Properties

Label 351.2.g.c
Level $351$
Weight $2$
Character orbit 351.g
Analytic conductor $2.803$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [351,2,Mod(55,351)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(351, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("351.55"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.g (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,0,-2,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.80274911095\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 2 \zeta_{6} + 2) q^{2} - 2 \zeta_{6} q^{4} + 2 q^{5} + \zeta_{6} q^{7} + ( - 4 \zeta_{6} + 4) q^{10} + ( - 2 \zeta_{6} + 2) q^{11} + ( - \zeta_{6} - 3) q^{13} + 2 q^{14} + ( - 4 \zeta_{6} + 4) q^{16} + \cdots - 12 \zeta_{6} q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 2 q^{4} + 4 q^{5} + q^{7} + 4 q^{10} + 2 q^{11} - 7 q^{13} + 4 q^{14} + 4 q^{16} + 4 q^{17} - 3 q^{19} - 4 q^{20} - 4 q^{22} - 6 q^{23} - 2 q^{25} - 10 q^{26} + 2 q^{28} + 4 q^{29} - 10 q^{31}+ \cdots - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
55.1
0.500000 0.866025i
0.500000 + 0.866025i
1.00000 + 1.73205i 0 −1.00000 + 1.73205i 2.00000 0 0.500000 0.866025i 0 0 2.00000 + 3.46410i
217.1 1.00000 1.73205i 0 −1.00000 1.73205i 2.00000 0 0.500000 + 0.866025i 0 0 2.00000 3.46410i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 351.2.g.c yes 2
3.b odd 2 1 351.2.g.a 2
13.c even 3 1 inner 351.2.g.c yes 2
13.c even 3 1 4563.2.a.a 1
13.e even 6 1 4563.2.a.g 1
39.h odd 6 1 4563.2.a.b 1
39.i odd 6 1 351.2.g.a 2
39.i odd 6 1 4563.2.a.f 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
351.2.g.a 2 3.b odd 2 1
351.2.g.a 2 39.i odd 6 1
351.2.g.c yes 2 1.a even 1 1 trivial
351.2.g.c yes 2 13.c even 3 1 inner
4563.2.a.a 1 13.c even 3 1
4563.2.a.b 1 39.h odd 6 1
4563.2.a.f 1 39.i odd 6 1
4563.2.a.g 1 13.e even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} - 2T_{2} + 4 \) acting on \(S_{2}^{\mathrm{new}}(351, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T - 2)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$11$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$13$ \( T^{2} + 7T + 13 \) Copy content Toggle raw display
$17$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$19$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$23$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$29$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$31$ \( (T + 5)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 7T + 49 \) Copy content Toggle raw display
$41$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$43$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( (T - 12)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} - 14T + 196 \) Copy content Toggle raw display
$67$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$71$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$73$ \( (T + 10)^{2} \) Copy content Toggle raw display
$79$ \( (T + 16)^{2} \) Copy content Toggle raw display
$83$ \( (T - 10)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 14T + 196 \) Copy content Toggle raw display
$97$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
show more
show less