Properties

Label 351.2.h.a.334.7
Level $351$
Weight $2$
Character 351.334
Analytic conductor $2.803$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [351,2,Mod(289,351)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(351, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("351.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.80274911095\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 334.7
Character \(\chi\) \(=\) 351.334
Dual form 351.2.h.a.289.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.163365 q^{2} -1.97331 q^{4} +(1.55806 - 2.69863i) q^{5} +(0.0682144 - 0.118151i) q^{7} -0.649100 q^{8} +(0.254532 - 0.440862i) q^{10} -4.17771 q^{11} +(0.300890 - 3.59297i) q^{13} +(0.0111438 - 0.0193017i) q^{14} +3.84058 q^{16} +(-2.67892 - 4.64002i) q^{17} +(-0.154748 - 0.268032i) q^{19} +(-3.07453 + 5.32524i) q^{20} -0.682491 q^{22} +(-0.961735 - 1.66577i) q^{23} +(-2.35507 - 4.07910i) q^{25} +(0.0491549 - 0.586967i) q^{26} +(-0.134608 + 0.233148i) q^{28} +2.75870 q^{29} +(2.28432 - 3.95657i) q^{31} +1.92562 q^{32} +(-0.437642 - 0.758018i) q^{34} +(-0.212564 - 0.368171i) q^{35} +(4.48902 - 7.77522i) q^{37} +(-0.0252804 - 0.0437870i) q^{38} +(-1.01133 + 1.75168i) q^{40} +(3.56877 + 6.18129i) q^{41} +(-5.32209 + 9.21812i) q^{43} +8.24392 q^{44} +(-0.157114 - 0.272129i) q^{46} +(0.663436 + 1.14910i) q^{47} +(3.49069 + 6.04606i) q^{49} +(-0.384737 - 0.666383i) q^{50} +(-0.593749 + 7.09006i) q^{52} -7.10873 q^{53} +(-6.50910 + 11.2741i) q^{55} +(-0.0442780 + 0.0766917i) q^{56} +0.450675 q^{58} +4.80940 q^{59} +(3.61647 - 6.26392i) q^{61} +(0.373179 - 0.646365i) q^{62} -7.36659 q^{64} +(-9.22731 - 6.41004i) q^{65} +(6.53369 + 11.3167i) q^{67} +(5.28634 + 9.15621i) q^{68} +(-0.0347255 - 0.0601463i) q^{70} +(-2.24787 - 3.89343i) q^{71} +1.18478 q^{73} +(0.733350 - 1.27020i) q^{74} +(0.305366 + 0.528910i) q^{76} +(-0.284980 + 0.493599i) q^{77} +(-1.41978 - 2.45913i) q^{79} +(5.98384 - 10.3643i) q^{80} +(0.583013 + 1.00981i) q^{82} +(5.19008 + 8.98948i) q^{83} -16.6956 q^{85} +(-0.869443 + 1.50592i) q^{86} +2.71175 q^{88} +(-6.17396 + 10.6936i) q^{89} +(-0.403988 - 0.280643i) q^{91} +(1.89780 + 3.28709i) q^{92} +(0.108382 + 0.187723i) q^{94} -0.964425 q^{95} +(8.05756 - 13.9561i) q^{97} +(0.570257 + 0.987715i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 2 q^{2} + 18 q^{4} + 2 q^{5} + 3 q^{7} + 18 q^{8} - 6 q^{11} - 2 q^{14} + 6 q^{16} - 6 q^{17} - 3 q^{19} + 11 q^{20} - 18 q^{22} - 17 q^{23} - 6 q^{25} + 12 q^{26} + 24 q^{29} - 6 q^{31} + 38 q^{32}+ \cdots + 61 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.163365 0.115517 0.0577583 0.998331i \(-0.481605\pi\)
0.0577583 + 0.998331i \(0.481605\pi\)
\(3\) 0 0
\(4\) −1.97331 −0.986656
\(5\) 1.55806 2.69863i 0.696783 1.20686i −0.272792 0.962073i \(-0.587947\pi\)
0.969576 0.244791i \(-0.0787195\pi\)
\(6\) 0 0
\(7\) 0.0682144 0.118151i 0.0257826 0.0446568i −0.852846 0.522162i \(-0.825126\pi\)
0.878629 + 0.477505i \(0.158459\pi\)
\(8\) −0.649100 −0.229492
\(9\) 0 0
\(10\) 0.254532 0.440862i 0.0804900 0.139413i
\(11\) −4.17771 −1.25963 −0.629813 0.776747i \(-0.716868\pi\)
−0.629813 + 0.776747i \(0.716868\pi\)
\(12\) 0 0
\(13\) 0.300890 3.59297i 0.0834518 0.996512i
\(14\) 0.0111438 0.0193017i 0.00297832 0.00515860i
\(15\) 0 0
\(16\) 3.84058 0.960146
\(17\) −2.67892 4.64002i −0.649733 1.12537i −0.983186 0.182604i \(-0.941547\pi\)
0.333453 0.942767i \(-0.391786\pi\)
\(18\) 0 0
\(19\) −0.154748 0.268032i −0.0355017 0.0614907i 0.847729 0.530430i \(-0.177970\pi\)
−0.883230 + 0.468939i \(0.844636\pi\)
\(20\) −3.07453 + 5.32524i −0.687486 + 1.19076i
\(21\) 0 0
\(22\) −0.682491 −0.145508
\(23\) −0.961735 1.66577i −0.200536 0.347338i 0.748166 0.663512i \(-0.230935\pi\)
−0.948701 + 0.316174i \(0.897602\pi\)
\(24\) 0 0
\(25\) −2.35507 4.07910i −0.471014 0.815821i
\(26\) 0.0491549 0.586967i 0.00964007 0.115114i
\(27\) 0 0
\(28\) −0.134608 + 0.233148i −0.0254386 + 0.0440609i
\(29\) 2.75870 0.512278 0.256139 0.966640i \(-0.417550\pi\)
0.256139 + 0.966640i \(0.417550\pi\)
\(30\) 0 0
\(31\) 2.28432 3.95657i 0.410277 0.710620i −0.584643 0.811291i \(-0.698765\pi\)
0.994920 + 0.100670i \(0.0320988\pi\)
\(32\) 1.92562 0.340404
\(33\) 0 0
\(34\) −0.437642 0.758018i −0.0750550 0.129999i
\(35\) −0.212564 0.368171i −0.0359298 0.0622322i
\(36\) 0 0
\(37\) 4.48902 7.77522i 0.737991 1.27824i −0.215408 0.976524i \(-0.569108\pi\)
0.953399 0.301713i \(-0.0975586\pi\)
\(38\) −0.0252804 0.0437870i −0.00410103 0.00710319i
\(39\) 0 0
\(40\) −1.01133 + 1.75168i −0.159906 + 0.276965i
\(41\) 3.56877 + 6.18129i 0.557349 + 0.965356i 0.997717 + 0.0675387i \(0.0215146\pi\)
−0.440368 + 0.897817i \(0.645152\pi\)
\(42\) 0 0
\(43\) −5.32209 + 9.21812i −0.811610 + 1.40575i 0.100126 + 0.994975i \(0.468075\pi\)
−0.911736 + 0.410776i \(0.865258\pi\)
\(44\) 8.24392 1.24282
\(45\) 0 0
\(46\) −0.157114 0.272129i −0.0231652 0.0401233i
\(47\) 0.663436 + 1.14910i 0.0967720 + 0.167614i 0.910347 0.413846i \(-0.135815\pi\)
−0.813575 + 0.581460i \(0.802482\pi\)
\(48\) 0 0
\(49\) 3.49069 + 6.04606i 0.498671 + 0.863723i
\(50\) −0.384737 0.666383i −0.0544100 0.0942408i
\(51\) 0 0
\(52\) −0.593749 + 7.09006i −0.0823382 + 0.983214i
\(53\) −7.10873 −0.976459 −0.488230 0.872715i \(-0.662357\pi\)
−0.488230 + 0.872715i \(0.662357\pi\)
\(54\) 0 0
\(55\) −6.50910 + 11.2741i −0.877687 + 1.52020i
\(56\) −0.0442780 + 0.0766917i −0.00591689 + 0.0102484i
\(57\) 0 0
\(58\) 0.450675 0.0591765
\(59\) 4.80940 0.626131 0.313066 0.949732i \(-0.398644\pi\)
0.313066 + 0.949732i \(0.398644\pi\)
\(60\) 0 0
\(61\) 3.61647 6.26392i 0.463042 0.802012i −0.536069 0.844174i \(-0.680091\pi\)
0.999111 + 0.0421621i \(0.0134246\pi\)
\(62\) 0.373179 0.646365i 0.0473938 0.0820884i
\(63\) 0 0
\(64\) −7.36659 −0.920823
\(65\) −9.22731 6.41004i −1.14451 0.795068i
\(66\) 0 0
\(67\) 6.53369 + 11.3167i 0.798218 + 1.38255i 0.920776 + 0.390092i \(0.127557\pi\)
−0.122558 + 0.992461i \(0.539110\pi\)
\(68\) 5.28634 + 9.15621i 0.641063 + 1.11035i
\(69\) 0 0
\(70\) −0.0347255 0.0601463i −0.00415049 0.00718885i
\(71\) −2.24787 3.89343i −0.266773 0.462065i 0.701253 0.712912i \(-0.252624\pi\)
−0.968027 + 0.250847i \(0.919291\pi\)
\(72\) 0 0
\(73\) 1.18478 0.138668 0.0693340 0.997594i \(-0.477913\pi\)
0.0693340 + 0.997594i \(0.477913\pi\)
\(74\) 0.733350 1.27020i 0.0852502 0.147658i
\(75\) 0 0
\(76\) 0.305366 + 0.528910i 0.0350279 + 0.0606702i
\(77\) −0.284980 + 0.493599i −0.0324764 + 0.0562509i
\(78\) 0 0
\(79\) −1.41978 2.45913i −0.159737 0.276673i 0.775037 0.631916i \(-0.217731\pi\)
−0.934774 + 0.355243i \(0.884398\pi\)
\(80\) 5.98384 10.3643i 0.669014 1.15877i
\(81\) 0 0
\(82\) 0.583013 + 1.00981i 0.0643830 + 0.111515i
\(83\) 5.19008 + 8.98948i 0.569685 + 0.986724i 0.996597 + 0.0824302i \(0.0262682\pi\)
−0.426912 + 0.904293i \(0.640399\pi\)
\(84\) 0 0
\(85\) −16.6956 −1.81089
\(86\) −0.869443 + 1.50592i −0.0937545 + 0.162387i
\(87\) 0 0
\(88\) 2.71175 0.289074
\(89\) −6.17396 + 10.6936i −0.654439 + 1.13352i 0.327595 + 0.944818i \(0.393762\pi\)
−0.982034 + 0.188703i \(0.939572\pi\)
\(90\) 0 0
\(91\) −0.403988 0.280643i −0.0423494 0.0294194i
\(92\) 1.89780 + 3.28709i 0.197860 + 0.342703i
\(93\) 0 0
\(94\) 0.108382 + 0.187723i 0.0111788 + 0.0193622i
\(95\) −0.964425 −0.0989479
\(96\) 0 0
\(97\) 8.05756 13.9561i 0.818121 1.41703i −0.0889443 0.996037i \(-0.528349\pi\)
0.907065 0.420990i \(-0.138317\pi\)
\(98\) 0.570257 + 0.987715i 0.0576047 + 0.0997743i
\(99\) 0 0
\(100\) 4.64729 + 8.04935i 0.464729 + 0.804935i
\(101\) 17.4488 1.73622 0.868110 0.496373i \(-0.165335\pi\)
0.868110 + 0.496373i \(0.165335\pi\)
\(102\) 0 0
\(103\) 7.28512 12.6182i 0.717824 1.24331i −0.244036 0.969766i \(-0.578471\pi\)
0.961860 0.273542i \(-0.0881953\pi\)
\(104\) −0.195308 + 2.33220i −0.0191515 + 0.228691i
\(105\) 0 0
\(106\) −1.16132 −0.112797
\(107\) 2.71632 4.70481i 0.262597 0.454831i −0.704334 0.709868i \(-0.748754\pi\)
0.966931 + 0.255037i \(0.0820877\pi\)
\(108\) 0 0
\(109\) −3.10914 −0.297802 −0.148901 0.988852i \(-0.547574\pi\)
−0.148901 + 0.988852i \(0.547574\pi\)
\(110\) −1.06336 + 1.84179i −0.101387 + 0.175608i
\(111\) 0 0
\(112\) 0.261983 0.453768i 0.0247551 0.0428770i
\(113\) −7.02864 −0.661198 −0.330599 0.943771i \(-0.607251\pi\)
−0.330599 + 0.943771i \(0.607251\pi\)
\(114\) 0 0
\(115\) −5.99374 −0.558919
\(116\) −5.44377 −0.505442
\(117\) 0 0
\(118\) 0.785689 0.0723285
\(119\) −0.730963 −0.0670073
\(120\) 0 0
\(121\) 6.45323 0.586658
\(122\) 0.590805 1.02331i 0.0534890 0.0926457i
\(123\) 0 0
\(124\) −4.50768 + 7.80754i −0.404802 + 0.701138i
\(125\) 0.903222 0.0807866
\(126\) 0 0
\(127\) 0.669477 1.15957i 0.0594065 0.102895i −0.834793 0.550564i \(-0.814413\pi\)
0.894199 + 0.447669i \(0.147746\pi\)
\(128\) −5.05468 −0.446775
\(129\) 0 0
\(130\) −1.50742 1.04718i −0.132209 0.0918435i
\(131\) 6.59535 11.4235i 0.576238 0.998074i −0.419668 0.907678i \(-0.637853\pi\)
0.995906 0.0903959i \(-0.0288132\pi\)
\(132\) 0 0
\(133\) −0.0422242 −0.00366130
\(134\) 1.06738 + 1.84875i 0.0922074 + 0.159708i
\(135\) 0 0
\(136\) 1.73889 + 3.01184i 0.149108 + 0.258263i
\(137\) −4.14439 + 7.17829i −0.354079 + 0.613283i −0.986960 0.160966i \(-0.948539\pi\)
0.632881 + 0.774249i \(0.281872\pi\)
\(138\) 0 0
\(139\) −6.15797 −0.522313 −0.261156 0.965297i \(-0.584104\pi\)
−0.261156 + 0.965297i \(0.584104\pi\)
\(140\) 0.419454 + 0.726516i 0.0354503 + 0.0614018i
\(141\) 0 0
\(142\) −0.367224 0.636050i −0.0308167 0.0533761i
\(143\) −1.25703 + 15.0104i −0.105118 + 1.25523i
\(144\) 0 0
\(145\) 4.29821 7.44471i 0.356947 0.618250i
\(146\) 0.193552 0.0160185
\(147\) 0 0
\(148\) −8.85824 + 15.3429i −0.728143 + 1.26118i
\(149\) 3.97159 0.325365 0.162683 0.986678i \(-0.447985\pi\)
0.162683 + 0.986678i \(0.447985\pi\)
\(150\) 0 0
\(151\) 4.38546 + 7.59584i 0.356884 + 0.618141i 0.987438 0.158004i \(-0.0505059\pi\)
−0.630555 + 0.776145i \(0.717173\pi\)
\(152\) 0.100447 + 0.173979i 0.00814734 + 0.0141116i
\(153\) 0 0
\(154\) −0.0465557 + 0.0806369i −0.00375157 + 0.00649791i
\(155\) −7.11821 12.3291i −0.571748 0.990297i
\(156\) 0 0
\(157\) 6.29755 10.9077i 0.502599 0.870527i −0.497397 0.867523i \(-0.665711\pi\)
0.999995 0.00300365i \(-0.000956092\pi\)
\(158\) −0.231942 0.401735i −0.0184523 0.0319604i
\(159\) 0 0
\(160\) 3.00022 5.19653i 0.237188 0.410822i
\(161\) −0.262417 −0.0206813
\(162\) 0 0
\(163\) 1.05864 + 1.83361i 0.0829188 + 0.143620i 0.904502 0.426468i \(-0.140242\pi\)
−0.821584 + 0.570088i \(0.806909\pi\)
\(164\) −7.04230 12.1976i −0.549911 0.952474i
\(165\) 0 0
\(166\) 0.847878 + 1.46857i 0.0658081 + 0.113983i
\(167\) −4.66281 8.07622i −0.360819 0.624956i 0.627277 0.778796i \(-0.284169\pi\)
−0.988096 + 0.153840i \(0.950836\pi\)
\(168\) 0 0
\(169\) −12.8189 2.16218i −0.986072 0.166321i
\(170\) −2.72748 −0.209188
\(171\) 0 0
\(172\) 10.5021 18.1902i 0.800780 1.38699i
\(173\) −4.27403 + 7.40284i −0.324948 + 0.562827i −0.981502 0.191452i \(-0.938680\pi\)
0.656553 + 0.754279i \(0.272014\pi\)
\(174\) 0 0
\(175\) −0.642599 −0.0485759
\(176\) −16.0448 −1.20942
\(177\) 0 0
\(178\) −1.00861 + 1.74696i −0.0755985 + 0.130941i
\(179\) −1.59537 + 2.76327i −0.119244 + 0.206536i −0.919468 0.393164i \(-0.871380\pi\)
0.800224 + 0.599701i \(0.204714\pi\)
\(180\) 0 0
\(181\) −1.50392 −0.111786 −0.0558928 0.998437i \(-0.517801\pi\)
−0.0558928 + 0.998437i \(0.517801\pi\)
\(182\) −0.0659975 0.0458472i −0.00489206 0.00339842i
\(183\) 0 0
\(184\) 0.624262 + 1.08125i 0.0460212 + 0.0797111i
\(185\) −13.9883 24.2284i −1.02844 1.78131i
\(186\) 0 0
\(187\) 11.1917 + 19.3847i 0.818421 + 1.41755i
\(188\) −1.30917 2.26754i −0.0954807 0.165377i
\(189\) 0 0
\(190\) −0.157553 −0.0114301
\(191\) 10.0559 17.4174i 0.727621 1.26028i −0.230264 0.973128i \(-0.573959\pi\)
0.957886 0.287149i \(-0.0927076\pi\)
\(192\) 0 0
\(193\) −3.94854 6.83908i −0.284222 0.492287i 0.688198 0.725523i \(-0.258402\pi\)
−0.972420 + 0.233235i \(0.925069\pi\)
\(194\) 1.31632 2.27994i 0.0945065 0.163690i
\(195\) 0 0
\(196\) −6.88823 11.9308i −0.492016 0.852197i
\(197\) 11.6325 20.1482i 0.828785 1.43550i −0.0702072 0.997532i \(-0.522366\pi\)
0.898992 0.437965i \(-0.144301\pi\)
\(198\) 0 0
\(199\) −4.59323 7.95571i −0.325605 0.563965i 0.656029 0.754735i \(-0.272235\pi\)
−0.981635 + 0.190770i \(0.938901\pi\)
\(200\) 1.52868 + 2.64775i 0.108094 + 0.187224i
\(201\) 0 0
\(202\) 2.85052 0.200562
\(203\) 0.188183 0.325942i 0.0132079 0.0228767i
\(204\) 0 0
\(205\) 22.2414 1.55340
\(206\) 1.19013 2.06137i 0.0829206 0.143623i
\(207\) 0 0
\(208\) 1.15559 13.7991i 0.0801259 0.956797i
\(209\) 0.646493 + 1.11976i 0.0447188 + 0.0774553i
\(210\) 0 0
\(211\) −6.24157 10.8107i −0.429687 0.744241i 0.567158 0.823609i \(-0.308043\pi\)
−0.996845 + 0.0793686i \(0.974710\pi\)
\(212\) 14.0277 0.963429
\(213\) 0 0
\(214\) 0.443752 0.768602i 0.0303343 0.0525405i
\(215\) 16.5842 + 28.7247i 1.13103 + 1.95901i
\(216\) 0 0
\(217\) −0.311647 0.539789i −0.0211560 0.0366433i
\(218\) −0.507925 −0.0344010
\(219\) 0 0
\(220\) 12.8445 22.2473i 0.865975 1.49991i
\(221\) −17.4775 + 8.22915i −1.17567 + 0.553553i
\(222\) 0 0
\(223\) −9.88798 −0.662148 −0.331074 0.943605i \(-0.607411\pi\)
−0.331074 + 0.943605i \(0.607411\pi\)
\(224\) 0.131355 0.227513i 0.00877651 0.0152014i
\(225\) 0 0
\(226\) −1.14823 −0.0763794
\(227\) 5.01892 8.69303i 0.333118 0.576977i −0.650004 0.759931i \(-0.725233\pi\)
0.983121 + 0.182954i \(0.0585661\pi\)
\(228\) 0 0
\(229\) −2.85730 + 4.94899i −0.188816 + 0.327039i −0.944856 0.327487i \(-0.893798\pi\)
0.756040 + 0.654526i \(0.227132\pi\)
\(230\) −0.979168 −0.0645644
\(231\) 0 0
\(232\) −1.79067 −0.117563
\(233\) −20.4987 −1.34292 −0.671458 0.741043i \(-0.734331\pi\)
−0.671458 + 0.741043i \(0.734331\pi\)
\(234\) 0 0
\(235\) 4.13468 0.269717
\(236\) −9.49046 −0.617776
\(237\) 0 0
\(238\) −0.119414 −0.00774045
\(239\) −14.9837 + 25.9525i −0.969212 + 1.67872i −0.271368 + 0.962476i \(0.587476\pi\)
−0.697845 + 0.716249i \(0.745857\pi\)
\(240\) 0 0
\(241\) −7.66471 + 13.2757i −0.493727 + 0.855161i −0.999974 0.00722792i \(-0.997699\pi\)
0.506247 + 0.862389i \(0.331033\pi\)
\(242\) 1.05423 0.0677687
\(243\) 0 0
\(244\) −7.13643 + 12.3607i −0.456863 + 0.791310i
\(245\) 21.7548 1.38986
\(246\) 0 0
\(247\) −1.00959 + 0.475358i −0.0642389 + 0.0302463i
\(248\) −1.48276 + 2.56821i −0.0941551 + 0.163081i
\(249\) 0 0
\(250\) 0.147555 0.00933219
\(251\) 10.1509 + 17.5818i 0.640718 + 1.10976i 0.985273 + 0.170990i \(0.0546964\pi\)
−0.344555 + 0.938766i \(0.611970\pi\)
\(252\) 0 0
\(253\) 4.01785 + 6.95911i 0.252600 + 0.437516i
\(254\) 0.109369 0.189433i 0.00686243 0.0118861i
\(255\) 0 0
\(256\) 13.9074 0.869214
\(257\) −13.9975 24.2444i −0.873140 1.51232i −0.858731 0.512427i \(-0.828747\pi\)
−0.0144089 0.999896i \(-0.504587\pi\)
\(258\) 0 0
\(259\) −0.612432 1.06076i −0.0380547 0.0659126i
\(260\) 18.2084 + 12.6490i 1.12923 + 0.784459i
\(261\) 0 0
\(262\) 1.07745 1.86620i 0.0665650 0.115294i
\(263\) 2.63843 0.162693 0.0813464 0.996686i \(-0.474078\pi\)
0.0813464 + 0.996686i \(0.474078\pi\)
\(264\) 0 0
\(265\) −11.0758 + 19.1838i −0.680381 + 1.17845i
\(266\) −0.00689796 −0.000422941
\(267\) 0 0
\(268\) −12.8930 22.3314i −0.787566 1.36410i
\(269\) 1.95848 + 3.39219i 0.119411 + 0.206826i 0.919534 0.393010i \(-0.128566\pi\)
−0.800124 + 0.599835i \(0.795233\pi\)
\(270\) 0 0
\(271\) −9.54824 + 16.5380i −0.580015 + 1.00461i 0.415462 + 0.909610i \(0.363620\pi\)
−0.995477 + 0.0950042i \(0.969714\pi\)
\(272\) −10.2886 17.8204i −0.623839 1.08052i
\(273\) 0 0
\(274\) −0.677048 + 1.17268i −0.0409020 + 0.0708443i
\(275\) 9.83880 + 17.0413i 0.593302 + 1.02763i
\(276\) 0 0
\(277\) 1.48070 2.56464i 0.0889664 0.154094i −0.818108 0.575064i \(-0.804977\pi\)
0.907074 + 0.420970i \(0.138310\pi\)
\(278\) −1.00600 −0.0603358
\(279\) 0 0
\(280\) 0.137975 + 0.238980i 0.00824559 + 0.0142818i
\(281\) 2.16169 + 3.74415i 0.128955 + 0.223357i 0.923272 0.384147i \(-0.125504\pi\)
−0.794317 + 0.607504i \(0.792171\pi\)
\(282\) 0 0
\(283\) 10.8996 + 18.8787i 0.647916 + 1.12222i 0.983620 + 0.180256i \(0.0576926\pi\)
−0.335704 + 0.941968i \(0.608974\pi\)
\(284\) 4.43575 + 7.68295i 0.263213 + 0.455899i
\(285\) 0 0
\(286\) −0.205355 + 2.45217i −0.0121429 + 0.145000i
\(287\) 0.973766 0.0574796
\(288\) 0 0
\(289\) −5.85322 + 10.1381i −0.344307 + 0.596357i
\(290\) 0.702177 1.21621i 0.0412332 0.0714181i
\(291\) 0 0
\(292\) −2.33794 −0.136818
\(293\) 10.6414 0.621679 0.310839 0.950462i \(-0.399390\pi\)
0.310839 + 0.950462i \(0.399390\pi\)
\(294\) 0 0
\(295\) 7.49332 12.9788i 0.436278 0.755655i
\(296\) −2.91383 + 5.04690i −0.169363 + 0.293345i
\(297\) 0 0
\(298\) 0.648819 0.0375851
\(299\) −6.27446 + 2.95427i −0.362861 + 0.170850i
\(300\) 0 0
\(301\) 0.726086 + 1.25762i 0.0418509 + 0.0724878i
\(302\) 0.716431 + 1.24089i 0.0412260 + 0.0714055i
\(303\) 0 0
\(304\) −0.594323 1.02940i −0.0340868 0.0590400i
\(305\) −11.2693 19.5191i −0.645280 1.11766i
\(306\) 0 0
\(307\) 10.9099 0.622662 0.311331 0.950302i \(-0.399225\pi\)
0.311331 + 0.950302i \(0.399225\pi\)
\(308\) 0.562354 0.974025i 0.0320431 0.0555002i
\(309\) 0 0
\(310\) −1.16287 2.01414i −0.0660464 0.114396i
\(311\) 0.145889 0.252687i 0.00827259 0.0143285i −0.861859 0.507147i \(-0.830700\pi\)
0.870132 + 0.492819i \(0.164033\pi\)
\(312\) 0 0
\(313\) 4.12641 + 7.14715i 0.233239 + 0.403981i 0.958759 0.284219i \(-0.0917344\pi\)
−0.725521 + 0.688200i \(0.758401\pi\)
\(314\) 1.02880 1.78193i 0.0580585 0.100560i
\(315\) 0 0
\(316\) 2.80166 + 4.85262i 0.157606 + 0.272981i
\(317\) 7.08881 + 12.2782i 0.398147 + 0.689611i 0.993497 0.113855i \(-0.0363200\pi\)
−0.595350 + 0.803466i \(0.702987\pi\)
\(318\) 0 0
\(319\) −11.5250 −0.645278
\(320\) −11.4776 + 19.8797i −0.641615 + 1.11131i
\(321\) 0 0
\(322\) −0.0428697 −0.00238903
\(323\) −0.829116 + 1.43607i −0.0461332 + 0.0799051i
\(324\) 0 0
\(325\) −15.3647 + 7.23435i −0.852282 + 0.401290i
\(326\) 0.172944 + 0.299548i 0.00957849 + 0.0165904i
\(327\) 0 0
\(328\) −2.31649 4.01228i −0.127907 0.221541i
\(329\) 0.181023 0.00998014
\(330\) 0 0
\(331\) −5.75482 + 9.96765i −0.316314 + 0.547872i −0.979716 0.200392i \(-0.935779\pi\)
0.663402 + 0.748263i \(0.269112\pi\)
\(332\) −10.2416 17.7390i −0.562083 0.973557i
\(333\) 0 0
\(334\) −0.761740 1.31937i −0.0416805 0.0721928i
\(335\) 40.7194 2.22474
\(336\) 0 0
\(337\) −6.72098 + 11.6411i −0.366115 + 0.634130i −0.988954 0.148220i \(-0.952646\pi\)
0.622839 + 0.782350i \(0.285979\pi\)
\(338\) −2.09417 0.353224i −0.113908 0.0192129i
\(339\) 0 0
\(340\) 32.9457 1.78673
\(341\) −9.54324 + 16.5294i −0.516795 + 0.895116i
\(342\) 0 0
\(343\) 1.90746 0.102993
\(344\) 3.45457 5.98349i 0.186258 0.322608i
\(345\) 0 0
\(346\) −0.698227 + 1.20937i −0.0375369 + 0.0650159i
\(347\) 8.51438 0.457076 0.228538 0.973535i \(-0.426606\pi\)
0.228538 + 0.973535i \(0.426606\pi\)
\(348\) 0 0
\(349\) −10.5936 −0.567064 −0.283532 0.958963i \(-0.591506\pi\)
−0.283532 + 0.958963i \(0.591506\pi\)
\(350\) −0.104978 −0.00561132
\(351\) 0 0
\(352\) −8.04467 −0.428782
\(353\) 1.69055 0.0899790 0.0449895 0.998987i \(-0.485675\pi\)
0.0449895 + 0.998987i \(0.485675\pi\)
\(354\) 0 0
\(355\) −14.0092 −0.743533
\(356\) 12.1832 21.1018i 0.645706 1.11840i
\(357\) 0 0
\(358\) −0.260628 + 0.451421i −0.0137746 + 0.0238584i
\(359\) 31.9604 1.68680 0.843402 0.537282i \(-0.180549\pi\)
0.843402 + 0.537282i \(0.180549\pi\)
\(360\) 0 0
\(361\) 9.45211 16.3715i 0.497479 0.861659i
\(362\) −0.245688 −0.0129131
\(363\) 0 0
\(364\) 0.797194 + 0.553796i 0.0417843 + 0.0290268i
\(365\) 1.84595 3.19728i 0.0966216 0.167353i
\(366\) 0 0
\(367\) 18.8213 0.982465 0.491232 0.871029i \(-0.336547\pi\)
0.491232 + 0.871029i \(0.336547\pi\)
\(368\) −3.69362 6.39754i −0.192543 0.333495i
\(369\) 0 0
\(370\) −2.28520 3.95808i −0.118802 0.205771i
\(371\) −0.484918 + 0.839902i −0.0251757 + 0.0436055i
\(372\) 0 0
\(373\) 14.5944 0.755671 0.377835 0.925873i \(-0.376669\pi\)
0.377835 + 0.925873i \(0.376669\pi\)
\(374\) 1.82834 + 3.16678i 0.0945412 + 0.163750i
\(375\) 0 0
\(376\) −0.430636 0.745884i −0.0222084 0.0384660i
\(377\) 0.830064 9.91194i 0.0427505 0.510491i
\(378\) 0 0
\(379\) −9.71303 + 16.8235i −0.498925 + 0.864164i −0.999999 0.00124079i \(-0.999605\pi\)
0.501074 + 0.865404i \(0.332938\pi\)
\(380\) 1.90311 0.0976275
\(381\) 0 0
\(382\) 1.64279 2.84539i 0.0840523 0.145583i
\(383\) 8.25957 0.422044 0.211022 0.977481i \(-0.432321\pi\)
0.211022 + 0.977481i \(0.432321\pi\)
\(384\) 0 0
\(385\) 0.888028 + 1.53811i 0.0452581 + 0.0783893i
\(386\) −0.645054 1.11727i −0.0328324 0.0568674i
\(387\) 0 0
\(388\) −15.9001 + 27.5397i −0.807204 + 1.39812i
\(389\) −3.64491 6.31318i −0.184805 0.320091i 0.758706 0.651433i \(-0.225832\pi\)
−0.943511 + 0.331342i \(0.892499\pi\)
\(390\) 0 0
\(391\) −5.15282 + 8.92494i −0.260589 + 0.451354i
\(392\) −2.26581 3.92450i −0.114441 0.198217i
\(393\) 0 0
\(394\) 1.90035 3.29151i 0.0957384 0.165824i
\(395\) −8.84837 −0.445210
\(396\) 0 0
\(397\) −4.03967 6.99691i −0.202745 0.351165i 0.746667 0.665198i \(-0.231653\pi\)
−0.949412 + 0.314033i \(0.898320\pi\)
\(398\) −0.750373 1.29968i −0.0376128 0.0651473i
\(399\) 0 0
\(400\) −9.04485 15.6661i −0.452243 0.783307i
\(401\) −0.0564213 0.0977246i −0.00281755 0.00488013i 0.864613 0.502438i \(-0.167564\pi\)
−0.867431 + 0.497558i \(0.834230\pi\)
\(402\) 0 0
\(403\) −13.5285 9.39801i −0.673903 0.468148i
\(404\) −34.4319 −1.71305
\(405\) 0 0
\(406\) 0.0307425 0.0532476i 0.00152573 0.00264263i
\(407\) −18.7538 + 32.4826i −0.929592 + 1.61010i
\(408\) 0 0
\(409\) 25.5211 1.26194 0.630969 0.775808i \(-0.282657\pi\)
0.630969 + 0.775808i \(0.282657\pi\)
\(410\) 3.63346 0.179444
\(411\) 0 0
\(412\) −14.3758 + 24.8996i −0.708246 + 1.22672i
\(413\) 0.328071 0.568235i 0.0161433 0.0279610i
\(414\) 0 0
\(415\) 32.3457 1.58779
\(416\) 0.579399 6.91870i 0.0284074 0.339217i
\(417\) 0 0
\(418\) 0.105614 + 0.182929i 0.00516576 + 0.00894737i
\(419\) 7.80239 + 13.5141i 0.381171 + 0.660208i 0.991230 0.132148i \(-0.0421874\pi\)
−0.610059 + 0.792356i \(0.708854\pi\)
\(420\) 0 0
\(421\) −4.15567 7.19784i −0.202535 0.350801i 0.746809 0.665038i \(-0.231585\pi\)
−0.949345 + 0.314237i \(0.898251\pi\)
\(422\) −1.01965 1.76609i −0.0496360 0.0859721i
\(423\) 0 0
\(424\) 4.61428 0.224089
\(425\) −12.6181 + 21.8552i −0.612068 + 1.06013i
\(426\) 0 0
\(427\) −0.493391 0.854578i −0.0238769 0.0413559i
\(428\) −5.36015 + 9.28406i −0.259093 + 0.448762i
\(429\) 0 0
\(430\) 2.70928 + 4.69261i 0.130653 + 0.226298i
\(431\) −9.43395 + 16.3401i −0.454417 + 0.787074i −0.998655 0.0518573i \(-0.983486\pi\)
0.544237 + 0.838932i \(0.316819\pi\)
\(432\) 0 0
\(433\) −5.44393 9.42916i −0.261619 0.453137i 0.705054 0.709154i \(-0.250923\pi\)
−0.966672 + 0.256017i \(0.917590\pi\)
\(434\) −0.0509123 0.0881827i −0.00244387 0.00423291i
\(435\) 0 0
\(436\) 6.13531 0.293828
\(437\) −0.297653 + 0.515551i −0.0142387 + 0.0246621i
\(438\) 0 0
\(439\) −35.3376 −1.68657 −0.843285 0.537466i \(-0.819382\pi\)
−0.843285 + 0.537466i \(0.819382\pi\)
\(440\) 4.22506 7.31802i 0.201422 0.348873i
\(441\) 0 0
\(442\) −2.85522 + 1.34436i −0.135809 + 0.0639445i
\(443\) −4.71029 8.15846i −0.223793 0.387620i 0.732164 0.681129i \(-0.238511\pi\)
−0.955957 + 0.293508i \(0.905177\pi\)
\(444\) 0 0
\(445\) 19.2388 + 33.3225i 0.912004 + 1.57964i
\(446\) −1.61535 −0.0764891
\(447\) 0 0
\(448\) −0.502507 + 0.870368i −0.0237412 + 0.0411210i
\(449\) 10.8122 + 18.7273i 0.510259 + 0.883795i 0.999929 + 0.0118874i \(0.00378395\pi\)
−0.489670 + 0.871908i \(0.662883\pi\)
\(450\) 0 0
\(451\) −14.9093 25.8236i −0.702051 1.21599i
\(452\) 13.8697 0.652375
\(453\) 0 0
\(454\) 0.819917 1.42014i 0.0384806 0.0666503i
\(455\) −1.38679 + 0.652957i −0.0650136 + 0.0306111i
\(456\) 0 0
\(457\) 21.9147 1.02512 0.512562 0.858650i \(-0.328696\pi\)
0.512562 + 0.858650i \(0.328696\pi\)
\(458\) −0.466784 + 0.808493i −0.0218114 + 0.0377784i
\(459\) 0 0
\(460\) 11.8275 0.551461
\(461\) −16.2574 + 28.1586i −0.757182 + 1.31148i 0.187101 + 0.982341i \(0.440091\pi\)
−0.944282 + 0.329136i \(0.893242\pi\)
\(462\) 0 0
\(463\) 5.55585 9.62301i 0.258202 0.447219i −0.707558 0.706655i \(-0.750203\pi\)
0.965760 + 0.259436i \(0.0835366\pi\)
\(464\) 10.5950 0.491861
\(465\) 0 0
\(466\) −3.34877 −0.155129
\(467\) 22.2399 1.02914 0.514571 0.857448i \(-0.327951\pi\)
0.514571 + 0.857448i \(0.327951\pi\)
\(468\) 0 0
\(469\) 1.78277 0.0823206
\(470\) 0.675462 0.0311567
\(471\) 0 0
\(472\) −3.12179 −0.143692
\(473\) 22.2341 38.5106i 1.02233 1.77072i
\(474\) 0 0
\(475\) −0.728886 + 1.26247i −0.0334436 + 0.0579260i
\(476\) 1.44242 0.0661131
\(477\) 0 0
\(478\) −2.44781 + 4.23973i −0.111960 + 0.193921i
\(479\) −20.0436 −0.915814 −0.457907 0.889000i \(-0.651401\pi\)
−0.457907 + 0.889000i \(0.651401\pi\)
\(480\) 0 0
\(481\) −26.5854 18.4684i −1.21219 0.842088i
\(482\) −1.25215 + 2.16878i −0.0570337 + 0.0987852i
\(483\) 0 0
\(484\) −12.7342 −0.578829
\(485\) −25.1082 43.4887i −1.14011 1.97472i
\(486\) 0 0
\(487\) −0.356440 0.617373i −0.0161519 0.0279758i 0.857837 0.513923i \(-0.171808\pi\)
−0.873988 + 0.485947i \(0.838475\pi\)
\(488\) −2.34745 + 4.06591i −0.106264 + 0.184055i
\(489\) 0 0
\(490\) 3.55397 0.160552
\(491\) −5.09385 8.82281i −0.229882 0.398168i 0.727891 0.685693i \(-0.240501\pi\)
−0.957773 + 0.287525i \(0.907167\pi\)
\(492\) 0 0
\(493\) −7.39033 12.8004i −0.332844 0.576502i
\(494\) −0.164932 + 0.0776569i −0.00742065 + 0.00349395i
\(495\) 0 0
\(496\) 8.77314 15.1955i 0.393925 0.682299i
\(497\) −0.613349 −0.0275124
\(498\) 0 0
\(499\) 19.9631 34.5772i 0.893673 1.54789i 0.0582348 0.998303i \(-0.481453\pi\)
0.835438 0.549584i \(-0.185214\pi\)
\(500\) −1.78234 −0.0797086
\(501\) 0 0
\(502\) 1.65830 + 2.87226i 0.0740135 + 0.128195i
\(503\) −11.9792 20.7485i −0.534125 0.925132i −0.999205 0.0398630i \(-0.987308\pi\)
0.465080 0.885269i \(-0.346025\pi\)
\(504\) 0 0
\(505\) 27.1862 47.0878i 1.20977 2.09538i
\(506\) 0.656376 + 1.13688i 0.0291795 + 0.0505403i
\(507\) 0 0
\(508\) −1.32109 + 2.28819i −0.0586137 + 0.101522i
\(509\) 7.55690 + 13.0889i 0.334954 + 0.580157i 0.983476 0.181039i \(-0.0579460\pi\)
−0.648522 + 0.761196i \(0.724613\pi\)
\(510\) 0 0
\(511\) 0.0808190 0.139983i 0.00357522 0.00619247i
\(512\) 12.3813 0.547183
\(513\) 0 0
\(514\) −2.28670 3.96068i −0.100862 0.174698i
\(515\) −22.7012 39.3197i −1.00034 1.73263i
\(516\) 0 0
\(517\) −2.77164 4.80062i −0.121897 0.211131i
\(518\) −0.100050 0.173292i −0.00439594 0.00761400i
\(519\) 0 0
\(520\) 5.98945 + 4.16076i 0.262655 + 0.182461i
\(521\) 19.9265 0.872994 0.436497 0.899706i \(-0.356219\pi\)
0.436497 + 0.899706i \(0.356219\pi\)
\(522\) 0 0
\(523\) 7.52452 13.0328i 0.329024 0.569887i −0.653294 0.757104i \(-0.726614\pi\)
0.982319 + 0.187217i \(0.0599469\pi\)
\(524\) −13.0147 + 22.5421i −0.568549 + 0.984755i
\(525\) 0 0
\(526\) 0.431028 0.0187937
\(527\) −24.4781 −1.06628
\(528\) 0 0
\(529\) 9.65013 16.7145i 0.419571 0.726718i
\(530\) −1.80940 + 3.13397i −0.0785952 + 0.136131i
\(531\) 0 0
\(532\) 0.0833215 0.00361245
\(533\) 23.2830 10.9626i 1.00850 0.474844i
\(534\) 0 0
\(535\) −8.46436 14.6607i −0.365946 0.633838i
\(536\) −4.24102 7.34567i −0.183184 0.317285i
\(537\) 0 0
\(538\) 0.319948 + 0.554166i 0.0137939 + 0.0238918i
\(539\) −14.5831 25.2587i −0.628138 1.08797i
\(540\) 0 0
\(541\) −34.9072 −1.50078 −0.750389 0.660997i \(-0.770134\pi\)
−0.750389 + 0.660997i \(0.770134\pi\)
\(542\) −1.55985 + 2.70174i −0.0670013 + 0.116050i
\(543\) 0 0
\(544\) −5.15858 8.93491i −0.221172 0.383081i
\(545\) −4.84421 + 8.39042i −0.207503 + 0.359406i
\(546\) 0 0
\(547\) 6.34298 + 10.9864i 0.271206 + 0.469743i 0.969171 0.246389i \(-0.0792441\pi\)
−0.697965 + 0.716132i \(0.745911\pi\)
\(548\) 8.17817 14.1650i 0.349354 0.605099i
\(549\) 0 0
\(550\) 1.60732 + 2.78395i 0.0685362 + 0.118708i
\(551\) −0.426904 0.739419i −0.0181867 0.0315003i
\(552\) 0 0
\(553\) −0.387397 −0.0164738
\(554\) 0.241894 0.418973i 0.0102771 0.0178005i
\(555\) 0 0
\(556\) 12.1516 0.515343
\(557\) 3.74325 6.48350i 0.158607 0.274715i −0.775760 0.631028i \(-0.782633\pi\)
0.934366 + 0.356314i \(0.115967\pi\)
\(558\) 0 0
\(559\) 31.5191 + 21.8958i 1.33312 + 0.926092i
\(560\) −0.816368 1.41399i −0.0344978 0.0597520i
\(561\) 0 0
\(562\) 0.353144 + 0.611664i 0.0148965 + 0.0258015i
\(563\) 18.5788 0.783003 0.391501 0.920178i \(-0.371956\pi\)
0.391501 + 0.920178i \(0.371956\pi\)
\(564\) 0 0
\(565\) −10.9510 + 18.9677i −0.460712 + 0.797977i
\(566\) 1.78062 + 3.08412i 0.0748450 + 0.129635i
\(567\) 0 0
\(568\) 1.45909 + 2.52723i 0.0612222 + 0.106040i
\(569\) −26.1468 −1.09613 −0.548066 0.836435i \(-0.684636\pi\)
−0.548066 + 0.836435i \(0.684636\pi\)
\(570\) 0 0
\(571\) −13.5880 + 23.5351i −0.568640 + 0.984913i 0.428061 + 0.903750i \(0.359197\pi\)
−0.996701 + 0.0811634i \(0.974136\pi\)
\(572\) 2.48051 29.6202i 0.103715 1.23848i
\(573\) 0 0
\(574\) 0.159079 0.00663985
\(575\) −4.52991 + 7.84603i −0.188910 + 0.327202i
\(576\) 0 0
\(577\) 6.97981 0.290573 0.145287 0.989390i \(-0.453590\pi\)
0.145287 + 0.989390i \(0.453590\pi\)
\(578\) −0.956211 + 1.65621i −0.0397731 + 0.0688891i
\(579\) 0 0
\(580\) −8.48170 + 14.6907i −0.352183 + 0.610000i
\(581\) 1.41615 0.0587519
\(582\) 0 0
\(583\) 29.6982 1.22997
\(584\) −0.769041 −0.0318232
\(585\) 0 0
\(586\) 1.73844 0.0718142
\(587\) −45.7017 −1.88631 −0.943155 0.332353i \(-0.892157\pi\)
−0.943155 + 0.332353i \(0.892157\pi\)
\(588\) 0 0
\(589\) −1.41398 −0.0582620
\(590\) 1.22415 2.12028i 0.0503973 0.0872907i
\(591\) 0 0
\(592\) 17.2405 29.8614i 0.708579 1.22729i
\(593\) 18.9869 0.779700 0.389850 0.920878i \(-0.372527\pi\)
0.389850 + 0.920878i \(0.372527\pi\)
\(594\) 0 0
\(595\) −1.13888 + 1.97260i −0.0466896 + 0.0808687i
\(596\) −7.83719 −0.321024
\(597\) 0 0
\(598\) −1.02503 + 0.482625i −0.0419165 + 0.0197360i
\(599\) −6.44845 + 11.1690i −0.263477 + 0.456355i −0.967163 0.254155i \(-0.918202\pi\)
0.703687 + 0.710510i \(0.251536\pi\)
\(600\) 0 0
\(601\) −23.8355 −0.972269 −0.486135 0.873884i \(-0.661593\pi\)
−0.486135 + 0.873884i \(0.661593\pi\)
\(602\) 0.118617 + 0.205451i 0.00483447 + 0.00837355i
\(603\) 0 0
\(604\) −8.65388 14.9890i −0.352121 0.609892i
\(605\) 10.0545 17.4149i 0.408773 0.708016i
\(606\) 0 0
\(607\) −34.7796 −1.41166 −0.705831 0.708380i \(-0.749426\pi\)
−0.705831 + 0.708380i \(0.749426\pi\)
\(608\) −0.297986 0.516127i −0.0120849 0.0209317i
\(609\) 0 0
\(610\) −1.84102 3.18873i −0.0745405 0.129108i
\(611\) 4.32832 2.03795i 0.175105 0.0824468i
\(612\) 0 0
\(613\) −20.8146 + 36.0519i −0.840694 + 1.45612i 0.0486150 + 0.998818i \(0.484519\pi\)
−0.889309 + 0.457307i \(0.848814\pi\)
\(614\) 1.78230 0.0719277
\(615\) 0 0
\(616\) 0.184980 0.320396i 0.00745307 0.0129091i
\(617\) 39.2398 1.57974 0.789868 0.613277i \(-0.210149\pi\)
0.789868 + 0.613277i \(0.210149\pi\)
\(618\) 0 0
\(619\) 15.9718 + 27.6639i 0.641959 + 1.11191i 0.984995 + 0.172584i \(0.0552116\pi\)
−0.343035 + 0.939322i \(0.611455\pi\)
\(620\) 14.0464 + 24.3291i 0.564119 + 0.977082i
\(621\) 0 0
\(622\) 0.0238331 0.0412802i 0.000955621 0.00165518i
\(623\) 0.842306 + 1.45892i 0.0337463 + 0.0584503i
\(624\) 0 0
\(625\) 13.1826 22.8330i 0.527305 0.913319i
\(626\) 0.674112 + 1.16760i 0.0269429 + 0.0466665i
\(627\) 0 0
\(628\) −12.4270 + 21.5242i −0.495892 + 0.858911i
\(629\) −48.1029 −1.91799
\(630\) 0 0
\(631\) 15.2846 + 26.4736i 0.608469 + 1.05390i 0.991493 + 0.130160i \(0.0415493\pi\)
−0.383024 + 0.923738i \(0.625117\pi\)
\(632\) 0.921578 + 1.59622i 0.0366584 + 0.0634942i
\(633\) 0 0
\(634\) 1.15806 + 2.00583i 0.0459926 + 0.0796615i
\(635\) −2.08616 3.61334i −0.0827869 0.143391i
\(636\) 0 0
\(637\) 22.7736 10.7228i 0.902325 0.424852i
\(638\) −1.88279 −0.0745403
\(639\) 0 0
\(640\) −7.87547 + 13.6407i −0.311305 + 0.539197i
\(641\) 18.0877 31.3288i 0.714421 1.23741i −0.248761 0.968565i \(-0.580023\pi\)
0.963182 0.268849i \(-0.0866433\pi\)
\(642\) 0 0
\(643\) −8.27644 −0.326391 −0.163195 0.986594i \(-0.552180\pi\)
−0.163195 + 0.986594i \(0.552180\pi\)
\(644\) 0.517830 0.0204053
\(645\) 0 0
\(646\) −0.135449 + 0.234604i −0.00532915 + 0.00923036i
\(647\) −6.67339 + 11.5586i −0.262358 + 0.454417i −0.966868 0.255277i \(-0.917833\pi\)
0.704510 + 0.709694i \(0.251167\pi\)
\(648\) 0 0
\(649\) −20.0923 −0.788691
\(650\) −2.51006 + 1.18184i −0.0984527 + 0.0463556i
\(651\) 0 0
\(652\) −2.08902 3.61829i −0.0818123 0.141703i
\(653\) 4.85882 + 8.41572i 0.190140 + 0.329333i 0.945297 0.326212i \(-0.105772\pi\)
−0.755156 + 0.655545i \(0.772439\pi\)
\(654\) 0 0
\(655\) −20.5518 35.5968i −0.803026 1.39088i
\(656\) 13.7062 + 23.7398i 0.535136 + 0.926883i
\(657\) 0 0
\(658\) 0.0295729 0.00115287
\(659\) −11.8520 + 20.5283i −0.461689 + 0.799669i −0.999045 0.0436865i \(-0.986090\pi\)
0.537356 + 0.843355i \(0.319423\pi\)
\(660\) 0 0
\(661\) 9.86814 + 17.0921i 0.383826 + 0.664807i 0.991606 0.129299i \(-0.0412728\pi\)
−0.607779 + 0.794106i \(0.707939\pi\)
\(662\) −0.940137 + 1.62837i −0.0365395 + 0.0632882i
\(663\) 0 0
\(664\) −3.36888 5.83507i −0.130738 0.226445i
\(665\) −0.0657876 + 0.113948i −0.00255114 + 0.00441870i
\(666\) 0 0
\(667\) −2.65314 4.59537i −0.102730 0.177933i
\(668\) 9.20117 + 15.9369i 0.356004 + 0.616617i
\(669\) 0 0
\(670\) 6.65213 0.256994
\(671\) −15.1086 + 26.1688i −0.583260 + 1.01024i
\(672\) 0 0
\(673\) 7.08528 0.273117 0.136559 0.990632i \(-0.456396\pi\)
0.136559 + 0.990632i \(0.456396\pi\)
\(674\) −1.09797 + 1.90174i −0.0422923 + 0.0732525i
\(675\) 0 0
\(676\) 25.2957 + 4.26665i 0.972913 + 0.164102i
\(677\) 16.5344 + 28.6383i 0.635467 + 1.10066i 0.986416 + 0.164266i \(0.0525256\pi\)
−0.350949 + 0.936394i \(0.614141\pi\)
\(678\) 0 0
\(679\) −1.09928 1.90401i −0.0421866 0.0730693i
\(680\) 10.8371 0.415585
\(681\) 0 0
\(682\) −1.55903 + 2.70032i −0.0596984 + 0.103401i
\(683\) −6.21557 10.7657i −0.237832 0.411937i 0.722260 0.691622i \(-0.243104\pi\)
−0.960092 + 0.279684i \(0.909770\pi\)
\(684\) 0 0
\(685\) 12.9144 + 22.3683i 0.493433 + 0.854651i
\(686\) 0.311613 0.0118974
\(687\) 0 0
\(688\) −20.4399 + 35.4030i −0.779264 + 1.34973i
\(689\) −2.13894 + 25.5415i −0.0814873 + 0.973053i
\(690\) 0 0
\(691\) −31.8087 −1.21006 −0.605030 0.796203i \(-0.706839\pi\)
−0.605030 + 0.796203i \(0.706839\pi\)
\(692\) 8.43399 14.6081i 0.320612 0.555317i
\(693\) 0 0
\(694\) 1.39095 0.0527998
\(695\) −9.59447 + 16.6181i −0.363939 + 0.630361i
\(696\) 0 0
\(697\) 19.1209 33.1184i 0.724256 1.25445i
\(698\) −1.73063 −0.0655053
\(699\) 0 0
\(700\) 1.26805 0.0479277
\(701\) 21.3043 0.804652 0.402326 0.915496i \(-0.368202\pi\)
0.402326 + 0.915496i \(0.368202\pi\)
\(702\) 0 0
\(703\) −2.77867 −0.104800
\(704\) 30.7754 1.15989
\(705\) 0 0
\(706\) 0.276177 0.0103941
\(707\) 1.19026 2.06159i 0.0447643 0.0775340i
\(708\) 0 0
\(709\) −3.70329 + 6.41429i −0.139080 + 0.240894i −0.927149 0.374694i \(-0.877748\pi\)
0.788069 + 0.615587i \(0.211081\pi\)
\(710\) −2.28862 −0.0858904
\(711\) 0 0
\(712\) 4.00752 6.94123i 0.150188 0.260134i
\(713\) −8.78765 −0.329100
\(714\) 0 0
\(715\) 38.5490 + 26.7793i 1.44165 + 1.00149i
\(716\) 3.14817 5.45279i 0.117653 0.203780i
\(717\) 0 0
\(718\) 5.22121 0.194854
\(719\) −19.8553 34.3905i −0.740479 1.28255i −0.952277 0.305234i \(-0.901265\pi\)
0.211798 0.977313i \(-0.432068\pi\)
\(720\) 0 0
\(721\) −0.993900 1.72149i −0.0370148 0.0641115i
\(722\) 1.54414 2.67454i 0.0574671 0.0995359i
\(723\) 0 0
\(724\) 2.96771 0.110294
\(725\) −6.49694 11.2530i −0.241290 0.417927i
\(726\) 0 0
\(727\) −7.16724 12.4140i −0.265818 0.460411i 0.701959 0.712217i \(-0.252309\pi\)
−0.967778 + 0.251806i \(0.918975\pi\)
\(728\) 0.262229 + 0.182165i 0.00971884 + 0.00675150i
\(729\) 0 0
\(730\) 0.301564 0.522325i 0.0111614 0.0193321i
\(731\) 57.0297 2.10932
\(732\) 0 0
\(733\) −3.57055 + 6.18437i −0.131881 + 0.228425i −0.924402 0.381420i \(-0.875435\pi\)
0.792521 + 0.609845i \(0.208768\pi\)
\(734\) 3.07475 0.113491
\(735\) 0 0
\(736\) −1.85193 3.20764i −0.0682632 0.118235i
\(737\) −27.2959 47.2778i −1.00546 1.74150i
\(738\) 0 0
\(739\) −0.0763939 + 0.132318i −0.00281019 + 0.00486740i −0.867427 0.497564i \(-0.834228\pi\)
0.864617 + 0.502432i \(0.167561\pi\)
\(740\) 27.6033 + 47.8102i 1.01472 + 1.75754i
\(741\) 0 0
\(742\) −0.0792186 + 0.137211i −0.00290821 + 0.00503716i
\(743\) 12.0334 + 20.8424i 0.441462 + 0.764634i 0.997798 0.0663228i \(-0.0211267\pi\)
−0.556336 + 0.830957i \(0.687793\pi\)
\(744\) 0 0
\(745\) 6.18796 10.7179i 0.226709 0.392672i
\(746\) 2.38422 0.0872925
\(747\) 0 0
\(748\) −22.0848 38.2520i −0.807500 1.39863i
\(749\) −0.370585 0.641871i −0.0135409 0.0234535i
\(750\) 0 0
\(751\) 0.999421 + 1.73105i 0.0364694 + 0.0631669i 0.883684 0.468084i \(-0.155056\pi\)
−0.847215 + 0.531251i \(0.821722\pi\)
\(752\) 2.54798 + 4.41323i 0.0929153 + 0.160934i
\(753\) 0 0
\(754\) 0.135604 1.61926i 0.00493839 0.0589701i
\(755\) 27.3312 0.994683
\(756\) 0 0
\(757\) 3.61667 6.26425i 0.131450 0.227678i −0.792786 0.609500i \(-0.791370\pi\)
0.924236 + 0.381822i \(0.124703\pi\)
\(758\) −1.58677 + 2.74837i −0.0576341 + 0.0998252i
\(759\) 0 0
\(760\) 0.626009 0.0227077
\(761\) −18.4602 −0.669181 −0.334591 0.942364i \(-0.608598\pi\)
−0.334591 + 0.942364i \(0.608598\pi\)
\(762\) 0 0
\(763\) −0.212088 + 0.367347i −0.00767811 + 0.0132989i
\(764\) −19.8435 + 34.3699i −0.717912 + 1.24346i
\(765\) 0 0
\(766\) 1.34932 0.0487531
\(767\) 1.44710 17.2801i 0.0522518 0.623947i
\(768\) 0 0
\(769\) −14.4442 25.0181i −0.520872 0.902177i −0.999705 0.0242713i \(-0.992273\pi\)
0.478833 0.877906i \(-0.341060\pi\)
\(770\) 0.145073 + 0.251273i 0.00522806 + 0.00905527i
\(771\) 0 0
\(772\) 7.79171 + 13.4956i 0.280430 + 0.485718i
\(773\) 10.7888 + 18.6867i 0.388045 + 0.672113i 0.992186 0.124764i \(-0.0398172\pi\)
−0.604142 + 0.796877i \(0.706484\pi\)
\(774\) 0 0
\(775\) −21.5190 −0.772985
\(776\) −5.23016 + 9.05891i −0.187752 + 0.325196i
\(777\) 0 0
\(778\) −0.595452 1.03135i −0.0213480 0.0369758i
\(779\) 1.10452 1.91309i 0.0395736 0.0685435i
\(780\) 0 0
\(781\) 9.39095 + 16.2656i 0.336035 + 0.582029i
\(782\) −0.841791 + 1.45802i −0.0301024 + 0.0521388i
\(783\) 0 0
\(784\) 13.4063 + 23.2204i 0.478796 + 0.829300i
\(785\) −19.6239 33.9895i −0.700405 1.21314i
\(786\) 0 0
\(787\) 27.8276 0.991946 0.495973 0.868338i \(-0.334811\pi\)
0.495973 + 0.868338i \(0.334811\pi\)
\(788\) −22.9546 + 39.7586i −0.817725 + 1.41634i
\(789\) 0 0
\(790\) −1.44551 −0.0514291
\(791\) −0.479454 + 0.830439i −0.0170474 + 0.0295270i
\(792\) 0 0
\(793\) −21.4179 14.8786i −0.760573 0.528356i
\(794\) −0.659941 1.14305i −0.0234204 0.0405654i
\(795\) 0 0
\(796\) 9.06387 + 15.6991i 0.321260 + 0.556439i
\(797\) 38.9009 1.37794 0.688970 0.724790i \(-0.258063\pi\)
0.688970 + 0.724790i \(0.258063\pi\)
\(798\) 0 0
\(799\) 3.55458 6.15671i 0.125752 0.217809i
\(800\) −4.53497 7.85480i −0.160335 0.277709i
\(801\) 0 0
\(802\) −0.00921727 0.0159648i −0.000325473 0.000563736i
\(803\) −4.94966 −0.174670
\(804\) 0 0
\(805\) −0.408859 + 0.708165i −0.0144104 + 0.0249595i
\(806\) −2.21009 1.53531i −0.0778470 0.0540789i
\(807\) 0 0
\(808\) −11.3260 −0.398448
\(809\) −11.2678 + 19.5163i −0.396153 + 0.686157i −0.993248 0.116013i \(-0.962988\pi\)
0.597094 + 0.802171i \(0.296322\pi\)
\(810\) 0 0
\(811\) −26.2480 −0.921692 −0.460846 0.887480i \(-0.652454\pi\)
−0.460846 + 0.887480i \(0.652454\pi\)
\(812\) −0.371344 + 0.643186i −0.0130316 + 0.0225714i
\(813\) 0 0
\(814\) −3.06372 + 5.30652i −0.107383 + 0.185993i
\(815\) 6.59765 0.231106
\(816\) 0 0
\(817\) 3.29433 0.115254
\(818\) 4.16926 0.145775
\(819\) 0 0
\(820\) −43.8892 −1.53268
\(821\) 3.38370 0.118092 0.0590460 0.998255i \(-0.481194\pi\)
0.0590460 + 0.998255i \(0.481194\pi\)
\(822\) 0 0
\(823\) 38.6239 1.34634 0.673172 0.739486i \(-0.264931\pi\)
0.673172 + 0.739486i \(0.264931\pi\)
\(824\) −4.72878 + 8.19048i −0.164735 + 0.285329i
\(825\) 0 0
\(826\) 0.0535953 0.0928297i 0.00186482 0.00322996i
\(827\) 11.8393 0.411694 0.205847 0.978584i \(-0.434005\pi\)
0.205847 + 0.978584i \(0.434005\pi\)
\(828\) 0 0
\(829\) −7.44930 + 12.9026i −0.258725 + 0.448125i −0.965901 0.258913i \(-0.916636\pi\)
0.707176 + 0.707038i \(0.249969\pi\)
\(830\) 5.28416 0.183416
\(831\) 0 0
\(832\) −2.21653 + 26.4680i −0.0768444 + 0.917611i
\(833\) 18.7026 32.3938i 0.648006 1.12238i
\(834\) 0 0
\(835\) −29.0596 −1.00565
\(836\) −1.27573 2.20963i −0.0441221 0.0764217i
\(837\) 0 0
\(838\) 1.27464 + 2.20774i 0.0440316 + 0.0762650i
\(839\) 26.4068 45.7380i 0.911665 1.57905i 0.0999523 0.994992i \(-0.468131\pi\)
0.811712 0.584057i \(-0.198536\pi\)
\(840\) 0 0
\(841\) −21.3896 −0.737572
\(842\) −0.678892 1.17588i −0.0233962 0.0405233i
\(843\) 0 0
\(844\) 12.3166 + 21.3329i 0.423954 + 0.734309i
\(845\) −25.8075 + 31.2248i −0.887806 + 1.07416i
\(846\) 0 0
\(847\) 0.440203 0.762455i 0.0151256 0.0261982i
\(848\) −27.3017 −0.937543
\(849\) 0 0
\(850\) −2.06136 + 3.57037i −0.0707039 + 0.122463i
\(851\) −17.2690 −0.591973
\(852\) 0 0
\(853\) 11.5316 + 19.9733i 0.394834 + 0.683873i 0.993080 0.117440i \(-0.0374686\pi\)
−0.598246 + 0.801313i \(0.704135\pi\)
\(854\) −0.0806029 0.139608i −0.00275817 0.00477730i
\(855\) 0 0
\(856\) −1.76317 + 3.05389i −0.0602638 + 0.104380i
\(857\) 13.4357 + 23.2713i 0.458955 + 0.794933i 0.998906 0.0467630i \(-0.0148906\pi\)
−0.539951 + 0.841696i \(0.681557\pi\)
\(858\) 0 0
\(859\) −15.1421 + 26.2269i −0.516642 + 0.894850i 0.483172 + 0.875526i \(0.339485\pi\)
−0.999813 + 0.0193240i \(0.993849\pi\)
\(860\) −32.7258 56.6828i −1.11594 1.93287i
\(861\) 0 0
\(862\) −1.54118 + 2.66940i −0.0524927 + 0.0909201i
\(863\) 4.43659 0.151023 0.0755116 0.997145i \(-0.475941\pi\)
0.0755116 + 0.997145i \(0.475941\pi\)
\(864\) 0 0
\(865\) 13.3183 + 23.0681i 0.452837 + 0.784337i
\(866\) −0.889348 1.54040i −0.0302213 0.0523448i
\(867\) 0 0
\(868\) 0.614978 + 1.06517i 0.0208737 + 0.0361543i
\(869\) 5.93141 + 10.2735i 0.201209 + 0.348505i
\(870\) 0 0
\(871\) 42.6265 20.0703i 1.44434 0.680057i
\(872\) 2.01814 0.0683430
\(873\) 0 0
\(874\) −0.0486262 + 0.0842230i −0.00164480 + 0.00284889i
\(875\) 0.0616127 0.106716i 0.00208289 0.00360767i
\(876\) 0 0
\(877\) 8.62930 0.291391 0.145695 0.989329i \(-0.453458\pi\)
0.145695 + 0.989329i \(0.453458\pi\)
\(878\) −5.77293 −0.194827
\(879\) 0 0
\(880\) −24.9987 + 43.2991i −0.842707 + 1.45961i
\(881\) −16.9018 + 29.2748i −0.569436 + 0.986292i 0.427186 + 0.904164i \(0.359505\pi\)
−0.996622 + 0.0821281i \(0.973828\pi\)
\(882\) 0 0
\(883\) 17.4612 0.587615 0.293807 0.955865i \(-0.405078\pi\)
0.293807 + 0.955865i \(0.405078\pi\)
\(884\) 34.4887 16.2387i 1.15998 0.546166i
\(885\) 0 0
\(886\) −0.769497 1.33281i −0.0258518 0.0447766i
\(887\) −17.0959 29.6110i −0.574024 0.994238i −0.996147 0.0876999i \(-0.972048\pi\)
0.422123 0.906539i \(-0.361285\pi\)
\(888\) 0 0
\(889\) −0.0913359 0.158198i −0.00306331 0.00530580i
\(890\) 3.14294 + 5.44373i 0.105352 + 0.182474i
\(891\) 0 0
\(892\) 19.5121 0.653312
\(893\) 0.205331 0.355644i 0.00687114 0.0119012i
\(894\) 0 0
\(895\) 4.97136 + 8.61064i 0.166174 + 0.287822i
\(896\) −0.344802 + 0.597214i −0.0115190 + 0.0199515i
\(897\) 0 0
\(898\) 1.76634 + 3.05938i 0.0589434 + 0.102093i
\(899\) 6.30176 10.9150i 0.210176 0.364035i
\(900\) 0 0
\(901\) 19.0437 + 32.9847i 0.634438 + 1.09888i
\(902\) −2.43566 4.21868i −0.0810985 0.140467i
\(903\) 0 0
\(904\) 4.56229 0.151740
\(905\) −2.34319 + 4.05853i −0.0778904 + 0.134910i
\(906\) 0 0
\(907\) −15.3735 −0.510467 −0.255234 0.966879i \(-0.582152\pi\)
−0.255234 + 0.966879i \(0.582152\pi\)
\(908\) −9.90390 + 17.1541i −0.328672 + 0.569277i
\(909\) 0 0
\(910\) −0.226553 + 0.106670i −0.00751014 + 0.00353609i
\(911\) −24.6800 42.7470i −0.817685 1.41627i −0.907384 0.420302i \(-0.861924\pi\)
0.0896996 0.995969i \(-0.471409\pi\)
\(912\) 0 0
\(913\) −21.6826 37.5554i −0.717590 1.24290i
\(914\) 3.58009 0.118419
\(915\) 0 0
\(916\) 5.63835 9.76591i 0.186296 0.322675i
\(917\) −0.899795 1.55849i −0.0297138 0.0514659i
\(918\) 0 0
\(919\) −7.37698 12.7773i −0.243344 0.421485i 0.718321 0.695712i \(-0.244911\pi\)
−0.961665 + 0.274228i \(0.911578\pi\)
\(920\) 3.89054 0.128267
\(921\) 0 0
\(922\) −2.65589 + 4.60013i −0.0874670 + 0.151497i
\(923\) −14.6653 + 6.90505i −0.482716 + 0.227283i
\(924\) 0 0
\(925\) −42.2879 −1.39042
\(926\) 0.907632 1.57206i 0.0298266 0.0516612i
\(927\) 0 0
\(928\) 5.31220 0.174382
\(929\) −24.1792 + 41.8796i −0.793294 + 1.37403i 0.130622 + 0.991432i \(0.458302\pi\)
−0.923917 + 0.382594i \(0.875031\pi\)
\(930\) 0 0
\(931\) 1.08036 1.87123i 0.0354073 0.0613272i
\(932\) 40.4503 1.32500
\(933\) 0 0
\(934\) 3.63323 0.118883
\(935\) 69.7494 2.28105
\(936\) 0 0
\(937\) 26.8065 0.875730 0.437865 0.899041i \(-0.355735\pi\)
0.437865 + 0.899041i \(0.355735\pi\)
\(938\) 0.291242 0.00950939
\(939\) 0 0
\(940\) −8.15901 −0.266117
\(941\) −13.4825 + 23.3523i −0.439516 + 0.761264i −0.997652 0.0684856i \(-0.978183\pi\)
0.558136 + 0.829749i \(0.311517\pi\)
\(942\) 0 0
\(943\) 6.86442 11.8895i 0.223536 0.387176i
\(944\) 18.4709 0.601177
\(945\) 0 0
\(946\) 3.63228 6.29129i 0.118096 0.204547i
\(947\) 14.0675 0.457131 0.228566 0.973529i \(-0.426596\pi\)
0.228566 + 0.973529i \(0.426596\pi\)
\(948\) 0 0
\(949\) 0.356488 4.25688i 0.0115721 0.138184i
\(950\) −0.119075 + 0.206243i −0.00386329 + 0.00669141i
\(951\) 0 0
\(952\) 0.474469 0.0153776
\(953\) 20.9114 + 36.2196i 0.677386 + 1.17327i 0.975765 + 0.218819i \(0.0702206\pi\)
−0.298380 + 0.954447i \(0.596446\pi\)
\(954\) 0 0
\(955\) −31.3354 54.2745i −1.01399 1.75628i
\(956\) 29.5674 51.2123i 0.956279 1.65632i
\(957\) 0 0
\(958\) −3.27442 −0.105792
\(959\) 0.565414 + 0.979325i 0.0182582 + 0.0316241i
\(960\) 0 0
\(961\) 5.06373 + 8.77063i 0.163346 + 0.282924i
\(962\) −4.34313 3.01710i −0.140028 0.0972751i
\(963\) 0 0
\(964\) 15.1249 26.1970i 0.487139 0.843750i
\(965\) −24.6082 −0.792166
\(966\) 0 0
\(967\) −10.2769 + 17.8001i −0.330483 + 0.572413i −0.982607 0.185699i \(-0.940545\pi\)
0.652124 + 0.758113i \(0.273878\pi\)
\(968\) −4.18880 −0.134633
\(969\) 0 0
\(970\) −4.10181 7.10454i −0.131701 0.228113i
\(971\) −2.68759 4.65505i −0.0862489 0.149388i 0.819674 0.572831i \(-0.194155\pi\)
−0.905923 + 0.423443i \(0.860821\pi\)
\(972\) 0 0
\(973\) −0.420062 + 0.727569i −0.0134666 + 0.0233248i
\(974\) −0.0582299 0.100857i −0.00186581 0.00323167i
\(975\) 0 0
\(976\) 13.8894 24.0571i 0.444588 0.770049i
\(977\) 5.14437 + 8.91031i 0.164583 + 0.285066i 0.936507 0.350649i \(-0.114039\pi\)
−0.771924 + 0.635715i \(0.780706\pi\)
\(978\) 0 0
\(979\) 25.7930 44.6748i 0.824348 1.42781i
\(980\) −42.9290 −1.37132
\(981\) 0 0
\(982\) −0.832158 1.44134i −0.0265552 0.0459950i
\(983\) −21.7938 37.7480i −0.695115 1.20397i −0.970142 0.242538i \(-0.922020\pi\)
0.275027 0.961437i \(-0.411313\pi\)
\(984\) 0 0
\(985\) −36.2483 62.7839i −1.15497 2.00046i
\(986\) −1.20732 2.09114i −0.0384490 0.0665956i
\(987\) 0 0
\(988\) 1.99224 0.938030i 0.0633817 0.0298427i
\(989\) 20.4737 0.651027
\(990\) 0 0
\(991\) 1.44149 2.49674i 0.0457905 0.0793115i −0.842222 0.539131i \(-0.818753\pi\)
0.888012 + 0.459820i \(0.152086\pi\)
\(992\) 4.39874 7.61883i 0.139660 0.241898i
\(993\) 0 0
\(994\) −0.100200 −0.00317814
\(995\) −28.6260 −0.907506
\(996\) 0 0
\(997\) 2.64813 4.58669i 0.0838671 0.145262i −0.821041 0.570870i \(-0.806606\pi\)
0.904908 + 0.425607i \(0.139940\pi\)
\(998\) 3.26128 5.64870i 0.103234 0.178807i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 351.2.h.a.334.7 24
3.2 odd 2 117.2.h.a.22.6 yes 24
9.2 odd 6 117.2.f.a.61.7 24
9.7 even 3 351.2.f.a.100.6 24
13.3 even 3 351.2.f.a.172.6 24
39.29 odd 6 117.2.f.a.94.7 yes 24
117.16 even 3 inner 351.2.h.a.289.7 24
117.29 odd 6 117.2.h.a.16.6 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.f.a.61.7 24 9.2 odd 6
117.2.f.a.94.7 yes 24 39.29 odd 6
117.2.h.a.16.6 yes 24 117.29 odd 6
117.2.h.a.22.6 yes 24 3.2 odd 2
351.2.f.a.100.6 24 9.7 even 3
351.2.f.a.172.6 24 13.3 even 3
351.2.h.a.289.7 24 117.16 even 3 inner
351.2.h.a.334.7 24 1.1 even 1 trivial