252i
\(311\) 15.3106 0.868184 0.434092 0.900869i \(-0.357069\pi\)
0.434092 + 0.900869i \(0.357069\pi\)
\(312\) 0 0
\(313\) −9.33322 −0.527545 −0.263773 0.964585i \(-0.584967\pi\)
−0.263773 + 0.964585i \(0.584967\pi\)
\(314\) 2.57267 + 2.57267i 0.145184 + 0.145184i
\(315\) 0 0
\(316\) 0.734724i 0.0413315i
\(317\) 12.8498 + 12.8498i 0.721715 + 0.721715i 0.968954 0.247239i \(-0.0795234\pi\)
−0.247239 + 0.968954i \(0.579523\pi\)
\(318\) 0 0
\(319\) 1.59596 + 1.59596i 0.0893564 + 0.0893564i
\(320\) −9.11212 + 9.11212i −0.509383 + 0.509383i
\(321\) 0 0
\(322\) 36.1201i 2.01290i
\(323\) −14.8740 + 14.8740i −0.827611 + 0.827611i
\(324\) 0 0
\(325\) 6.23996 1.08831i 0.346131 0.0603685i
\(326\) 34.0452i 1.88559i
\(327\) 0 0
\(328\) −13.2209 −0.730001
\(329\) −39.0381 −2.15224
\(330\) 0 0
\(331\) −14.5529 + 14.5529i −0.799898 + 0.799898i −0.983079 0.183181i \(-0.941360\pi\)
0.183181 + 0.983079i \(0.441360\pi\)
\(332\) −1.58342 + 1.58342i −0.0869016 + 0.0869016i
\(333\) 0 0
\(334\) −35.1202 −1.92169
\(335\) 5.31739 0.290520
\(336\) 0 0
\(337\) 18.3900i 1.00177i −0.865514 0.500884i \(-0.833008\pi\)
0.865514 0.500884i \(-0.166992\pi\)
\(338\) −17.3661 8.17673i −0.944590 0.444756i
\(339\) 0 0
\(340\) 0.829554 0.829554i 0.0449889 0.0449889i
\(341\) 29.6364i 1.60490i
\(342\) 0 0
\(343\) 7.27953 7.27953i 0.393058 0.393058i
\(344\) 9.31692 + 9.31692i 0.502335 + 0.502335i
\(345\) 0 0
\(346\) 6.91408 + 6.91408i 0.371703 + 0.371703i
\(347\) 9.86293i 0.529470i 0.964321 + 0.264735i \(0.0852844\pi\)
−0.964321 + 0.264735i \(0.914716\pi\)
\(348\) 0 0
\(349\) −10.3582 10.3582i −0.554460 0.554460i 0.373265 0.927725i \(-0.378238\pi\)
−0.927725 + 0.373265i \(0.878238\pi\)
\(350\) 8.55552 0.457312
\(351\) 0 0
\(352\) 4.99831 0.266411
\(353\) −20.5184 20.5184i −1.09208 1.09208i −0.995306 0.0967786i \(-0.969146\pi\)
−0.0967786 0.995306i \(-0.530854\pi\)
\(354\) 0 0
\(355\) 22.1328i 1.17469i
\(356\) 0.479899 + 0.479899i 0.0254346 + 0.0254346i
\(357\) 0 0
\(358\) 0.425034 + 0.425034i 0.0224637 + 0.0224637i
\(359\) −8.17991 + 8.17991i −0.431719 + 0.431719i −0.889213 0.457494i \(-0.848747\pi\)
0.457494 + 0.889213i \(0.348747\pi\)
\(360\) 0 0
\(361\) 14.8263i 0.780331i
\(362\) 8.98943 8.98943i 0.472474 0.472474i
\(363\) 0 0
\(364\) −1.75232 1.23186i −0.0918468 0.0645668i
\(365\) 6.37647i 0.333760i
\(366\) 0 0
\(367\) 21.3695 1.11548 0.557740 0.830016i \(-0.311669\pi\)
0.557740 + 0.830016i \(0.311669\pi\)
\(368\) −32.0986 −1.67326
\(369\) 0 0
\(370\) −8.91195 + 8.91195i −0.463310 + 0.463310i
\(371\) −19.7931 + 19.7931i −1.02761 + 1.02761i
\(372\) 0 0
\(373\) 37.4336 1.93824 0.969118 0.246596i \(-0.0793121\pi\)
0.969118 + 0.246596i \(0.0793121\pi\)
\(374\) 26.2744 1.35862
\(375\) 0 0
\(376\) 31.8041i 1.64017i
\(377\) −1.62939 + 0.284180i −0.0839176 + 0.0146360i
\(378\) 0 0
\(379\) −9.52938 + 9.52938i −0.489491 + 0.489491i −0.908146 0.418654i \(-0.862502\pi\)
0.418654 + 0.908146i \(0.362502\pi\)
\(380\) 1.88656i 0.0967786i
\(381\) 0 0
\(382\) 19.4738 19.4738i 0.996365 0.996365i
\(383\) 11.7824 + 11.7824i 0.602052 + 0.602052i 0.940857 0.338805i \(-0.110023\pi\)
−0.338805 + 0.940857i \(0.610023\pi\)
\(384\) 0 0
\(385\) −20.6652 20.6652i −1.05320 1.05320i
\(386\) 39.3223i 2.00145i
\(387\) 0 0
\(388\) −0.490524 0.490524i −0.0249026 0.0249026i
\(389\) −35.5335 −1.80162 −0.900811 0.434212i \(-0.857027\pi\)
−0.900811 + 0.434212i \(0.857027\pi\)
\(390\) 0 0
\(391\) −26.8247 −1.35658
\(392\) 7.36987 + 7.36987i 0.372235 + 0.372235i
\(393\) 0 0
\(394\) 14.7748i 0.744342i
\(395\) −5.19448 5.19448i −0.261362 0.261362i
\(396\) 0 0
\(397\) −3.22719 3.22719i −0.161968 0.161968i 0.621470 0.783438i \(-0.286536\pi\)
−0.783438 + 0.621470i \(0.786536\pi\)
\(398\) 1.01382 1.01382i 0.0508180 0.0508180i
\(399\) 0 0
\(400\) 7.60297i 0.380149i
\(401\) −4.79278 + 4.79278i −0.239340 + 0.239340i −0.816577 0.577237i \(-0.804131\pi\)
0.577237 + 0.816577i \(0.304131\pi\)
\(402\) 0 0
\(403\) 17.7672 + 12.4900i 0.885046 + 0.622172i
\(404\) 1.34316i 0.0668248i
\(405\) 0 0
\(406\) −2.23403 −0.110873
\(407\) −23.3204 −1.15595
\(408\) 0 0
\(409\) 17.1630 17.1630i 0.848655 0.848655i −0.141310 0.989965i \(-0.545131\pi\)
0.989965 + 0.141310i \(0.0451314\pi\)
\(410\) −9.25103 + 9.25103i −0.456876 + 0.456876i
\(411\) 0 0
\(412\) 0.426442 0.0210093
\(413\) −0.548166 −0.0269735
\(414\) 0 0
\(415\) 22.3895i 1.09906i
\(416\) −2.10649 + 2.99651i −0.103279 + 0.146916i
\(417\) 0 0
\(418\) −29.8765 + 29.8765i −1.46131 + 1.46131i
\(419\) 15.7718i 0.770504i −0.922811 0.385252i \(-0.874115\pi\)
0.922811 0.385252i \(-0.125885\pi\)
\(420\) 0 0
\(421\) −0.367362 + 0.367362i −0.0179041 + 0.0179041i −0.716002 0.698098i \(-0.754030\pi\)
0.698098 + 0.716002i \(0.254030\pi\)
\(422\) 9.36629 + 9.36629i 0.455944 + 0.455944i
\(423\) 0 0
\(424\) 16.1253 + 16.1253i 0.783115 + 0.783115i
\(425\) 6.35379i 0.308204i
\(426\) 0 0
\(427\) −15.1434 15.1434i −0.732842 0.732842i
\(428\) −1.02028 −0.0493173
\(429\) 0 0
\(430\) 13.0386 0.628779
\(431\) 17.4155 + 17.4155i 0.838873 + 0.838873i 0.988711 0.149838i \(-0.0478752\pi\)
−0.149838 + 0.988711i \(0.547875\pi\)
\(432\) 0 0
\(433\) 10.2954i 0.494763i −0.968918 0.247381i \(-0.920430\pi\)
0.968918 0.247381i \(-0.0795701\pi\)
\(434\) 20.7426 + 20.7426i 0.995677 + 0.995677i
\(435\) 0 0
\(436\) −0.775859 0.775859i −0.0371569 0.0371569i
\(437\) 30.5023 30.5023i 1.45912 1.45912i
\(438\) 0 0
\(439\) 33.6000i 1.60364i 0.597564 + 0.801821i \(0.296135\pi\)
−0.597564 + 0.801821i \(0.703865\pi\)
\(440\) −16.8358 + 16.8358i −0.802615 + 0.802615i
\(441\) 0 0
\(442\) −11.0731 + 15.7516i −0.526695 + 0.749228i
\(443\) 23.1680i 1.10075i −0.834919 0.550373i \(-0.814485\pi\)
0.834919 0.550373i \(-0.185515\pi\)
\(444\) 0 0
\(445\) −6.78575 −0.321675
\(446\) 8.05899 0.381604
\(447\) 0 0
\(448\) 16.6886 16.6886i 0.788464 0.788464i
\(449\) 0.344617 0.344617i 0.0162635 0.0162635i −0.698928 0.715192i \(-0.746339\pi\)
0.715192 + 0.698928i \(0.246339\pi\)
\(450\) 0 0
\(451\) −24.2077 −1.13990
\(452\) 2.26267 0.106427
\(453\) 0 0
\(454\) 33.4611i 1.57041i
\(455\) 21.0981 3.67970i 0.989092 0.172507i
\(456\) 0 0
\(457\) 17.0160 17.0160i 0.795977 0.795977i −0.186482 0.982458i \(-0.559709\pi\)
0.982458 + 0.186482i \(0.0597086\pi\)
\(458\) 22.6153i 1.05674i
\(459\) 0 0
\(460\) −1.70117 + 1.70117i −0.0793177 + 0.0793177i
\(461\) 11.7622 + 11.7622i 0.547822 + 0.547822i 0.925810 0.377988i \(-0.123384\pi\)
−0.377988 + 0.925810i \(0.623384\pi\)
\(462\) 0 0
\(463\) 18.9537 + 18.9537i 0.880853 + 0.880853i 0.993621 0.112768i \(-0.0359718\pi\)
−0.112768 + 0.993621i \(0.535972\pi\)
\(464\) 1.98530i 0.0921651i
\(465\) 0 0
\(466\) 12.9873 + 12.9873i 0.601626 + 0.601626i
\(467\) −15.6685 −0.725054 −0.362527 0.931973i \(-0.618086\pi\)
−0.362527 + 0.931973i \(0.618086\pi\)
\(468\) 0 0
\(469\) −9.73868 −0.449690
\(470\) 22.2542 + 22.2542i 1.02651 + 1.02651i
\(471\) 0 0
\(472\) 0.446587i 0.0205558i
\(473\) 17.0595 + 17.0595i 0.784396 + 0.784396i
\(474\) 0 0
\(475\) 7.22486 + 7.22486i 0.331499 + 0.331499i
\(476\) −1.51931 + 1.51931i −0.0696374 + 0.0696374i
\(477\) 0 0
\(478\) 18.6863i 0.854691i
\(479\) 7.12478 7.12478i 0.325540 0.325540i −0.525348 0.850888i \(-0.676065\pi\)
0.850888 + 0.525348i \(0.176065\pi\)
\(480\) 0 0
\(481\) 9.82820 13.9807i 0.448127 0.637465i
\(482\) 29.3626i 1.33743i
\(483\) 0 0
\(484\) 2.37894 0.108134
\(485\) 6.93598 0.314947
\(486\) 0 0
\(487\) 8.26795 8.26795i 0.374657 0.374657i −0.494513 0.869170i \(-0.664654\pi\)
0.869170 + 0.494513i \(0.164654\pi\)
\(488\) −12.3372 + 12.3372i −0.558481 + 0.558481i
\(489\) 0 0
\(490\) 10.3138 0.465931
\(491\) −7.00976 −0.316346 −0.158173 0.987411i \(-0.550560\pi\)
−0.158173 + 0.987411i \(0.550560\pi\)
\(492\) 0 0
\(493\) 1.65911i 0.0747225i
\(494\) −5.31989 30.5023i −0.239353 1.37236i
\(495\) 0 0
\(496\) 18.4332 18.4332i 0.827674 0.827674i
\(497\) 40.5357i 1.81828i
\(498\) 0 0
\(499\) −0.277836 + 0.277836i −0.0124376 + 0.0124376i −0.713298 0.700861i \(-0.752799\pi\)
0.700861 + 0.713298i \(0.252799\pi\)
\(500\) −1.54978 1.54978i −0.0693081 0.0693081i
\(501\) 0 0
\(502\) 18.2936 + 18.2936i 0.816484 + 0.816484i
\(503\) 20.0463i 0.893822i 0.894578 + 0.446911i \(0.147476\pi\)
−0.894578 + 0.446911i \(0.852524\pi\)
\(504\) 0 0
\(505\) 9.49611 + 9.49611i 0.422572 + 0.422572i
\(506\) −53.8811 −2.39531
\(507\) 0 0
\(508\) 1.44748 0.0642215
\(509\) −3.36495 3.36495i −0.149149 0.149149i 0.628589 0.777738i \(-0.283633\pi\)
−0.777738 + 0.628589i \(0.783633\pi\)
\(510\) 0 0
\(511\) 11.6784i 0.516620i
\(512\) −13.3373 13.3373i −0.589433 0.589433i
\(513\) 0 0
\(514\) 6.49829 + 6.49829i 0.286627 + 0.286627i
\(515\) −3.01493 + 3.01493i −0.132854 + 0.132854i
\(516\) 0 0
\(517\) 58.2340i 2.56113i
\(518\) 16.3220 16.3220i 0.717149 0.717149i
\(519\) 0 0
\(520\) −2.99783 17.1884i −0.131463 0.753763i
\(521\) 9.35106i 0.409678i 0.978796 + 0.204839i \(0.0656670\pi\)
−0.978796 + 0.204839i \(0.934333\pi\)
\(522\) 0 0
\(523\) 4.54324 0.198662 0.0993310 0.995054i \(-0.468330\pi\)
0.0993310 + 0.995054i \(0.468330\pi\)
\(524\) 1.57979 0.0690136
\(525\) 0 0
\(526\) 23.8571 23.8571i 1.04022 1.04022i
\(527\) 15.4046 15.4046i 0.671033 0.671033i
\(528\) 0 0
\(529\) 32.0097 1.39173
\(530\) 22.5667 0.980236
\(531\) 0 0
\(532\) 3.45519i 0.149802i
\(533\) 10.2021 14.5126i 0.441904 0.628612i
\(534\) 0 0
\(535\) 7.21338 7.21338i 0.311862 0.311862i
\(536\) 7.93403i 0.342698i
\(537\) 0 0
\(538\) −17.3357 + 17.3357i −0.747396 + 0.747396i
\(539\) 13.4944 + 13.4944i 0.581245 + 0.581245i
\(540\) 0 0
\(541\) −12.0375 12.0375i −0.517533 0.517533i 0.399291 0.916824i \(-0.369256\pi\)
−0.916824 + 0.399291i \(0.869256\pi\)
\(542\) 26.3663i 1.13253i
\(543\) 0 0
\(544\) 2.59804 + 2.59804i 0.111390 + 0.111390i
\(545\) 10.9706 0.469929
\(546\) 0 0
\(547\) 29.7830 1.27343 0.636716 0.771099i \(-0.280293\pi\)
0.636716 + 0.771099i \(0.280293\pi\)
\(548\) −1.29623 1.29623i −0.0553721 0.0553721i
\(549\) 0 0
\(550\) 12.7625i 0.544193i
\(551\) −1.88656 1.88656i −0.0803703 0.0803703i
\(552\) 0 0
\(553\) 9.51356 + 9.51356i 0.404558 + 0.404558i
\(554\) 21.8761 21.8761i 0.929426 0.929426i
\(555\) 0 0
\(556\) 3.14691i 0.133459i
\(557\) −15.7659 + 15.7659i −0.668023 + 0.668023i −0.957258 0.289235i \(-0.906599\pi\)
0.289235 + 0.957258i \(0.406599\pi\)
\(558\) 0 0
\(559\) −17.4168 + 3.03766i −0.736653 + 0.128479i
\(560\) 25.7066i 1.08630i
\(561\) 0 0
\(562\) 28.6337 1.20784
\(563\) −2.77304 −0.116870 −0.0584348 0.998291i \(-0.518611\pi\)
−0.0584348 + 0.998291i \(0.518611\pi\)
\(564\) 0 0
\(565\) −15.9970 + 15.9970i −0.672999 + 0.672999i
\(566\) 15.4601 15.4601i 0.649835 0.649835i
\(567\) 0 0
\(568\) −33.0242 −1.38566
\(569\) 7.09919 0.297614 0.148807 0.988866i \(-0.452457\pi\)
0.148807 + 0.988866i \(0.452457\pi\)
\(570\) 0 0
\(571\) 29.1877i 1.22147i −0.791837 0.610733i \(-0.790875\pi\)
0.791837 0.610733i \(-0.209125\pi\)
\(572\) −1.83758 + 2.61398i −0.0768333 + 0.109296i
\(573\) 0 0
\(574\) 16.9430 16.9430i 0.707189 0.707189i
\(575\) 13.0298i 0.543379i
\(576\) 0 0
\(577\) −33.3512 + 33.3512i −1.38843 + 1.38843i −0.559799 + 0.828629i \(0.689122\pi\)
−0.828629 + 0.559799i \(0.810878\pi\)
\(578\) −4.09197 4.09197i −0.170204 0.170204i
\(579\) 0 0
\(580\) 0.105218 + 0.105218i 0.00436892 + 0.00436892i
\(581\) 41.0058i 1.70121i
\(582\) 0 0
\(583\) 29.5259 + 29.5259i 1.22284 + 1.22284i
\(584\) 9.51427 0.393703
\(585\) 0 0
\(586\) −7.37251 −0.304555
\(587\) 22.1645 + 22.1645i 0.914828 + 0.914828i 0.996647 0.0818190i \(-0.0260729\pi\)
−0.0818190 + 0.996647i \(0.526073\pi\)
\(588\) 0 0
\(589\) 35.0329i 1.44351i
\(590\) 0.312490 + 0.312490i 0.0128650 + 0.0128650i
\(591\) 0 0
\(592\) −14.5048 14.5048i −0.596143 0.596143i
\(593\) 16.8963 16.8963i 0.693847 0.693847i −0.269229 0.963076i \(-0.586769\pi\)
0.963076 + 0.269229i \(0.0867689\pi\)
\(594\) 0 0
\(595\) 21.4829i 0.880714i
\(596\) −0.0614584 + 0.0614584i −0.00251744 + 0.00251744i
\(597\) 0 0
\(598\) 22.7078 32.3020i 0.928589 1.32093i
\(599\) 33.7920i 1.38070i 0.723473 + 0.690352i \(0.242544\pi\)
−0.723473 + 0.690352i \(0.757456\pi\)
\(600\) 0 0
\(601\) −3.50041 −0.142785 −0.0713924 0.997448i \(-0.522744\pi\)
−0.0713924 + 0.997448i \(0.522744\pi\)
\(602\) −23.8799 −0.973274
\(603\) 0 0
\(604\) −2.09594 + 2.09594i −0.0852825 + 0.0852825i
\(605\) −16.8191 + 16.8191i −0.683792 + 0.683792i
\(606\) 0 0
\(607\) −11.0285 −0.447635 −0.223817 0.974631i \(-0.571852\pi\)
−0.223817 + 0.974631i \(0.571852\pi\)
\(608\) −5.90844 −0.239619
\(609\) 0 0
\(610\) 17.2655i 0.699058i
\(611\) −34.9115 24.5422i −1.41237 0.992872i
\(612\) 0 0
\(613\) −0.260607 + 0.260607i −0.0105258 + 0.0105258i −0.712350 0.701824i \(-0.752369\pi\)
0.701824 + 0.712350i \(0.252369\pi\)
\(614\) 20.4264i 0.824344i
\(615\) 0 0
\(616\) 30.8344 30.8344i 1.24235 1.24235i
\(617\) 2.51785 + 2.51785i 0.101365 + 0.101365i 0.755971 0.654606i \(-0.227165\pi\)
−0.654606 + 0.755971i \(0.727165\pi\)
\(618\) 0 0
\(619\) −16.5287 16.5287i −0.664343 0.664343i 0.292058 0.956401i \(-0.405660\pi\)
−0.956401 + 0.292058i \(0.905660\pi\)
\(620\) 1.95386i 0.0784688i
\(621\) 0 0
\(622\) 15.9852 + 15.9852i 0.640946 + 0.640946i
\(623\) 12.4279 0.497914
\(624\) 0 0
\(625\) 13.1298 0.525193
\(626\) −9.74444 9.74444i −0.389466 0.389466i
\(627\) 0 0
\(628\) 0.443828i 0.0177107i
\(629\) −12.1216 12.1216i −0.483320 0.483320i
\(630\) 0 0
\(631\) 10.3527 + 10.3527i 0.412136 + 0.412136i 0.882482 0.470346i \(-0.155871\pi\)
−0.470346 + 0.882482i \(0.655871\pi\)
\(632\) 7.75063 7.75063i 0.308303 0.308303i
\(633\) 0 0
\(634\) 26.8318i 1.06563i
\(635\) −10.2336 + 10.2336i −0.406109 + 0.406109i
\(636\) 0 0
\(637\) −13.7771 + 2.40285i −0.545867 + 0.0952044i
\(638\) 3.33255i 0.131937i
\(639\) 0 0
\(640\) −22.6862 −0.896751
\(641\) 43.5723 1.72100 0.860502 0.509448i \(-0.170150\pi\)
0.860502 + 0.509448i \(0.170150\pi\)
\(642\) 0 0
\(643\) −29.2937 + 29.2937i −1.15523 + 1.15523i −0.169743 + 0.985488i \(0.554294\pi\)
−0.985488 + 0.169743i \(0.945706\pi\)
\(644\) 3.11566 3.11566i 0.122774 0.122774i
\(645\) 0 0
\(646\) −31.0587 −1.22199
\(647\) −31.4069 −1.23473 −0.617366 0.786676i \(-0.711800\pi\)
−0.617366 + 0.786676i \(0.711800\pi\)
\(648\) 0 0
\(649\) 0.817711i 0.0320980i
\(650\) 7.65114 + 5.37863i 0.300103 + 0.210967i
\(651\) 0 0
\(652\) −2.93668 + 2.93668i −0.115009 + 0.115009i
\(653\) 10.7985i 0.422580i −0.977423 0.211290i \(-0.932234\pi\)
0.977423 0.211290i \(-0.0677664\pi\)
\(654\) 0 0
\(655\) −11.1691 + 11.1691i −0.436413 + 0.436413i
\(656\) −15.0567 15.0567i −0.587864 0.587864i
\(657\) 0 0
\(658\) −40.7581 40.7581i −1.58892 1.58892i
\(659\) 32.9975i 1.28540i 0.766118 + 0.642699i \(0.222186\pi\)
−0.766118 + 0.642699i \(0.777814\pi\)
\(660\) 0 0
\(661\) −19.5480 19.5480i −0.760327 0.760327i 0.216054 0.976381i \(-0.430681\pi\)
−0.976381 + 0.216054i \(0.930681\pi\)
\(662\) −30.3881 −1.18107
\(663\) 0 0
\(664\) 33.4071 1.29645
\(665\) 24.4281 + 24.4281i 0.947282 + 0.947282i
\(666\) 0 0
\(667\) 3.40235i 0.131739i
\(668\) −3.02941 3.02941i −0.117211 0.117211i
\(669\) 0 0
\(670\) 5.55167 + 5.55167i 0.214480 + 0.214480i
\(671\) −22.5898 + 22.5898i −0.872069 + 0.872069i
\(672\) 0 0
\(673\) 4.03703i 0.155616i −0.996968 0.0778079i \(-0.975208\pi\)
0.996968 0.0778079i \(-0.0247921\pi\)
\(674\) 19.2003 19.2003i 0.739567 0.739567i
\(675\) 0 0
\(676\) −0.792658 2.20328i −0.0304868 0.0847415i
\(677\) 11.1860i 0.429913i −0.976624 0.214956i \(-0.931039\pi\)
0.976624 0.214956i \(-0.0689609\pi\)
\(678\) 0 0
\(679\) −12.7031 −0.487500
\(680\) −17.5020 −0.671170
\(681\) 0 0
\(682\) 30.9422 30.9422i 1.18484 1.18484i
\(683\) 6.34498 6.34498i 0.242784 0.242784i −0.575217 0.818001i \(-0.695082\pi\)
0.818001 + 0.575217i \(0.195082\pi\)
\(684\) 0 0
\(685\) 18.3286 0.700299
\(686\) 15.2005 0.580358
\(687\) 0 0
\(688\) 21.2212i 0.809052i
\(689\) −30.1443 + 5.25745i −1.14841 + 0.200293i
\(690\) 0 0
\(691\) 8.78270 8.78270i 0.334110 0.334110i −0.520035 0.854145i \(-0.674081\pi\)
0.854145 + 0.520035i \(0.174081\pi\)
\(692\) 1.19279i 0.0453432i
\(693\) 0 0
\(694\) −10.2975 + 10.2975i −0.390887 + 0.390887i
\(695\) −22.2486 22.2486i −0.843936 0.843936i
\(696\) 0 0
\(697\) −12.5828 12.5828i −0.476608 0.476608i
\(698\) 21.6291i 0.818672i
\(699\) 0 0
\(700\) 0.737985 + 0.737985i 0.0278932 + 0.0278932i
\(701\) 11.1875 0.422546 0.211273 0.977427i \(-0.432239\pi\)
0.211273 + 0.977427i \(0.432239\pi\)
\(702\) 0 0
\(703\) 27.5668 1.03970
\(704\) −24.8948 24.8948i −0.938258 0.938258i
\(705\) 0 0
\(706\) 42.8448i 1.61249i
\(707\) −17.3919 17.3919i −0.654090 0.654090i
\(708\) 0 0
\(709\) 20.1446 + 20.1446i 0.756547 + 0.756547i 0.975692 0.219145i \(-0.0703267\pi\)
−0.219145 + 0.975692i \(0.570327\pi\)
\(710\) −23.1080 + 23.1080i −0.867227 + 0.867227i
\(711\) 0 0
\(712\) 10.1249i 0.379448i
\(713\) −31.5903 + 31.5903i −1.18307 + 1.18307i
\(714\) 0 0
\(715\) −5.48909 31.4724i −0.205280 1.17700i
\(716\) 0.0733253i 0.00274030i
\(717\) 0 0
\(718\) −17.0806 −0.637443
\(719\) 2.02763 0.0756179 0.0378089 0.999285i \(-0.487962\pi\)
0.0378089 + 0.999285i \(0.487962\pi\)
\(720\) 0 0
\(721\) 5.52177 5.52177i 0.205642 0.205642i
\(722\) 15.4795 15.4795i 0.576088 0.576088i
\(723\) 0 0
\(724\) 1.55083 0.0576360
\(725\) 0.805891 0.0299300
\(726\) 0 0
\(727\) 32.2360i 1.19557i −0.801658 0.597783i \(-0.796048\pi\)
0.801658 0.597783i \(-0.203952\pi\)
\(728\) 5.49045 + 31.4802i 0.203490 + 1.16673i
\(729\) 0 0
\(730\) 6.65741 6.65741i 0.246402 0.246402i
\(731\) 17.7345i 0.655935i
\(732\) 0 0
\(733\) −34.7310 + 34.7310i −1.28282 + 1.28282i −0.343760 + 0.939058i \(0.611701\pi\)
−0.939058 + 0.343760i \(0.888299\pi\)
\(734\) 22.3110 + 22.3110i 0.823516 + 0.823516i
\(735\) 0 0
\(736\) −5.32783 5.32783i −0.196386 0.196386i
\(737\) 14.5274i 0.535123i
\(738\) 0 0
\(739\) −15.7879 15.7879i −0.580766 0.580766i 0.354348 0.935114i \(-0.384703\pi\)
−0.935114 + 0.354348i \(0.884703\pi\)
\(740\) −1.53746 −0.0565181
\(741\) 0 0
\(742\) −41.3304 −1.51729
\(743\) −13.4998 13.4998i −0.495260 0.495260i 0.414699 0.909959i \(-0.363887\pi\)
−0.909959 + 0.414699i \(0.863887\pi\)
\(744\) 0 0
\(745\) 0.869019i 0.0318384i
\(746\) 39.0828 + 39.0828i 1.43092 + 1.43092i
\(747\) 0 0
\(748\) 2.26638 + 2.26638i 0.0828672 + 0.0828672i
\(749\) −13.2111 + 13.2111i −0.482724 + 0.482724i
\(750\) 0 0
\(751\) 37.2744i 1.36016i 0.733136 + 0.680082i \(0.238056\pi\)
−0.733136 + 0.680082i \(0.761944\pi\)
\(752\) −36.2202 + 36.2202i −1.32082 + 1.32082i
\(753\) 0 0
\(754\) −1.99788 1.40447i −0.0727583 0.0511479i
\(755\) 29.6364i 1.07858i
\(756\) 0 0
\(757\) 13.7807 0.500867 0.250433 0.968134i \(-0.419427\pi\)
0.250433 + 0.968134i \(0.419427\pi\)
\(758\) −19.8985 −0.722745
\(759\) 0 0
\(760\) 19.9014 19.9014i 0.721900 0.721900i
\(761\) −0.763058 + 0.763058i −0.0276608 + 0.0276608i −0.720802 0.693141i \(-0.756226\pi\)
0.693141 + 0.720802i \(0.256226\pi\)
\(762\) 0 0
\(763\) −20.0924 −0.727393
\(764\) 3.35955 0.121544
\(765\) 0 0
\(766\) 24.6030i 0.888943i
\(767\) −0.490221 0.344617i −0.0177009 0.0124434i
\(768\) 0 0
\(769\) −16.3676 + 16.3676i −0.590230 + 0.590230i −0.937693 0.347464i \(-0.887043\pi\)
0.347464 + 0.937693i \(0.387043\pi\)
\(770\) 43.1514i 1.55507i
\(771\) 0 0
\(772\) 3.39187 3.39187i 0.122076 0.122076i
\(773\) 13.4811 + 13.4811i 0.484880 + 0.484880i 0.906686 0.421806i \(-0.138604\pi\)
−0.421806 + 0.906686i \(0.638604\pi\)
\(774\) 0 0
\(775\) −7.48257 7.48257i −0.268782 0.268782i
\(776\) 10.3491i 0.371511i
\(777\) 0 0
\(778\) −37.0991 37.0991i −1.33007 1.33007i
\(779\) 28.6157 1.02526
\(780\) 0 0
\(781\) −60.4680 −2.16372
\(782\) −28.0066 28.0066i −1.00151 1.00151i
\(783\) 0 0
\(784\) 16.7864i 0.599515i
\(785\) −3.13785 3.13785i −0.111995 0.111995i
\(786\) 0 0
\(787\) 5.92918 + 5.92918i 0.211353 + 0.211353i 0.804842 0.593489i \(-0.202250\pi\)
−0.593489 + 0.804842i \(0.702250\pi\)
\(788\) 1.27445 1.27445i 0.0454003 0.0454003i
\(789\) 0 0
\(790\) 10.8467i 0.385907i
\(791\) 29.2981 29.2981i 1.04172 1.04172i
\(792\) 0 0
\(793\) −4.02240 23.0629i −0.142840 0.818989i
\(794\) 6.73874i 0.239149i
\(795\) 0 0
\(796\) 0.174900 0.00619917
\(797\) −12.3247 −0.436562 −0.218281 0.975886i \(-0.570045\pi\)
−0.218281 + 0.975886i \(0.570045\pi\)
\(798\) 0 0
\(799\) −30.2691 + 30.2691i −1.07085 + 1.07085i
\(800\) 1.26197 1.26197i 0.0446172 0.0446172i
\(801\) 0 0
\(802\) −10.0079 −0.353391
\(803\) 17.4208 0.614768
\(804\) 0 0
\(805\) 44.0552i 1.55274i
\(806\) 5.50965 + 31.5903i 0.194069 + 1.11272i
\(807\) 0 0
\(808\) −14.1691 + 14.1691i −0.498466 + 0.498466i
\(809\) 6.98762i 0.245672i −0.992427 0.122836i \(-0.960801\pi\)
0.992427 0.122836i \(-0.0391988\pi\)
\(810\) 0 0
\(811\) −23.4230 + 23.4230i −0.822492 + 0.822492i −0.986465 0.163973i \(-0.947569\pi\)
0.163973 + 0.986465i \(0.447569\pi\)
\(812\) −0.192703 0.192703i −0.00676256 0.00676256i
\(813\) 0 0
\(814\) −24.3479 24.3479i −0.853394 0.853394i
\(815\) 41.5245i 1.45454i
\(816\) 0 0
\(817\) −20.1658 20.1658i −0.705513 0.705513i
\(818\) 35.8383 1.25306
\(819\) 0 0
\(820\) −1.59596 −0.0557332
\(821\) 5.70144 + 5.70144i 0.198982 + 0.198982i 0.799563 0.600582i \(-0.205064\pi\)
−0.600582 + 0.799563i \(0.705064\pi\)
\(822\) 0 0
\(823\) 12.9939i 0.452939i −0.974018 0.226470i \(-0.927282\pi\)
0.974018 0.226470i \(-0.0727184\pi\)
\(824\) −4.49855 4.49855i −0.156714 0.156714i
\(825\) 0 0
\(826\) −0.572317 0.572317i −0.0199135 0.0199135i
\(827\) 27.8359 27.8359i 0.967949 0.967949i −0.0315532 0.999502i \(-0.510045\pi\)
0.999502 + 0.0315532i \(0.0100454\pi\)
\(828\) 0 0
\(829\) 1.92467i 0.0668466i −0.999441 0.0334233i \(-0.989359\pi\)
0.999441 0.0334233i \(-0.0106409\pi\)
\(830\) 23.3760 23.3760i 0.811391 0.811391i
\(831\) 0 0
\(832\) 25.4162 4.43283i 0.881149 0.153681i
\(833\) 14.0284i 0.486054i
\(834\) 0 0
\(835\) 42.8356 1.48239
\(836\) −5.15419 −0.178261
\(837\) 0 0
\(838\) 16.4667 16.4667i 0.568833 0.568833i
\(839\) 16.6780 16.6780i 0.575788 0.575788i −0.357952 0.933740i \(-0.616525\pi\)
0.933740 + 0.357952i \(0.116525\pi\)
\(840\) 0 0
\(841\) 28.7896 0.992744
\(842\) −0.767095 −0.0264358
\(843\) 0 0
\(844\) 1.61584i 0.0556195i
\(845\) 21.1812 + 9.97305i 0.728655 + 0.343083i
\(846\) 0 0
\(847\) 30.8037 30.8037i 1.05843 1.05843i
\(848\) 36.7288i 1.26127i
\(849\) 0 0
\(850\) 6.63373 6.63373i 0.227535 0.227535i
\(851\) 24.8579 + 24.8579i 0.852118 + 0.852118i
\(852\) 0 0
\(853\) −13.4161 13.4161i −0.459357 0.459357i 0.439087 0.898444i \(-0.355302\pi\)
−0.898444 + 0.439087i \(0.855302\pi\)
\(854\) 31.6213i 1.08206i
\(855\) 0 0
\(856\) 10.7630 + 10.7630i 0.367872 + 0.367872i
\(857\) 48.5839 1.65960 0.829798 0.558064i \(-0.188456\pi\)
0.829798 + 0.558064i \(0.188456\pi\)
\(858\) 0 0
\(859\) −29.8410 −1.01816 −0.509081 0.860719i \(-0.670014\pi\)
−0.509081 + 0.860719i \(0.670014\pi\)
\(860\) 1.12469 + 1.12469i 0.0383516 + 0.0383516i
\(861\) 0 0
\(862\) 36.3655i 1.23861i
\(863\) 8.26503 + 8.26503i 0.281345 + 0.281345i 0.833645 0.552300i \(-0.186250\pi\)
−0.552300 + 0.833645i \(0.686250\pi\)
\(864\) 0 0
\(865\) −8.43301 8.43301i −0.286731 0.286731i
\(866\) 10.7490 10.7490i 0.365264 0.365264i
\(867\) 0 0
\(868\) 3.57844i 0.121460i
\(869\) 14.1916 14.1916i 0.481416 0.481416i
\(870\) 0 0
\(871\) −8.70923 6.12245i −0.295101 0.207451i
\(872\) 16.3691i 0.554329i
\(873\) 0 0
\(874\) 63.6923 2.15442
\(875\) −40.1345 −1.35679
\(876\) 0 0
\(877\) 17.4338 17.4338i 0.588699 0.588699i −0.348580 0.937279i \(-0.613336\pi\)
0.937279 + 0.348580i \(0.113336\pi\)
\(878\) −35.0804 + 35.0804i −1.18391 + 1.18391i
\(879\) 0 0
\(880\) −38.3470 −1.29268
\(881\) −29.2200 −0.984448 −0.492224 0.870469i \(-0.663816\pi\)
−0.492224 + 0.870469i \(0.663816\pi\)
\(882\) 0 0
\(883\) 18.5571i 0.624496i 0.950001 + 0.312248i \(0.101082\pi\)
−0.950001 + 0.312248i \(0.898918\pi\)
\(884\) −2.31385 + 0.403558i −0.0778234 + 0.0135731i
\(885\) 0 0
\(886\) 24.1888 24.1888i 0.812638 0.812638i
\(887\) 25.6013i 0.859606i 0.902923 + 0.429803i \(0.141417\pi\)
−0.902923 + 0.429803i \(0.858583\pi\)
\(888\) 0 0
\(889\) 18.7427 18.7427i 0.628608 0.628608i
\(890\) −7.08472 7.08472i −0.237480 0.237480i
\(891\) 0 0
\(892\) 0.695155 + 0.695155i 0.0232755 + 0.0232755i
\(893\) 68.8378i 2.30357i
\(894\) 0 0
\(895\) −0.518408 0.518408i −0.0173285 0.0173285i
\(896\) 41.5492 1.38806
\(897\) 0 0
\(898\) 0.719601 0.0240134
\(899\) 1.95386 + 1.95386i 0.0651648 + 0.0651648i
\(900\) 0 0
\(901\) 30.6942i 1.02257i
\(902\) −25.2743 25.2743i −0.841542 0.841542i
\(903\) 0 0
\(904\) −23.8690 23.8690i −0.793870 0.793870i
\(905\) −10.9643 + 10.9643i −0.364465 + 0.364465i
\(906\) 0 0
\(907\) 43.1271i 1.43201i −0.698094 0.716006i \(-0.745968\pi\)
0.698094 0.716006i \(-0.254032\pi\)
\(908\) −2.88629 + 2.88629i −0.0957850 + 0.0957850i
\(909\) 0 0
\(910\) 25.8694 + 18.1858i 0.857564 + 0.602853i
\(911\) 40.7929i 1.35153i 0.737117 + 0.675765i \(0.236187\pi\)
−0.737117 + 0.675765i \(0.763813\pi\)
\(912\) 0 0
\(913\) 61.1692 2.02441
\(914\) 35.5315 1.17528
\(915\) 0 0
\(916\) −1.95076 + 1.95076i −0.0644549 + 0.0644549i
\(917\) 20.4559 20.4559i 0.675514 0.675514i
\(918\) 0 0
\(919\) −49.5429 −1.63427 −0.817135 0.576446i \(-0.804439\pi\)
−0.817135 + 0.576446i \(0.804439\pi\)
\(920\) 35.8915 1.18331
\(921\) 0 0
\(922\) 24.5609i 0.808872i
\(923\) 25.4837 36.2508i 0.838808 1.19321i
\(924\) 0 0
\(925\) −5.88792 + 5.88792i −0.193594 + 0.193594i
\(926\) 39.5775i 1.30060i
\(927\) 0 0
\(928\) −0.329526 + 0.329526i −0.0108172 + 0.0108172i
\(929\) −18.4873 18.4873i −0.606549 0.606549i 0.335493 0.942043i \(-0.391097\pi\)
−0.942043 + 0.335493i \(0.891097\pi\)
\(930\) 0 0
\(931\) −15.9516 15.9516i −0.522792 0.522792i
\(932\) 2.24053i 0.0733910i
\(933\) 0 0
\(934\) −16.3589 16.3589i −0.535279 0.535279i
\(935\) −32.0465 −1.04803
\(936\) 0 0
\(937\) 38.1244 1.24547 0.622734 0.782433i \(-0.286022\pi\)
0.622734 + 0.782433i \(0.286022\pi\)
\(938\) −10.1678 10.1678i −0.331989 0.331989i
\(939\) 0 0
\(940\) 3.83923i 0.125222i
\(941\) −27.4933 27.4933i −0.896255 0.896255i 0.0988476 0.995103i \(-0.468484\pi\)
−0.995103 + 0.0988476i \(0.968484\pi\)
\(942\) 0 0
\(943\) 25.8037 + 25.8037i 0.840284 + 0.840284i
\(944\) −0.508597 + 0.508597i −0.0165534 + 0.0165534i
\(945\) 0 0
\(946\) 35.6222i 1.15818i
\(947\) −7.01266 + 7.01266i −0.227881 + 0.227881i −0.811807 0.583926i \(-0.801516\pi\)
0.583926 + 0.811807i \(0.301516\pi\)
\(948\) 0 0
\(949\) −7.34187 + 10.4439i −0.238327 + 0.339023i
\(950\) 15.0864i 0.489466i
\(951\) 0 0
\(952\) 32.0544 1.03889
\(953\) 9.79596 0.317322 0.158661 0.987333i \(-0.449282\pi\)
0.158661 + 0.987333i \(0.449282\pi\)
\(954\) 0 0
\(955\) −23.7519 + 23.7519i −0.768594 + 0.768594i
\(956\) 1.61185 1.61185i 0.0521309 0.0521309i
\(957\) 0 0
\(958\) 14.8774 0.480667
\(959\) −33.5683 −1.08398
\(960\) 0 0
\(961\) 5.28253i 0.170404i
\(962\) 24.8579 4.33546i 0.801451 0.139781i
\(963\) 0 0
\(964\) 2.53277 2.53277i 0.0815749 0.0815749i
\(965\) 47.9609i 1.54392i
\(966\) 0 0
\(967\) −30.9773 + 30.9773i −0.996162 + 0.996162i −0.999993 0.00383028i \(-0.998781\pi\)
0.00383028 + 0.999993i \(0.498781\pi\)
\(968\) −25.0955 25.0955i −0.806601 0.806601i
\(969\) 0 0
\(970\) 7.24157 + 7.24157i 0.232513 + 0.232513i
\(971\) 26.8727i 0.862386i 0.902260 + 0.431193i \(0.141907\pi\)
−0.902260 + 0.431193i \(0.858093\pi\)
\(972\) 0 0
\(973\) 40.7477 + 40.7477i 1.30631 + 1.30631i
\(974\) 17.2644 0.553189
\(975\) 0 0
\(976\) −28.1007 −0.899480
\(977\) −4.62616 4.62616i −0.148004 0.148004i 0.629222 0.777226i \(-0.283374\pi\)
−0.777226 + 0.629222i \(0.783374\pi\)
\(978\) 0 0
\(979\) 18.5390i 0.592509i
\(980\) 0.889653 + 0.889653i 0.0284189 + 0.0284189i
\(981\) 0 0
\(982\) −7.31860 7.31860i −0.233546 0.233546i
\(983\) 5.15759 5.15759i 0.164502 0.164502i −0.620056 0.784558i \(-0.712890\pi\)
0.784558 + 0.620056i \(0.212890\pi\)
\(984\) 0 0
\(985\) 18.0206i 0.574184i
\(986\) −1.73221 + 1.73221i −0.0551647 + 0.0551647i
\(987\) 0 0
\(988\) 2.17219 3.08996i 0.0691065 0.0983046i
\(989\) 36.3684i 1.15645i
\(990\) 0 0
\(991\) 28.5734 0.907662 0.453831 0.891088i \(-0.350057\pi\)
0.453831 + 0.891088i \(0.350057\pi\)
\(992\) 6.11920 0.194285
\(993\) 0 0
\(994\) 42.3217 42.3217i 1.34236 1.34236i
\(995\) −1.23654 + 1.23654i −0.0392009 + 0.0392009i
\(996\) 0 0
\(997\) −31.8638 −1.00914 −0.504569 0.863371i \(-0.668349\pi\)
−0.504569 + 0.863371i \(0.668349\pi\)
\(998\) −0.580153 −0.0183644
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 351.2.i.b.161.5 yes 16
3.2 odd 2 inner 351.2.i.b.161.4 16
13.8 odd 4 inner 351.2.i.b.242.4 yes 16
39.8 even 4 inner 351.2.i.b.242.5 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
351.2.i.b.161.4 16 3.2 odd 2 inner
351.2.i.b.161.5 yes 16 1.1 even 1 trivial
351.2.i.b.242.4 yes 16 13.8 odd 4 inner
351.2.i.b.242.5 yes 16 39.8 even 4 inner