Properties

Label 351.2.e.b.235.5
Level $351$
Weight $2$
Character 351.235
Analytic conductor $2.803$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [351,2,Mod(118,351)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(351, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("351.118"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.80274911095\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: 10.0.487558322307.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 13x^{8} + 43x^{6} + 48x^{4} + 21x^{2} + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 235.5
Root \(-0.858204i\) of defining polynomial
Character \(\chi\) \(=\) 351.235
Dual form 351.2.e.b.118.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.39763 - 2.42077i) q^{2} +(-2.90675 - 5.03463i) q^{4} +(0.413993 + 0.717057i) q^{5} +(1.24323 - 2.15333i) q^{7} -10.6597 q^{8} +2.31444 q^{10} +(-0.459729 + 0.796275i) q^{11} +(-0.500000 - 0.866025i) q^{13} +(-3.47514 - 6.01912i) q^{14} +(-9.08484 + 15.7354i) q^{16} +1.53740 q^{17} +3.40028 q^{19} +(2.40675 - 4.16860i) q^{20} +(1.28506 + 2.22580i) q^{22} +(0.490886 + 0.850239i) q^{23} +(2.15722 - 3.73641i) q^{25} -2.79526 q^{26} -14.4550 q^{28} +(-0.595121 + 1.03078i) q^{29} +(3.12690 + 5.41594i) q^{31} +(14.7348 + 25.5214i) q^{32} +(2.14872 - 3.72170i) q^{34} +2.05875 q^{35} +1.83048 q^{37} +(4.75234 - 8.23129i) q^{38} +(-4.41304 - 7.64362i) q^{40} +(-2.86647 - 4.96488i) q^{41} +(-0.792611 + 1.37284i) q^{43} +5.34527 q^{44} +2.74431 q^{46} +(2.68754 - 4.65496i) q^{47} +(0.408777 + 0.708023i) q^{49} +(-6.02999 - 10.4443i) q^{50} +(-2.90675 + 5.03463i) q^{52} +5.82609 q^{53} -0.761299 q^{55} +(-13.2524 + 22.9539i) q^{56} +(1.66352 + 2.88130i) q^{58} +(-0.477338 - 0.826774i) q^{59} +(4.44763 - 7.70353i) q^{61} +17.4810 q^{62} +46.0360 q^{64} +(0.413993 - 0.717057i) q^{65} +(6.56302 + 11.3675i) q^{67} +(-4.46884 - 7.74026i) q^{68} +(2.87737 - 4.98375i) q^{70} -5.27858 q^{71} -10.0187 q^{73} +(2.55834 - 4.43117i) q^{74} +(-9.88375 - 17.1192i) q^{76} +(1.14310 + 1.97990i) q^{77} +(-5.06272 + 8.76888i) q^{79} -15.0443 q^{80} -16.0251 q^{82} +(-1.16257 + 2.01363i) q^{83} +(0.636475 + 1.10241i) q^{85} +(2.21555 + 3.83745i) q^{86} +(4.90058 - 8.48805i) q^{88} -12.5811 q^{89} -2.48645 q^{91} +(2.85376 - 4.94286i) q^{92} +(-7.51238 - 13.0118i) q^{94} +(1.40769 + 2.43820i) q^{95} +(3.94212 - 6.82795i) q^{97} +2.28528 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 2 q^{2} - 4 q^{4} + q^{5} + 2 q^{7} - 24 q^{8} - 4 q^{10} + 11 q^{11} - 5 q^{13} - 5 q^{14} - 10 q^{16} - 14 q^{17} + 6 q^{19} - q^{20} + 7 q^{22} + 18 q^{23} + 8 q^{25} - 4 q^{26} - 38 q^{28}+ \cdots + 78 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.39763 2.42077i 0.988274 1.71174i 0.361905 0.932215i \(-0.382126\pi\)
0.626369 0.779527i \(-0.284540\pi\)
\(3\) 0 0
\(4\) −2.90675 5.03463i −1.45337 2.51732i
\(5\) 0.413993 + 0.717057i 0.185143 + 0.320678i 0.943625 0.331017i \(-0.107392\pi\)
−0.758481 + 0.651695i \(0.774058\pi\)
\(6\) 0 0
\(7\) 1.24323 2.15333i 0.469895 0.813883i −0.529512 0.848302i \(-0.677625\pi\)
0.999407 + 0.0344198i \(0.0109583\pi\)
\(8\) −10.6597 −3.76877
\(9\) 0 0
\(10\) 2.31444 0.731890
\(11\) −0.459729 + 0.796275i −0.138614 + 0.240086i −0.926972 0.375130i \(-0.877598\pi\)
0.788358 + 0.615216i \(0.210931\pi\)
\(12\) 0 0
\(13\) −0.500000 0.866025i −0.138675 0.240192i
\(14\) −3.47514 6.01912i −0.928771 1.60868i
\(15\) 0 0
\(16\) −9.08484 + 15.7354i −2.27121 + 3.93385i
\(17\) 1.53740 0.372875 0.186438 0.982467i \(-0.440306\pi\)
0.186438 + 0.982467i \(0.440306\pi\)
\(18\) 0 0
\(19\) 3.40028 0.780078 0.390039 0.920798i \(-0.372461\pi\)
0.390039 + 0.920798i \(0.372461\pi\)
\(20\) 2.40675 4.16860i 0.538165 0.932128i
\(21\) 0 0
\(22\) 1.28506 + 2.22580i 0.273977 + 0.474541i
\(23\) 0.490886 + 0.850239i 0.102357 + 0.177287i 0.912655 0.408730i \(-0.134028\pi\)
−0.810298 + 0.586017i \(0.800695\pi\)
\(24\) 0 0
\(25\) 2.15722 3.73641i 0.431444 0.747283i
\(26\) −2.79526 −0.548196
\(27\) 0 0
\(28\) −14.4550 −2.73173
\(29\) −0.595121 + 1.03078i −0.110511 + 0.191411i −0.915976 0.401232i \(-0.868582\pi\)
0.805465 + 0.592643i \(0.201915\pi\)
\(30\) 0 0
\(31\) 3.12690 + 5.41594i 0.561607 + 0.972732i 0.997356 + 0.0726641i \(0.0231501\pi\)
−0.435749 + 0.900068i \(0.643517\pi\)
\(32\) 14.7348 + 25.5214i 2.60477 + 4.51160i
\(33\) 0 0
\(34\) 2.14872 3.72170i 0.368503 0.638266i
\(35\) 2.05875 0.347992
\(36\) 0 0
\(37\) 1.83048 0.300929 0.150465 0.988615i \(-0.451923\pi\)
0.150465 + 0.988615i \(0.451923\pi\)
\(38\) 4.75234 8.23129i 0.770931 1.33529i
\(39\) 0 0
\(40\) −4.41304 7.64362i −0.697764 1.20856i
\(41\) −2.86647 4.96488i −0.447668 0.775384i 0.550566 0.834792i \(-0.314412\pi\)
−0.998234 + 0.0594079i \(0.981079\pi\)
\(42\) 0 0
\(43\) −0.792611 + 1.37284i −0.120872 + 0.209356i −0.920112 0.391656i \(-0.871902\pi\)
0.799240 + 0.601012i \(0.205236\pi\)
\(44\) 5.34527 0.805829
\(45\) 0 0
\(46\) 2.74431 0.404626
\(47\) 2.68754 4.65496i 0.392018 0.678996i −0.600697 0.799477i \(-0.705110\pi\)
0.992716 + 0.120481i \(0.0384437\pi\)
\(48\) 0 0
\(49\) 0.408777 + 0.708023i 0.0583967 + 0.101146i
\(50\) −6.02999 10.4443i −0.852770 1.47704i
\(51\) 0 0
\(52\) −2.90675 + 5.03463i −0.403093 + 0.698178i
\(53\) 5.82609 0.800275 0.400137 0.916455i \(-0.368962\pi\)
0.400137 + 0.916455i \(0.368962\pi\)
\(54\) 0 0
\(55\) −0.761299 −0.102654
\(56\) −13.2524 + 22.9539i −1.77093 + 3.06734i
\(57\) 0 0
\(58\) 1.66352 + 2.88130i 0.218431 + 0.378333i
\(59\) −0.477338 0.826774i −0.0621442 0.107637i 0.833279 0.552852i \(-0.186461\pi\)
−0.895424 + 0.445215i \(0.853127\pi\)
\(60\) 0 0
\(61\) 4.44763 7.70353i 0.569461 0.986336i −0.427158 0.904177i \(-0.640485\pi\)
0.996619 0.0821589i \(-0.0261815\pi\)
\(62\) 17.4810 2.22009
\(63\) 0 0
\(64\) 46.0360 5.75450
\(65\) 0.413993 0.717057i 0.0513495 0.0889400i
\(66\) 0 0
\(67\) 6.56302 + 11.3675i 0.801800 + 1.38876i 0.918430 + 0.395583i \(0.129457\pi\)
−0.116630 + 0.993175i \(0.537209\pi\)
\(68\) −4.46884 7.74026i −0.541927 0.938645i
\(69\) 0 0
\(70\) 2.87737 4.98375i 0.343912 0.595672i
\(71\) −5.27858 −0.626452 −0.313226 0.949679i \(-0.601410\pi\)
−0.313226 + 0.949679i \(0.601410\pi\)
\(72\) 0 0
\(73\) −10.0187 −1.17260 −0.586302 0.810093i \(-0.699417\pi\)
−0.586302 + 0.810093i \(0.699417\pi\)
\(74\) 2.55834 4.43117i 0.297400 0.515113i
\(75\) 0 0
\(76\) −9.88375 17.1192i −1.13374 1.96370i
\(77\) 1.14310 + 1.97990i 0.130268 + 0.225630i
\(78\) 0 0
\(79\) −5.06272 + 8.76888i −0.569600 + 0.986577i 0.427005 + 0.904249i \(0.359569\pi\)
−0.996605 + 0.0823273i \(0.973765\pi\)
\(80\) −15.0443 −1.68200
\(81\) 0 0
\(82\) −16.0251 −1.76968
\(83\) −1.16257 + 2.01363i −0.127609 + 0.221025i −0.922750 0.385400i \(-0.874063\pi\)
0.795141 + 0.606425i \(0.207397\pi\)
\(84\) 0 0
\(85\) 0.636475 + 1.10241i 0.0690354 + 0.119573i
\(86\) 2.21555 + 3.83745i 0.238909 + 0.413803i
\(87\) 0 0
\(88\) 4.90058 8.48805i 0.522404 0.904830i
\(89\) −12.5811 −1.33359 −0.666795 0.745241i \(-0.732334\pi\)
−0.666795 + 0.745241i \(0.732334\pi\)
\(90\) 0 0
\(91\) −2.48645 −0.260651
\(92\) 2.85376 4.94286i 0.297525 0.515329i
\(93\) 0 0
\(94\) −7.51238 13.0118i −0.774843 1.34207i
\(95\) 1.40769 + 2.43820i 0.144426 + 0.250154i
\(96\) 0 0
\(97\) 3.94212 6.82795i 0.400262 0.693274i −0.593496 0.804837i \(-0.702253\pi\)
0.993757 + 0.111564i \(0.0355859\pi\)
\(98\) 2.28528 0.230848
\(99\) 0 0
\(100\) −25.0819 −2.50819
\(101\) −7.55953 + 13.0935i −0.752201 + 1.30285i 0.194552 + 0.980892i \(0.437675\pi\)
−0.946754 + 0.321959i \(0.895659\pi\)
\(102\) 0 0
\(103\) −2.25875 3.91228i −0.222562 0.385488i 0.733023 0.680203i \(-0.238109\pi\)
−0.955585 + 0.294715i \(0.904775\pi\)
\(104\) 5.32985 + 9.23157i 0.522635 + 0.905230i
\(105\) 0 0
\(106\) 8.14272 14.1036i 0.790891 1.36986i
\(107\) −18.5040 −1.78885 −0.894426 0.447217i \(-0.852415\pi\)
−0.894426 + 0.447217i \(0.852415\pi\)
\(108\) 0 0
\(109\) 7.95808 0.762246 0.381123 0.924524i \(-0.375537\pi\)
0.381123 + 0.924524i \(0.375537\pi\)
\(110\) −1.06402 + 1.84293i −0.101450 + 0.175716i
\(111\) 0 0
\(112\) 22.5890 + 39.1254i 2.13446 + 3.69700i
\(113\) 6.20325 + 10.7444i 0.583553 + 1.01074i 0.995054 + 0.0993342i \(0.0316713\pi\)
−0.411501 + 0.911409i \(0.634995\pi\)
\(114\) 0 0
\(115\) −0.406447 + 0.703987i −0.0379014 + 0.0656471i
\(116\) 6.91946 0.642456
\(117\) 0 0
\(118\) −2.66857 −0.245662
\(119\) 1.91134 3.31054i 0.175212 0.303477i
\(120\) 0 0
\(121\) 5.07730 + 8.79414i 0.461573 + 0.799467i
\(122\) −12.4323 21.5334i −1.12557 1.94954i
\(123\) 0 0
\(124\) 18.1782 31.4855i 1.63245 2.82748i
\(125\) 7.71223 0.689803
\(126\) 0 0
\(127\) −9.28761 −0.824142 −0.412071 0.911152i \(-0.635195\pi\)
−0.412071 + 0.911152i \(0.635195\pi\)
\(128\) 34.8717 60.3995i 3.08225 5.33861i
\(129\) 0 0
\(130\) −1.15722 2.00436i −0.101495 0.175794i
\(131\) 7.15825 + 12.3985i 0.625419 + 1.08326i 0.988460 + 0.151485i \(0.0484054\pi\)
−0.363040 + 0.931773i \(0.618261\pi\)
\(132\) 0 0
\(133\) 4.22732 7.32193i 0.366555 0.634892i
\(134\) 36.6907 3.16959
\(135\) 0 0
\(136\) −16.3883 −1.40528
\(137\) 6.37199 11.0366i 0.544396 0.942921i −0.454249 0.890875i \(-0.650092\pi\)
0.998645 0.0520463i \(-0.0165743\pi\)
\(138\) 0 0
\(139\) 7.90873 + 13.6983i 0.670809 + 1.16188i 0.977675 + 0.210123i \(0.0673865\pi\)
−0.306866 + 0.951753i \(0.599280\pi\)
\(140\) −5.98426 10.3650i −0.505762 0.876006i
\(141\) 0 0
\(142\) −7.37751 + 12.7782i −0.619107 + 1.07232i
\(143\) 0.919459 0.0768890
\(144\) 0 0
\(145\) −0.985504 −0.0818416
\(146\) −14.0025 + 24.2530i −1.15885 + 2.00719i
\(147\) 0 0
\(148\) −5.32074 9.21579i −0.437362 0.757533i
\(149\) 1.06496 + 1.84457i 0.0872450 + 0.151113i 0.906346 0.422537i \(-0.138860\pi\)
−0.819101 + 0.573650i \(0.805527\pi\)
\(150\) 0 0
\(151\) −7.34083 + 12.7147i −0.597388 + 1.03471i 0.395817 + 0.918330i \(0.370462\pi\)
−0.993205 + 0.116378i \(0.962872\pi\)
\(152\) −36.2460 −2.93994
\(153\) 0 0
\(154\) 6.39050 0.514961
\(155\) −2.58903 + 4.48433i −0.207956 + 0.360190i
\(156\) 0 0
\(157\) −5.26946 9.12697i −0.420548 0.728411i 0.575445 0.817841i \(-0.304829\pi\)
−0.995993 + 0.0894294i \(0.971496\pi\)
\(158\) 14.1516 + 24.5113i 1.12584 + 1.95002i
\(159\) 0 0
\(160\) −12.2002 + 21.1314i −0.964512 + 1.67058i
\(161\) 2.44113 0.192388
\(162\) 0 0
\(163\) −2.74398 −0.214925 −0.107463 0.994209i \(-0.534273\pi\)
−0.107463 + 0.994209i \(0.534273\pi\)
\(164\) −16.6642 + 28.8633i −1.30126 + 2.25384i
\(165\) 0 0
\(166\) 3.24969 + 5.62863i 0.252225 + 0.436866i
\(167\) 5.84319 + 10.1207i 0.452160 + 0.783164i 0.998520 0.0543865i \(-0.0173203\pi\)
−0.546360 + 0.837550i \(0.683987\pi\)
\(168\) 0 0
\(169\) −0.500000 + 0.866025i −0.0384615 + 0.0666173i
\(170\) 3.55823 0.272904
\(171\) 0 0
\(172\) 9.21567 0.702688
\(173\) −0.969058 + 1.67846i −0.0736761 + 0.127611i −0.900510 0.434836i \(-0.856806\pi\)
0.826834 + 0.562446i \(0.190140\pi\)
\(174\) 0 0
\(175\) −5.36382 9.29041i −0.405467 0.702289i
\(176\) −8.35314 14.4681i −0.629642 1.09057i
\(177\) 0 0
\(178\) −17.5837 + 30.4558i −1.31795 + 2.28276i
\(179\) −16.3546 −1.22240 −0.611201 0.791475i \(-0.709313\pi\)
−0.611201 + 0.791475i \(0.709313\pi\)
\(180\) 0 0
\(181\) −14.7968 −1.09984 −0.549920 0.835218i \(-0.685342\pi\)
−0.549920 + 0.835218i \(0.685342\pi\)
\(182\) −3.47514 + 6.01912i −0.257595 + 0.446167i
\(183\) 0 0
\(184\) −5.23270 9.06330i −0.385760 0.668155i
\(185\) 0.757806 + 1.31256i 0.0557150 + 0.0965012i
\(186\) 0 0
\(187\) −0.706790 + 1.22420i −0.0516856 + 0.0895221i
\(188\) −31.2480 −2.27899
\(189\) 0 0
\(190\) 7.86975 0.570931
\(191\) 11.0198 19.0868i 0.797362 1.38107i −0.123966 0.992286i \(-0.539561\pi\)
0.921328 0.388785i \(-0.127105\pi\)
\(192\) 0 0
\(193\) −1.51920 2.63133i −0.109354 0.189407i 0.806155 0.591705i \(-0.201545\pi\)
−0.915509 + 0.402298i \(0.868212\pi\)
\(194\) −11.0193 19.0859i −0.791137 1.37029i
\(195\) 0 0
\(196\) 2.37642 4.11608i 0.169744 0.294006i
\(197\) 24.0480 1.71335 0.856674 0.515858i \(-0.172527\pi\)
0.856674 + 0.515858i \(0.172527\pi\)
\(198\) 0 0
\(199\) −15.2119 −1.07834 −0.539171 0.842197i \(-0.681262\pi\)
−0.539171 + 0.842197i \(0.681262\pi\)
\(200\) −22.9953 + 39.8291i −1.62601 + 2.81634i
\(201\) 0 0
\(202\) 21.1309 + 36.5997i 1.48676 + 2.57515i
\(203\) 1.47974 + 2.56298i 0.103857 + 0.179886i
\(204\) 0 0
\(205\) 2.37340 4.11085i 0.165766 0.287114i
\(206\) −12.6276 −0.879808
\(207\) 0 0
\(208\) 18.1697 1.25984
\(209\) −1.56321 + 2.70756i −0.108130 + 0.187286i
\(210\) 0 0
\(211\) 0.697648 + 1.20836i 0.0480280 + 0.0831870i 0.889040 0.457829i \(-0.151373\pi\)
−0.841012 + 0.541017i \(0.818040\pi\)
\(212\) −16.9350 29.3322i −1.16310 2.01454i
\(213\) 0 0
\(214\) −25.8618 + 44.7939i −1.76788 + 3.06205i
\(215\) −1.31254 −0.0895146
\(216\) 0 0
\(217\) 15.5498 1.05559
\(218\) 11.1225 19.2647i 0.753308 1.30477i
\(219\) 0 0
\(220\) 2.21290 + 3.83286i 0.149194 + 0.258411i
\(221\) −0.768702 1.33143i −0.0517085 0.0895618i
\(222\) 0 0
\(223\) −1.17093 + 2.02811i −0.0784113 + 0.135812i −0.902565 0.430554i \(-0.858318\pi\)
0.824153 + 0.566367i \(0.191651\pi\)
\(224\) 73.2748 4.89588
\(225\) 0 0
\(226\) 34.6794 2.30684
\(227\) −3.86726 + 6.69829i −0.256679 + 0.444581i −0.965350 0.260958i \(-0.915962\pi\)
0.708671 + 0.705539i \(0.249295\pi\)
\(228\) 0 0
\(229\) −7.65795 13.2640i −0.506052 0.876507i −0.999975 0.00700218i \(-0.997771\pi\)
0.493924 0.869505i \(-0.335562\pi\)
\(230\) 1.13613 + 1.96783i 0.0749139 + 0.129755i
\(231\) 0 0
\(232\) 6.34381 10.9878i 0.416492 0.721385i
\(233\) −3.81598 −0.249993 −0.124997 0.992157i \(-0.539892\pi\)
−0.124997 + 0.992157i \(0.539892\pi\)
\(234\) 0 0
\(235\) 4.45050 0.290318
\(236\) −2.77500 + 4.80644i −0.180637 + 0.312873i
\(237\) 0 0
\(238\) −5.34270 9.25383i −0.346316 0.599837i
\(239\) −5.33578 9.24184i −0.345143 0.597805i 0.640237 0.768178i \(-0.278836\pi\)
−0.985380 + 0.170373i \(0.945503\pi\)
\(240\) 0 0
\(241\) −0.600452 + 1.04001i −0.0386785 + 0.0669931i −0.884717 0.466129i \(-0.845648\pi\)
0.846038 + 0.533122i \(0.178981\pi\)
\(242\) 28.3848 1.82464
\(243\) 0 0
\(244\) −51.7126 −3.31056
\(245\) −0.338462 + 0.586233i −0.0216235 + 0.0374531i
\(246\) 0 0
\(247\) −1.70014 2.94473i −0.108177 0.187369i
\(248\) −33.3318 57.7324i −2.11657 3.66601i
\(249\) 0 0
\(250\) 10.7788 18.6695i 0.681714 1.18076i
\(251\) −15.6411 −0.987260 −0.493630 0.869672i \(-0.664330\pi\)
−0.493630 + 0.869672i \(0.664330\pi\)
\(252\) 0 0
\(253\) −0.902699 −0.0567522
\(254\) −12.9807 + 22.4832i −0.814479 + 1.41072i
\(255\) 0 0
\(256\) −51.4395 89.0958i −3.21497 5.56849i
\(257\) −7.83123 13.5641i −0.488499 0.846105i 0.511414 0.859335i \(-0.329122\pi\)
−0.999912 + 0.0132297i \(0.995789\pi\)
\(258\) 0 0
\(259\) 2.27570 3.94163i 0.141405 0.244921i
\(260\) −4.81349 −0.298520
\(261\) 0 0
\(262\) 40.0184 2.47234
\(263\) −0.813037 + 1.40822i −0.0501340 + 0.0868347i −0.890003 0.455954i \(-0.849298\pi\)
0.839869 + 0.542789i \(0.182632\pi\)
\(264\) 0 0
\(265\) 2.41196 + 4.17764i 0.148166 + 0.256630i
\(266\) −11.8165 20.4667i −0.724514 1.25490i
\(267\) 0 0
\(268\) 38.1540 66.0847i 2.33063 4.03677i
\(269\) 18.8883 1.15164 0.575821 0.817576i \(-0.304682\pi\)
0.575821 + 0.817576i \(0.304682\pi\)
\(270\) 0 0
\(271\) −10.2390 −0.621977 −0.310988 0.950414i \(-0.600660\pi\)
−0.310988 + 0.950414i \(0.600660\pi\)
\(272\) −13.9671 + 24.1917i −0.846879 + 1.46684i
\(273\) 0 0
\(274\) −17.8114 30.8502i −1.07602 1.86373i
\(275\) 1.98347 + 3.43548i 0.119608 + 0.207167i
\(276\) 0 0
\(277\) 3.65519 6.33097i 0.219619 0.380391i −0.735073 0.677988i \(-0.762852\pi\)
0.954691 + 0.297597i \(0.0961853\pi\)
\(278\) 44.2139 2.65177
\(279\) 0 0
\(280\) −21.9457 −1.31150
\(281\) 13.0817 22.6582i 0.780390 1.35168i −0.151324 0.988484i \(-0.548354\pi\)
0.931714 0.363192i \(-0.118313\pi\)
\(282\) 0 0
\(283\) −2.56185 4.43725i −0.152286 0.263767i 0.779781 0.626052i \(-0.215330\pi\)
−0.932068 + 0.362285i \(0.881997\pi\)
\(284\) 15.3435 + 26.5757i 0.910468 + 1.57698i
\(285\) 0 0
\(286\) 1.28506 2.22580i 0.0759875 0.131614i
\(287\) −14.2547 −0.841429
\(288\) 0 0
\(289\) −14.6364 −0.860964
\(290\) −1.37737 + 2.38568i −0.0808820 + 0.140092i
\(291\) 0 0
\(292\) 29.1219 + 50.4406i 1.70423 + 2.95181i
\(293\) 5.04538 + 8.73886i 0.294755 + 0.510530i 0.974928 0.222522i \(-0.0714288\pi\)
−0.680173 + 0.733051i \(0.738095\pi\)
\(294\) 0 0
\(295\) 0.395230 0.684558i 0.0230112 0.0398565i
\(296\) −19.5124 −1.13413
\(297\) 0 0
\(298\) 5.95369 0.344888
\(299\) 0.490886 0.850239i 0.0283887 0.0491706i
\(300\) 0 0
\(301\) 1.97079 + 3.41351i 0.113594 + 0.196751i
\(302\) 20.5196 + 35.5409i 1.18077 + 2.04515i
\(303\) 0 0
\(304\) −30.8910 + 53.5048i −1.77172 + 3.06871i
\(305\) 7.36516 0.421728
\(306\) 0 0
\(307\) 14.9405 0.852699 0.426350 0.904558i \(-0.359799\pi\)
0.426350 + 0.904558i \(0.359799\pi\)
\(308\) 6.64537 11.5101i 0.378655 0.655850i
\(309\) 0 0
\(310\) 7.23701 + 12.5349i 0.411035 + 0.711933i
\(311\) −3.75769 6.50852i −0.213079 0.369064i 0.739597 0.673050i \(-0.235016\pi\)
−0.952677 + 0.303985i \(0.901683\pi\)
\(312\) 0 0
\(313\) −3.70826 + 6.42289i −0.209603 + 0.363043i −0.951590 0.307372i \(-0.900551\pi\)
0.741986 + 0.670415i \(0.233884\pi\)
\(314\) −29.4590 −1.66247
\(315\) 0 0
\(316\) 58.8641 3.31137
\(317\) 5.86080 10.1512i 0.329175 0.570149i −0.653173 0.757209i \(-0.726563\pi\)
0.982348 + 0.187060i \(0.0598959\pi\)
\(318\) 0 0
\(319\) −0.547189 0.947760i −0.0306367 0.0530644i
\(320\) 19.0586 + 33.0104i 1.06541 + 1.84534i
\(321\) 0 0
\(322\) 3.41180 5.90941i 0.190132 0.329318i
\(323\) 5.22761 0.290872
\(324\) 0 0
\(325\) −4.31444 −0.239322
\(326\) −3.83508 + 6.64255i −0.212405 + 0.367897i
\(327\) 0 0
\(328\) 30.5558 + 52.9242i 1.68716 + 2.92225i
\(329\) −6.68245 11.5743i −0.368415 0.638114i
\(330\) 0 0
\(331\) 1.88362 3.26252i 0.103533 0.179325i −0.809605 0.586975i \(-0.800319\pi\)
0.913138 + 0.407651i \(0.133652\pi\)
\(332\) 13.5172 0.741852
\(333\) 0 0
\(334\) 32.6665 1.78743
\(335\) −5.43409 + 9.41212i −0.296896 + 0.514239i
\(336\) 0 0
\(337\) −12.9936 22.5056i −0.707808 1.22596i −0.965669 0.259777i \(-0.916351\pi\)
0.257861 0.966182i \(-0.416982\pi\)
\(338\) 1.39763 + 2.42077i 0.0760211 + 0.131672i
\(339\) 0 0
\(340\) 3.70014 6.40883i 0.200668 0.347568i
\(341\) −5.75011 −0.311386
\(342\) 0 0
\(343\) 19.4380 1.04955
\(344\) 8.44900 14.6341i 0.455539 0.789017i
\(345\) 0 0
\(346\) 2.70877 + 4.69173i 0.145624 + 0.252229i
\(347\) −3.73279 6.46538i −0.200386 0.347080i 0.748267 0.663398i \(-0.230886\pi\)
−0.948653 + 0.316319i \(0.897553\pi\)
\(348\) 0 0
\(349\) 5.63652 9.76273i 0.301716 0.522587i −0.674809 0.737992i \(-0.735774\pi\)
0.976525 + 0.215405i \(0.0691073\pi\)
\(350\) −29.9866 −1.60285
\(351\) 0 0
\(352\) −27.0961 −1.44423
\(353\) 10.8052 18.7152i 0.575105 0.996111i −0.420925 0.907095i \(-0.638294\pi\)
0.996030 0.0890160i \(-0.0283722\pi\)
\(354\) 0 0
\(355\) −2.18530 3.78504i −0.115983 0.200889i
\(356\) 36.5699 + 63.3410i 1.93820 + 3.35707i
\(357\) 0 0
\(358\) −22.8577 + 39.5908i −1.20807 + 2.09244i
\(359\) −27.9681 −1.47610 −0.738050 0.674747i \(-0.764253\pi\)
−0.738050 + 0.674747i \(0.764253\pi\)
\(360\) 0 0
\(361\) −7.43808 −0.391478
\(362\) −20.6805 + 35.8197i −1.08694 + 1.88264i
\(363\) 0 0
\(364\) 7.22748 + 12.5184i 0.378823 + 0.656141i
\(365\) −4.14768 7.18400i −0.217100 0.376028i
\(366\) 0 0
\(367\) −5.34067 + 9.25031i −0.278781 + 0.482862i −0.971082 0.238746i \(-0.923264\pi\)
0.692301 + 0.721609i \(0.256597\pi\)
\(368\) −17.8385 −0.929896
\(369\) 0 0
\(370\) 4.23653 0.220247
\(371\) 7.24315 12.5455i 0.376045 0.651330i
\(372\) 0 0
\(373\) 7.11158 + 12.3176i 0.368223 + 0.637782i 0.989288 0.145978i \(-0.0466328\pi\)
−0.621064 + 0.783759i \(0.713299\pi\)
\(374\) 1.97566 + 3.42195i 0.102159 + 0.176945i
\(375\) 0 0
\(376\) −28.6484 + 49.6205i −1.47743 + 2.55898i
\(377\) 1.19024 0.0613006
\(378\) 0 0
\(379\) 30.2086 1.55171 0.775857 0.630909i \(-0.217318\pi\)
0.775857 + 0.630909i \(0.217318\pi\)
\(380\) 8.18361 14.1744i 0.419810 0.727133i
\(381\) 0 0
\(382\) −30.8031 53.3526i −1.57603 2.72976i
\(383\) 9.71116 + 16.8202i 0.496217 + 0.859474i 0.999990 0.00436238i \(-0.00138859\pi\)
−0.503773 + 0.863836i \(0.668055\pi\)
\(384\) 0 0
\(385\) −0.946467 + 1.63933i −0.0482364 + 0.0835480i
\(386\) −8.49311 −0.432288
\(387\) 0 0
\(388\) −45.8350 −2.32692
\(389\) −1.00577 + 1.74205i −0.0509947 + 0.0883254i −0.890396 0.455187i \(-0.849572\pi\)
0.839401 + 0.543512i \(0.182906\pi\)
\(390\) 0 0
\(391\) 0.754690 + 1.30716i 0.0381663 + 0.0661060i
\(392\) −4.35744 7.54731i −0.220084 0.381197i
\(393\) 0 0
\(394\) 33.6102 58.2146i 1.69326 2.93281i
\(395\) −8.38372 −0.421831
\(396\) 0 0
\(397\) 20.7184 1.03983 0.519914 0.854218i \(-0.325964\pi\)
0.519914 + 0.854218i \(0.325964\pi\)
\(398\) −21.2606 + 36.8244i −1.06570 + 1.84584i
\(399\) 0 0
\(400\) 39.1960 + 67.8895i 1.95980 + 3.39447i
\(401\) −9.08224 15.7309i −0.453545 0.785563i 0.545058 0.838398i \(-0.316508\pi\)
−0.998603 + 0.0528350i \(0.983174\pi\)
\(402\) 0 0
\(403\) 3.12690 5.41594i 0.155762 0.269787i
\(404\) 87.8945 4.37292
\(405\) 0 0
\(406\) 8.27252 0.410558
\(407\) −0.841526 + 1.45757i −0.0417129 + 0.0722488i
\(408\) 0 0
\(409\) −16.3177 28.2630i −0.806857 1.39752i −0.915030 0.403386i \(-0.867833\pi\)
0.108173 0.994132i \(-0.465500\pi\)
\(410\) −6.63428 11.4909i −0.327644 0.567496i
\(411\) 0 0
\(412\) −13.1312 + 22.7440i −0.646930 + 1.12052i
\(413\) −2.37376 −0.116805
\(414\) 0 0
\(415\) −1.92518 −0.0945036
\(416\) 14.7348 25.5214i 0.722434 1.25129i
\(417\) 0 0
\(418\) 4.36958 + 7.56834i 0.213723 + 0.370180i
\(419\) −13.5292 23.4333i −0.660945 1.14479i −0.980368 0.197178i \(-0.936822\pi\)
0.319423 0.947612i \(-0.396511\pi\)
\(420\) 0 0
\(421\) −13.3903 + 23.1927i −0.652603 + 1.13034i 0.329886 + 0.944021i \(0.392990\pi\)
−0.982489 + 0.186321i \(0.940343\pi\)
\(422\) 3.90022 0.189860
\(423\) 0 0
\(424\) −62.1044 −3.01606
\(425\) 3.31652 5.74438i 0.160875 0.278643i
\(426\) 0 0
\(427\) −11.0588 19.1545i −0.535174 0.926949i
\(428\) 53.7865 + 93.1609i 2.59987 + 4.50310i
\(429\) 0 0
\(430\) −1.83445 + 3.17736i −0.0884650 + 0.153226i
\(431\) 37.3204 1.79766 0.898830 0.438297i \(-0.144418\pi\)
0.898830 + 0.438297i \(0.144418\pi\)
\(432\) 0 0
\(433\) 4.67900 0.224859 0.112429 0.993660i \(-0.464137\pi\)
0.112429 + 0.993660i \(0.464137\pi\)
\(434\) 21.7328 37.6424i 1.04321 1.80689i
\(435\) 0 0
\(436\) −23.1321 40.0660i −1.10783 1.91881i
\(437\) 1.66915 + 2.89105i 0.0798463 + 0.138298i
\(438\) 0 0
\(439\) 10.1656 17.6074i 0.485179 0.840355i −0.514676 0.857385i \(-0.672088\pi\)
0.999855 + 0.0170298i \(0.00542101\pi\)
\(440\) 8.11523 0.386878
\(441\) 0 0
\(442\) −4.29745 −0.204409
\(443\) 0.274181 0.474896i 0.0130267 0.0225630i −0.859439 0.511239i \(-0.829187\pi\)
0.872465 + 0.488676i \(0.162520\pi\)
\(444\) 0 0
\(445\) −5.20847 9.02134i −0.246905 0.427653i
\(446\) 3.27306 + 5.66910i 0.154984 + 0.268440i
\(447\) 0 0
\(448\) 57.2331 99.1307i 2.70401 4.68348i
\(449\) 15.7113 0.741460 0.370730 0.928741i \(-0.379107\pi\)
0.370730 + 0.928741i \(0.379107\pi\)
\(450\) 0 0
\(451\) 5.27121 0.248212
\(452\) 36.0626 62.4622i 1.69624 2.93797i
\(453\) 0 0
\(454\) 10.8100 + 18.7235i 0.507338 + 0.878736i
\(455\) −1.02937 1.78293i −0.0482578 0.0835850i
\(456\) 0 0
\(457\) −15.7053 + 27.2023i −0.734662 + 1.27247i 0.220210 + 0.975453i \(0.429326\pi\)
−0.954872 + 0.297019i \(0.904007\pi\)
\(458\) −42.8120 −2.00047
\(459\) 0 0
\(460\) 4.72575 0.220339
\(461\) 16.5562 28.6761i 0.771098 1.33558i −0.165864 0.986149i \(-0.553041\pi\)
0.936962 0.349432i \(-0.113625\pi\)
\(462\) 0 0
\(463\) 8.88057 + 15.3816i 0.412715 + 0.714844i 0.995186 0.0980083i \(-0.0312472\pi\)
−0.582470 + 0.812852i \(0.697914\pi\)
\(464\) −10.8132 18.7289i −0.501988 0.869469i
\(465\) 0 0
\(466\) −5.33334 + 9.23761i −0.247062 + 0.427924i
\(467\) −25.7033 −1.18941 −0.594704 0.803945i \(-0.702731\pi\)
−0.594704 + 0.803945i \(0.702731\pi\)
\(468\) 0 0
\(469\) 32.6373 1.50705
\(470\) 6.22015 10.7736i 0.286914 0.496950i
\(471\) 0 0
\(472\) 5.08829 + 8.81317i 0.234207 + 0.405659i
\(473\) −0.728773 1.26227i −0.0335090 0.0580393i
\(474\) 0 0
\(475\) 7.33515 12.7049i 0.336560 0.582939i
\(476\) −22.2231 −1.01860
\(477\) 0 0
\(478\) −29.8298 −1.36438
\(479\) −9.29581 + 16.1008i −0.424736 + 0.735665i −0.996396 0.0848262i \(-0.972967\pi\)
0.571659 + 0.820491i \(0.306300\pi\)
\(480\) 0 0
\(481\) −0.915240 1.58524i −0.0417313 0.0722808i
\(482\) 1.67842 + 2.90711i 0.0764499 + 0.132415i
\(483\) 0 0
\(484\) 29.5168 51.1246i 1.34167 2.32385i
\(485\) 6.52804 0.296423
\(486\) 0 0
\(487\) 27.7070 1.25552 0.627761 0.778406i \(-0.283972\pi\)
0.627761 + 0.778406i \(0.283972\pi\)
\(488\) −47.4105 + 82.1173i −2.14617 + 3.71728i
\(489\) 0 0
\(490\) 0.946090 + 1.63868i 0.0427400 + 0.0740278i
\(491\) 8.97484 + 15.5449i 0.405029 + 0.701531i 0.994325 0.106386i \(-0.0339281\pi\)
−0.589296 + 0.807917i \(0.700595\pi\)
\(492\) 0 0
\(493\) −0.914942 + 1.58473i −0.0412069 + 0.0713724i
\(494\) −9.50468 −0.427636
\(495\) 0 0
\(496\) −113.629 −5.10211
\(497\) −6.56247 + 11.3665i −0.294367 + 0.509858i
\(498\) 0 0
\(499\) 12.1591 + 21.0601i 0.544315 + 0.942781i 0.998650 + 0.0519502i \(0.0165437\pi\)
−0.454335 + 0.890831i \(0.650123\pi\)
\(500\) −22.4175 38.8282i −1.00254 1.73645i
\(501\) 0 0
\(502\) −21.8605 + 37.8636i −0.975684 + 1.68993i
\(503\) 39.1695 1.74648 0.873240 0.487291i \(-0.162015\pi\)
0.873240 + 0.487291i \(0.162015\pi\)
\(504\) 0 0
\(505\) −12.5184 −0.557060
\(506\) −1.26164 + 2.18522i −0.0560867 + 0.0971451i
\(507\) 0 0
\(508\) 26.9967 + 46.7597i 1.19779 + 2.07463i
\(509\) −14.9084 25.8221i −0.660803 1.14454i −0.980405 0.196993i \(-0.936883\pi\)
0.319602 0.947552i \(-0.396451\pi\)
\(510\) 0 0
\(511\) −12.4555 + 21.5736i −0.551001 + 0.954362i
\(512\) −148.087 −6.54458
\(513\) 0 0
\(514\) −43.7807 −1.93108
\(515\) 1.87022 3.23931i 0.0824116 0.142741i
\(516\) 0 0
\(517\) 2.47108 + 4.28004i 0.108678 + 0.188236i
\(518\) −6.36118 11.0179i −0.279494 0.484098i
\(519\) 0 0
\(520\) −4.41304 + 7.64362i −0.193525 + 0.335195i
\(521\) −33.7507 −1.47864 −0.739322 0.673352i \(-0.764854\pi\)
−0.739322 + 0.673352i \(0.764854\pi\)
\(522\) 0 0
\(523\) −39.8074 −1.74065 −0.870327 0.492474i \(-0.836093\pi\)
−0.870327 + 0.492474i \(0.836093\pi\)
\(524\) 41.6144 72.0783i 1.81793 3.14876i
\(525\) 0 0
\(526\) 2.27265 + 3.93635i 0.0990923 + 0.171633i
\(527\) 4.80731 + 8.32650i 0.209410 + 0.362708i
\(528\) 0 0
\(529\) 11.0181 19.0838i 0.479046 0.829732i
\(530\) 13.4841 0.585713
\(531\) 0 0
\(532\) −49.1510 −2.13096
\(533\) −2.86647 + 4.96488i −0.124161 + 0.215053i
\(534\) 0 0
\(535\) −7.66054 13.2684i −0.331194 0.573645i
\(536\) −69.9598 121.174i −3.02180 5.23392i
\(537\) 0 0
\(538\) 26.3989 45.7243i 1.13814 1.97131i
\(539\) −0.751708 −0.0323783
\(540\) 0 0
\(541\) 16.4801 0.708533 0.354267 0.935144i \(-0.384731\pi\)
0.354267 + 0.935144i \(0.384731\pi\)
\(542\) −14.3104 + 24.7863i −0.614684 + 1.06466i
\(543\) 0 0
\(544\) 22.6534 + 39.2368i 0.971255 + 1.68226i
\(545\) 3.29459 + 5.70640i 0.141125 + 0.244435i
\(546\) 0 0
\(547\) −16.0035 + 27.7189i −0.684262 + 1.18518i 0.289406 + 0.957206i \(0.406542\pi\)
−0.973668 + 0.227970i \(0.926791\pi\)
\(548\) −74.0870 −3.16484
\(549\) 0 0
\(550\) 11.0887 0.472822
\(551\) −2.02358 + 3.50494i −0.0862074 + 0.149316i
\(552\) 0 0
\(553\) 12.5882 + 21.8034i 0.535305 + 0.927175i
\(554\) −10.2172 17.6967i −0.434088 0.751862i
\(555\) 0 0
\(556\) 45.9773 79.6350i 1.94987 3.37728i
\(557\) −1.65300 −0.0700397 −0.0350198 0.999387i \(-0.511149\pi\)
−0.0350198 + 0.999387i \(0.511149\pi\)
\(558\) 0 0
\(559\) 1.58522 0.0670477
\(560\) −18.7034 + 32.3953i −0.790363 + 1.36895i
\(561\) 0 0
\(562\) −36.5669 63.3357i −1.54248 2.67165i
\(563\) 15.6527 + 27.1113i 0.659682 + 1.14260i 0.980698 + 0.195529i \(0.0626425\pi\)
−0.321016 + 0.947074i \(0.604024\pi\)
\(564\) 0 0
\(565\) −5.13621 + 8.89618i −0.216082 + 0.374265i
\(566\) −14.3221 −0.602002
\(567\) 0 0
\(568\) 56.2681 2.36096
\(569\) −21.8313 + 37.8130i −0.915217 + 1.58520i −0.108634 + 0.994082i \(0.534648\pi\)
−0.806583 + 0.591121i \(0.798686\pi\)
\(570\) 0 0
\(571\) 0.330617 + 0.572646i 0.0138359 + 0.0239645i 0.872860 0.487970i \(-0.162262\pi\)
−0.859025 + 0.511934i \(0.828929\pi\)
\(572\) −2.67263 4.62914i −0.111748 0.193554i
\(573\) 0 0
\(574\) −19.9228 + 34.5073i −0.831562 + 1.44031i
\(575\) 4.23579 0.176645
\(576\) 0 0
\(577\) −26.6761 −1.11054 −0.555270 0.831670i \(-0.687385\pi\)
−0.555270 + 0.831670i \(0.687385\pi\)
\(578\) −20.4563 + 35.4313i −0.850869 + 1.47375i
\(579\) 0 0
\(580\) 2.86461 + 4.96165i 0.118946 + 0.206021i
\(581\) 2.89068 + 5.00680i 0.119925 + 0.207717i
\(582\) 0 0
\(583\) −2.67843 + 4.63917i −0.110929 + 0.192135i
\(584\) 106.797 4.41928
\(585\) 0 0
\(586\) 28.2063 1.16519
\(587\) −0.954026 + 1.65242i −0.0393769 + 0.0682028i −0.885042 0.465511i \(-0.845871\pi\)
0.845665 + 0.533714i \(0.179204\pi\)
\(588\) 0 0
\(589\) 10.6323 + 18.4157i 0.438098 + 0.758807i
\(590\) −1.10477 1.91352i −0.0454827 0.0787783i
\(591\) 0 0
\(592\) −16.6296 + 28.8034i −0.683473 + 1.18381i
\(593\) 15.0838 0.619419 0.309710 0.950831i \(-0.399768\pi\)
0.309710 + 0.950831i \(0.399768\pi\)
\(594\) 0 0
\(595\) 3.16513 0.129758
\(596\) 6.19114 10.7234i 0.253599 0.439246i
\(597\) 0 0
\(598\) −1.37215 2.37664i −0.0561116 0.0971881i
\(599\) −0.823973 1.42716i −0.0336666 0.0583123i 0.848701 0.528873i \(-0.177385\pi\)
−0.882368 + 0.470560i \(0.844052\pi\)
\(600\) 0 0
\(601\) −4.91508 + 8.51316i −0.200490 + 0.347259i −0.948686 0.316218i \(-0.897587\pi\)
0.748196 + 0.663477i \(0.230920\pi\)
\(602\) 11.0177 0.449050
\(603\) 0 0
\(604\) 85.3517 3.47291
\(605\) −4.20393 + 7.28143i −0.170914 + 0.296032i
\(606\) 0 0
\(607\) −3.81004 6.59918i −0.154645 0.267852i 0.778285 0.627911i \(-0.216090\pi\)
−0.932930 + 0.360059i \(0.882757\pi\)
\(608\) 50.1025 + 86.7801i 2.03193 + 3.51940i
\(609\) 0 0
\(610\) 10.2938 17.8293i 0.416783 0.721889i
\(611\) −5.37508 −0.217453
\(612\) 0 0
\(613\) 20.7592 0.838458 0.419229 0.907881i \(-0.362300\pi\)
0.419229 + 0.907881i \(0.362300\pi\)
\(614\) 20.8813 36.1675i 0.842701 1.45960i
\(615\) 0 0
\(616\) −12.1851 21.1051i −0.490950 0.850350i
\(617\) −10.0058 17.3306i −0.402819 0.697702i 0.591246 0.806491i \(-0.298636\pi\)
−0.994065 + 0.108789i \(0.965303\pi\)
\(618\) 0 0
\(619\) 6.38297 11.0556i 0.256553 0.444363i −0.708763 0.705447i \(-0.750746\pi\)
0.965316 + 0.261083i \(0.0840798\pi\)
\(620\) 30.1026 1.20895
\(621\) 0 0
\(622\) −21.0075 −0.842323
\(623\) −15.6411 + 27.0912i −0.626648 + 1.08539i
\(624\) 0 0
\(625\) −7.59329 13.1520i −0.303731 0.526078i
\(626\) 10.3656 + 17.9537i 0.414291 + 0.717573i
\(627\) 0 0
\(628\) −30.6339 + 53.0595i −1.22243 + 2.11731i
\(629\) 2.81419 0.112209
\(630\) 0 0
\(631\) −41.7922 −1.66372 −0.831860 0.554985i \(-0.812724\pi\)
−0.831860 + 0.554985i \(0.812724\pi\)
\(632\) 53.9671 93.4737i 2.14669 3.71818i
\(633\) 0 0
\(634\) −16.3825 28.3753i −0.650631 1.12693i
\(635\) −3.84501 6.65975i −0.152585 0.264284i
\(636\) 0 0
\(637\) 0.408777 0.708023i 0.0161963 0.0280529i
\(638\) −3.05907 −0.121110
\(639\) 0 0
\(640\) 57.7465 2.28263
\(641\) −17.5062 + 30.3216i −0.691452 + 1.19763i 0.279910 + 0.960026i \(0.409695\pi\)
−0.971362 + 0.237604i \(0.923638\pi\)
\(642\) 0 0
\(643\) −4.63898 8.03495i −0.182944 0.316868i 0.759938 0.649996i \(-0.225229\pi\)
−0.942882 + 0.333128i \(0.891896\pi\)
\(644\) −7.09574 12.2902i −0.279611 0.484301i
\(645\) 0 0
\(646\) 7.30627 12.6548i 0.287461 0.497898i
\(647\) 17.1133 0.672794 0.336397 0.941720i \(-0.390792\pi\)
0.336397 + 0.941720i \(0.390792\pi\)
\(648\) 0 0
\(649\) 0.877786 0.0344561
\(650\) −6.02999 + 10.4443i −0.236516 + 0.409657i
\(651\) 0 0
\(652\) 7.97606 + 13.8149i 0.312367 + 0.541035i
\(653\) 22.1978 + 38.4478i 0.868668 + 1.50458i 0.863358 + 0.504592i \(0.168357\pi\)
0.00531024 + 0.999986i \(0.498310\pi\)
\(654\) 0 0
\(655\) −5.92693 + 10.2658i −0.231584 + 0.401116i
\(656\) 104.166 4.06699
\(657\) 0 0
\(658\) −37.3584 −1.45638
\(659\) 8.11972 14.0638i 0.316299 0.547846i −0.663414 0.748253i \(-0.730893\pi\)
0.979713 + 0.200407i \(0.0642263\pi\)
\(660\) 0 0
\(661\) −13.3405 23.1063i −0.518883 0.898732i −0.999759 0.0219437i \(-0.993015\pi\)
0.480876 0.876789i \(-0.340319\pi\)
\(662\) −5.26521 9.11961i −0.204638 0.354444i
\(663\) 0 0
\(664\) 12.3927 21.4647i 0.480928 0.832992i
\(665\) 7.00033 0.271461
\(666\) 0 0
\(667\) −1.16855 −0.0452463
\(668\) 33.9693 58.8366i 1.31431 2.27646i
\(669\) 0 0
\(670\) 15.1897 + 26.3093i 0.586829 + 1.01642i
\(671\) 4.08942 + 7.08308i 0.157870 + 0.273439i
\(672\) 0 0
\(673\) −9.68028 + 16.7667i −0.373147 + 0.646310i −0.990048 0.140731i \(-0.955055\pi\)
0.616901 + 0.787041i \(0.288388\pi\)
\(674\) −72.6412 −2.79803
\(675\) 0 0
\(676\) 5.81349 0.223596
\(677\) −8.22920 + 14.2534i −0.316274 + 0.547802i −0.979707 0.200433i \(-0.935765\pi\)
0.663434 + 0.748235i \(0.269098\pi\)
\(678\) 0 0
\(679\) −9.80190 16.9774i −0.376162 0.651532i
\(680\) −6.78464 11.7513i −0.260179 0.450643i
\(681\) 0 0
\(682\) −8.03653 + 13.9197i −0.307735 + 0.533012i
\(683\) −14.3927 −0.550720 −0.275360 0.961341i \(-0.588797\pi\)
−0.275360 + 0.961341i \(0.588797\pi\)
\(684\) 0 0
\(685\) 10.5518 0.403165
\(686\) 27.1671 47.0548i 1.03725 1.79656i
\(687\) 0 0
\(688\) −14.4015 24.9441i −0.549052 0.950985i
\(689\) −2.91304 5.04554i −0.110978 0.192220i
\(690\) 0 0
\(691\) −3.02997 + 5.24806i −0.115266 + 0.199646i −0.917886 0.396844i \(-0.870105\pi\)
0.802620 + 0.596490i \(0.203439\pi\)
\(692\) 11.2672 0.428315
\(693\) 0 0
\(694\) −20.8682 −0.792147
\(695\) −6.54832 + 11.3420i −0.248392 + 0.430227i
\(696\) 0 0
\(697\) −4.40693 7.63303i −0.166924 0.289122i
\(698\) −15.7555 27.2894i −0.596356 1.03292i
\(699\) 0 0
\(700\) −31.1825 + 54.0097i −1.17859 + 2.04138i
\(701\) 25.7892 0.974045 0.487023 0.873389i \(-0.338083\pi\)
0.487023 + 0.873389i \(0.338083\pi\)
\(702\) 0 0
\(703\) 6.22415 0.234748
\(704\) −21.1641 + 36.6573i −0.797652 + 1.38157i
\(705\) 0 0
\(706\) −30.2035 52.3140i −1.13672 1.96886i
\(707\) 18.7964 + 32.5563i 0.706912 + 1.22441i
\(708\) 0 0
\(709\) 23.3481 40.4402i 0.876858 1.51876i 0.0220870 0.999756i \(-0.492969\pi\)
0.854771 0.519006i \(-0.173698\pi\)
\(710\) −12.2169 −0.458494
\(711\) 0 0
\(712\) 134.110 5.02600
\(713\) −3.06990 + 5.31722i −0.114969 + 0.199132i
\(714\) 0 0
\(715\) 0.380650 + 0.659305i 0.0142355 + 0.0246566i
\(716\) 47.5387 + 82.3395i 1.77661 + 3.07717i
\(717\) 0 0
\(718\) −39.0891 + 67.7042i −1.45879 + 2.52670i
\(719\) −45.7593 −1.70654 −0.853268 0.521473i \(-0.825383\pi\)
−0.853268 + 0.521473i \(0.825383\pi\)
\(720\) 0 0
\(721\) −11.2326 −0.418323
\(722\) −10.3957 + 18.0059i −0.386888 + 0.670109i
\(723\) 0 0
\(724\) 43.0106 + 74.4966i 1.59848 + 2.76864i
\(725\) 2.56761 + 4.44724i 0.0953587 + 0.165166i
\(726\) 0 0
\(727\) −2.81788 + 4.88071i −0.104509 + 0.181016i −0.913538 0.406754i \(-0.866661\pi\)
0.809028 + 0.587770i \(0.199994\pi\)
\(728\) 26.5048 0.982335
\(729\) 0 0
\(730\) −23.1877 −0.858216
\(731\) −1.21856 + 2.11061i −0.0450702 + 0.0780639i
\(732\) 0 0
\(733\) 20.1805 + 34.9536i 0.745383 + 1.29104i 0.950016 + 0.312202i \(0.101067\pi\)
−0.204633 + 0.978839i \(0.565600\pi\)
\(734\) 14.9286 + 25.8570i 0.551024 + 0.954401i
\(735\) 0 0
\(736\) −14.4662 + 25.0562i −0.533232 + 0.923585i
\(737\) −12.0688 −0.444562
\(738\) 0 0
\(739\) −22.9326 −0.843590 −0.421795 0.906691i \(-0.638600\pi\)
−0.421795 + 0.906691i \(0.638600\pi\)
\(740\) 4.40550 7.63055i 0.161949 0.280504i
\(741\) 0 0
\(742\) −20.2465 35.0680i −0.743272 1.28739i
\(743\) 2.76237 + 4.78457i 0.101342 + 0.175529i 0.912238 0.409661i \(-0.134353\pi\)
−0.810896 + 0.585190i \(0.801020\pi\)
\(744\) 0 0
\(745\) −0.881773 + 1.52728i −0.0323057 + 0.0559551i
\(746\) 39.7574 1.45562
\(747\) 0 0
\(748\) 8.21784 0.300474
\(749\) −23.0047 + 39.8453i −0.840573 + 1.45591i
\(750\) 0 0
\(751\) 11.4040 + 19.7523i 0.416139 + 0.720773i 0.995547 0.0942640i \(-0.0300498\pi\)
−0.579409 + 0.815037i \(0.696716\pi\)
\(752\) 48.8318 + 84.5792i 1.78071 + 3.08428i
\(753\) 0 0
\(754\) 1.66352 2.88130i 0.0605818 0.104931i
\(755\) −12.1562 −0.442410
\(756\) 0 0
\(757\) −0.0394090 −0.00143235 −0.000716173 1.00000i \(-0.500228\pi\)
−0.000716173 1.00000i \(0.500228\pi\)
\(758\) 42.2205 73.1281i 1.53352 2.65613i
\(759\) 0 0
\(760\) −15.0056 25.9905i −0.544310 0.942773i
\(761\) 6.41693 + 11.1145i 0.232614 + 0.402899i 0.958576 0.284835i \(-0.0919389\pi\)
−0.725963 + 0.687734i \(0.758606\pi\)
\(762\) 0 0
\(763\) 9.89370 17.1364i 0.358176 0.620379i
\(764\) −128.127 −4.63546
\(765\) 0 0
\(766\) 54.2905 1.96160
\(767\) −0.477338 + 0.826774i −0.0172357 + 0.0298531i
\(768\) 0 0
\(769\) −0.424306 0.734919i −0.0153009 0.0265019i 0.858274 0.513192i \(-0.171537\pi\)
−0.873574 + 0.486691i \(0.838204\pi\)
\(770\) 2.64562 + 4.58236i 0.0953417 + 0.165137i
\(771\) 0 0
\(772\) −8.83184 + 15.2972i −0.317865 + 0.550558i
\(773\) 36.0339 1.29605 0.648024 0.761620i \(-0.275595\pi\)
0.648024 + 0.761620i \(0.275595\pi\)
\(774\) 0 0
\(775\) 26.9816 0.969208
\(776\) −42.0218 + 72.7840i −1.50850 + 2.61279i
\(777\) 0 0
\(778\) 2.81140 + 4.86948i 0.100793 + 0.174579i
\(779\) −9.74682 16.8820i −0.349216 0.604860i
\(780\) 0 0
\(781\) 2.42672 4.20320i 0.0868348 0.150402i
\(782\) 4.21911 0.150875
\(783\) 0 0
\(784\) −14.8547 −0.530525
\(785\) 4.36304 7.55700i 0.155723 0.269721i
\(786\) 0 0
\(787\) 8.83804 + 15.3079i 0.315042 + 0.545669i 0.979446 0.201704i \(-0.0646480\pi\)
−0.664404 + 0.747373i \(0.731315\pi\)
\(788\) −69.9014 121.073i −2.49013 4.31304i
\(789\) 0 0
\(790\) −11.7173 + 20.2950i −0.416885 + 0.722065i
\(791\) 30.8482 1.09684
\(792\) 0 0
\(793\) −8.89527 −0.315880
\(794\) 28.9567 50.1545i 1.02764 1.77992i
\(795\) 0 0
\(796\) 44.2170 + 76.5862i 1.56723 + 2.71452i
\(797\) −13.3001 23.0365i −0.471114 0.815993i 0.528340 0.849033i \(-0.322815\pi\)
−0.999454 + 0.0330394i \(0.989481\pi\)
\(798\) 0 0
\(799\) 4.13184 7.15656i 0.146174 0.253181i
\(800\) 127.145 4.49525
\(801\) 0 0
\(802\) −50.7745 −1.79291
\(803\) 4.60590 7.97766i 0.162539 0.281526i
\(804\) 0 0
\(805\) 1.01061 + 1.75043i 0.0356193 + 0.0616945i
\(806\) −8.74050 15.1390i −0.307871 0.533248i
\(807\) 0 0
\(808\) 80.5824 139.573i 2.83488 4.91015i
\(809\) 11.8241 0.415713 0.207857 0.978159i \(-0.433351\pi\)
0.207857 + 0.978159i \(0.433351\pi\)
\(810\) 0 0
\(811\) −23.5042 −0.825345 −0.412673 0.910879i \(-0.635405\pi\)
−0.412673 + 0.910879i \(0.635405\pi\)
\(812\) 8.60245 14.8999i 0.301887 0.522883i
\(813\) 0 0
\(814\) 2.35228 + 4.07428i 0.0824475 + 0.142803i
\(815\) −1.13599 1.96759i −0.0397920 0.0689218i
\(816\) 0 0
\(817\) −2.69510 + 4.66805i −0.0942896 + 0.163314i
\(818\) −91.2244 −3.18959
\(819\) 0 0
\(820\) −27.5955 −0.963676
\(821\) −21.9801 + 38.0706i −0.767111 + 1.32867i 0.172013 + 0.985095i \(0.444973\pi\)
−0.939123 + 0.343580i \(0.888360\pi\)
\(822\) 0 0
\(823\) 16.0977 + 27.8820i 0.561130 + 0.971906i 0.997398 + 0.0720892i \(0.0229666\pi\)
−0.436268 + 0.899817i \(0.643700\pi\)
\(824\) 24.0777 + 41.7037i 0.838785 + 1.45282i
\(825\) 0 0
\(826\) −3.31764 + 5.74632i −0.115435 + 0.199940i
\(827\) −10.2409 −0.356112 −0.178056 0.984020i \(-0.556981\pi\)
−0.178056 + 0.984020i \(0.556981\pi\)
\(828\) 0 0
\(829\) −30.1853 −1.04838 −0.524189 0.851602i \(-0.675631\pi\)
−0.524189 + 0.851602i \(0.675631\pi\)
\(830\) −2.69070 + 4.66043i −0.0933955 + 0.161766i
\(831\) 0 0
\(832\) −23.0180 39.8683i −0.798005 1.38219i
\(833\) 0.628456 + 1.08852i 0.0217747 + 0.0377149i
\(834\) 0 0
\(835\) −4.83808 + 8.37981i −0.167429 + 0.289995i
\(836\) 18.1754 0.628610
\(837\) 0 0
\(838\) −75.6354 −2.61278
\(839\) 24.4762 42.3940i 0.845011 1.46360i −0.0406006 0.999175i \(-0.512927\pi\)
0.885612 0.464427i \(-0.153740\pi\)
\(840\) 0 0
\(841\) 13.7917 + 23.8879i 0.475575 + 0.823719i
\(842\) 37.4294 + 64.8296i 1.28990 + 2.23418i
\(843\) 0 0
\(844\) 4.05577 7.02480i 0.139605 0.241803i
\(845\) −0.827986 −0.0284836
\(846\) 0 0
\(847\) 25.2489 0.867563
\(848\) −52.9291 + 91.6759i −1.81759 + 3.14816i
\(849\) 0 0
\(850\) −9.27054 16.0570i −0.317977 0.550752i
\(851\) 0.898557 + 1.55635i 0.0308021 + 0.0533509i
\(852\) 0 0
\(853\) −1.11612 + 1.93317i −0.0382151 + 0.0661904i −0.884500 0.466540i \(-0.845501\pi\)
0.846285 + 0.532730i \(0.178834\pi\)
\(854\) −61.8247 −2.11560
\(855\) 0 0
\(856\) 197.247 6.74178
\(857\) −15.4333 + 26.7312i −0.527191 + 0.913121i 0.472307 + 0.881434i \(0.343421\pi\)
−0.999498 + 0.0316870i \(0.989912\pi\)
\(858\) 0 0
\(859\) −15.0620 26.0881i −0.513908 0.890115i −0.999870 0.0161347i \(-0.994864\pi\)
0.485962 0.873980i \(-0.338469\pi\)
\(860\) 3.81522 + 6.60816i 0.130098 + 0.225336i
\(861\) 0 0
\(862\) 52.1602 90.3440i 1.77658 3.07713i
\(863\) 4.66893 0.158932 0.0794661 0.996838i \(-0.474678\pi\)
0.0794661 + 0.996838i \(0.474678\pi\)
\(864\) 0 0
\(865\) −1.60473 −0.0545626
\(866\) 6.53952 11.3268i 0.222222 0.384900i
\(867\) 0 0
\(868\) −45.1992 78.2873i −1.53416 2.65724i
\(869\) −4.65496 8.06263i −0.157909 0.273506i
\(870\) 0 0
\(871\) 6.56302 11.3675i 0.222379 0.385172i
\(872\) −84.8308 −2.87273
\(873\) 0 0
\(874\) 9.33143 0.315640
\(875\) 9.58804 16.6070i 0.324135 0.561418i
\(876\) 0 0
\(877\) −8.23844 14.2694i −0.278192 0.481843i 0.692743 0.721184i \(-0.256402\pi\)
−0.970936 + 0.239341i \(0.923069\pi\)
\(878\) −28.4156 49.2173i −0.958981 1.66100i
\(879\) 0 0
\(880\) 6.91629 11.9794i 0.233148 0.403824i
\(881\) −33.5567 −1.13055 −0.565276 0.824902i \(-0.691230\pi\)
−0.565276 + 0.824902i \(0.691230\pi\)
\(882\) 0 0
\(883\) 34.2126 1.15135 0.575673 0.817680i \(-0.304740\pi\)
0.575673 + 0.817680i \(0.304740\pi\)
\(884\) −4.46884 + 7.74026i −0.150303 + 0.260333i
\(885\) 0 0
\(886\) −0.766408 1.32746i −0.0257480 0.0445968i
\(887\) −6.93269 12.0078i −0.232777 0.403181i 0.725847 0.687856i \(-0.241448\pi\)
−0.958624 + 0.284674i \(0.908114\pi\)
\(888\) 0 0
\(889\) −11.5466 + 19.9993i −0.387261 + 0.670755i
\(890\) −29.1181 −0.976041
\(891\) 0 0
\(892\) 13.6144 0.455843
\(893\) 9.13840 15.8282i 0.305805 0.529670i
\(894\) 0 0
\(895\) −6.77071 11.7272i −0.226320 0.391997i
\(896\) −86.7067 150.180i −2.89667 5.01718i
\(897\) 0 0
\(898\) 21.9585 38.0333i 0.732766 1.26919i
\(899\) −7.44353 −0.248255
\(900\) 0 0
\(901\) 8.95706 0.298403
\(902\) 7.36721 12.7604i 0.245301 0.424874i
\(903\) 0 0
\(904\) −66.1249 114.532i −2.19928 3.80926i
\(905\) −6.12578 10.6102i −0.203628 0.352694i
\(906\) 0 0
\(907\) −7.85818 + 13.6108i −0.260927 + 0.451938i −0.966488 0.256710i \(-0.917361\pi\)
0.705562 + 0.708648i \(0.250695\pi\)
\(908\) 44.9645 1.49220
\(909\) 0 0
\(910\) −5.75474 −0.190768
\(911\) 13.2464 22.9434i 0.438871 0.760147i −0.558732 0.829349i \(-0.688712\pi\)
0.997603 + 0.0692014i \(0.0220451\pi\)
\(912\) 0 0
\(913\) −1.06894 1.85145i −0.0353766 0.0612741i
\(914\) 43.9004 + 76.0377i 1.45210 + 2.51510i
\(915\) 0 0
\(916\) −44.5194 + 77.1099i −1.47096 + 2.54778i
\(917\) 35.5973 1.17553
\(918\) 0 0
\(919\) −48.5748 −1.60233 −0.801167 0.598440i \(-0.795787\pi\)
−0.801167 + 0.598440i \(0.795787\pi\)
\(920\) 4.33260 7.50429i 0.142842 0.247409i
\(921\) 0 0
\(922\) −46.2788 80.1573i −1.52411 2.63984i
\(923\) 2.63929 + 4.57138i 0.0868733 + 0.150469i
\(924\) 0 0
\(925\) 3.94875 6.83943i 0.129834 0.224879i
\(926\) 49.6470 1.63150
\(927\) 0 0
\(928\) −35.0760 −1.15143
\(929\) −2.34708 + 4.06526i −0.0770052 + 0.133377i −0.901956 0.431827i \(-0.857869\pi\)
0.824951 + 0.565204i \(0.191202\pi\)
\(930\) 0 0
\(931\) 1.38996 + 2.40748i 0.0455540 + 0.0789019i
\(932\) 11.0921 + 19.2121i 0.363334 + 0.629312i
\(933\) 0 0
\(934\) −35.9238 + 62.2218i −1.17546 + 2.03596i
\(935\) −1.17043 −0.0382770
\(936\) 0 0
\(937\) 14.2950 0.466998 0.233499 0.972357i \(-0.424982\pi\)
0.233499 + 0.972357i \(0.424982\pi\)
\(938\) 45.6148 79.0072i 1.48938 2.57968i
\(939\) 0 0
\(940\) −12.9365 22.4066i −0.421941 0.730823i
\(941\) 8.02348 + 13.8971i 0.261558 + 0.453032i 0.966656 0.256078i \(-0.0824304\pi\)
−0.705098 + 0.709110i \(0.749097\pi\)
\(942\) 0 0
\(943\) 2.81422 4.87438i 0.0916438 0.158732i
\(944\) 17.3462 0.564570
\(945\) 0 0
\(946\) −4.07422 −0.132464
\(947\) 22.3155 38.6516i 0.725156 1.25601i −0.233754 0.972296i \(-0.575101\pi\)
0.958910 0.283711i \(-0.0915657\pi\)
\(948\) 0 0
\(949\) 5.00936 + 8.67647i 0.162611 + 0.281650i
\(950\) −20.5037 35.5134i −0.665227 1.15221i
\(951\) 0 0
\(952\) −20.3743 + 35.2894i −0.660336 + 1.14374i
\(953\) −3.70788 −0.120110 −0.0600550 0.998195i \(-0.519128\pi\)
−0.0600550 + 0.998195i \(0.519128\pi\)
\(954\) 0 0
\(955\) 18.2484 0.590505
\(956\) −31.0195 + 53.7274i −1.00324 + 1.73767i
\(957\) 0 0
\(958\) 25.9842 + 45.0060i 0.839512 + 1.45408i
\(959\) −15.8436 27.4420i −0.511618 0.886148i
\(960\) 0 0
\(961\) −4.05496 + 7.02340i −0.130805 + 0.226561i
\(962\) −5.11667 −0.164968
\(963\) 0 0
\(964\) 6.98144 0.224857
\(965\) 1.25787 2.17870i 0.0404924 0.0701349i
\(966\) 0 0
\(967\) 13.5476 + 23.4651i 0.435661 + 0.754587i 0.997349 0.0727618i \(-0.0231813\pi\)
−0.561688 + 0.827349i \(0.689848\pi\)
\(968\) −54.1225 93.7429i −1.73956 3.01301i
\(969\) 0 0
\(970\) 9.12380 15.8029i 0.292947 0.507400i
\(971\) 31.9545 1.02547 0.512735 0.858547i \(-0.328632\pi\)
0.512735 + 0.858547i \(0.328632\pi\)
\(972\) 0 0
\(973\) 39.3293 1.26084
\(974\) 38.7241 67.0721i 1.24080 2.14913i
\(975\) 0 0
\(976\) 80.8121 + 139.971i 2.58673 + 4.48035i
\(977\) −7.78060 13.4764i −0.248924 0.431148i 0.714304 0.699836i \(-0.246743\pi\)
−0.963227 + 0.268687i \(0.913410\pi\)
\(978\) 0 0
\(979\) 5.78388 10.0180i 0.184854 0.320176i
\(980\) 3.93529 0.125708
\(981\) 0 0
\(982\) 50.1741 1.60112
\(983\) −8.57195 + 14.8470i −0.273403 + 0.473547i −0.969731 0.244176i \(-0.921482\pi\)
0.696328 + 0.717723i \(0.254816\pi\)
\(984\) 0 0
\(985\) 9.95570 + 17.2438i 0.317215 + 0.549432i
\(986\) 2.55750 + 4.42972i 0.0814474 + 0.141071i
\(987\) 0 0
\(988\) −9.88375 + 17.1192i −0.314444 + 0.544633i
\(989\) −1.55633 −0.0494883
\(990\) 0 0
\(991\) 25.0309 0.795131 0.397566 0.917574i \(-0.369855\pi\)
0.397566 + 0.917574i \(0.369855\pi\)
\(992\) −92.1485 + 159.606i −2.92572 + 5.06749i
\(993\) 0 0
\(994\) 18.3438 + 31.7724i 0.581831 + 1.00776i
\(995\) −6.29761 10.9078i −0.199648 0.345800i
\(996\) 0 0
\(997\) 9.17948 15.8993i 0.290717 0.503537i −0.683262 0.730173i \(-0.739439\pi\)
0.973979 + 0.226636i \(0.0727728\pi\)
\(998\) 67.9756 2.15173
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 351.2.e.b.235.5 10
3.2 odd 2 117.2.e.b.79.1 yes 10
9.2 odd 6 1053.2.a.k.1.5 5
9.4 even 3 inner 351.2.e.b.118.5 10
9.5 odd 6 117.2.e.b.40.1 10
9.7 even 3 1053.2.a.j.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.e.b.40.1 10 9.5 odd 6
117.2.e.b.79.1 yes 10 3.2 odd 2
351.2.e.b.118.5 10 9.4 even 3 inner
351.2.e.b.235.5 10 1.1 even 1 trivial
1053.2.a.j.1.1 5 9.7 even 3
1053.2.a.k.1.5 5 9.2 odd 6