Properties

Label 351.2.bf.a.305.5
Level $351$
Weight $2$
Character 351.305
Analytic conductor $2.803$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [351,2,Mod(206,351)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("351.206"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(351, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([10, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.bf (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.80274911095\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 305.5
Character \(\chi\) \(=\) 351.305
Dual form 351.2.bf.a.206.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.242585 + 0.905339i) q^{2} +(0.971260 + 0.560757i) q^{4} +(-0.0271738 + 0.101414i) q^{5} +(0.258484 + 0.258484i) q^{7} +(-2.06880 + 2.06880i) q^{8} +(-0.0852221 - 0.0492030i) q^{10} +(3.07551 + 0.824082i) q^{11} +(-1.04439 + 3.45098i) q^{13} +(-0.296719 + 0.171311i) q^{14} +(-0.249589 - 0.432300i) q^{16} +(-0.713952 - 1.23660i) q^{17} +(2.92701 + 0.784289i) q^{19} +(-0.0832615 + 0.0832615i) q^{20} +(-1.49215 + 2.58447i) q^{22} -3.67374 q^{23} +(4.32058 + 2.49449i) q^{25} +(-2.87095 - 1.78269i) q^{26} +(0.106108 + 0.396001i) q^{28} +(4.47859 - 2.58571i) q^{29} +(-5.46656 - 1.46476i) q^{31} +(-5.20013 + 1.39337i) q^{32} +(1.29274 - 0.346388i) q^{34} +(-0.0332378 + 0.0191899i) q^{35} +(-4.32627 + 1.15922i) q^{37} +(-1.42009 + 2.45967i) q^{38} +(-0.153588 - 0.266022i) q^{40} +(4.81135 + 4.81135i) q^{41} -2.24631i q^{43} +(2.52501 + 2.52501i) q^{44} +(0.891194 - 3.32598i) q^{46} +(1.18436 + 4.42009i) q^{47} -6.86637i q^{49} +(-3.30646 + 3.30646i) q^{50} +(-2.94954 + 2.76614i) q^{52} -13.0901i q^{53} +(-0.167147 + 0.289507i) q^{55} -1.06950 q^{56} +(1.25451 + 4.68189i) q^{58} +(0.895419 + 3.34175i) q^{59} -6.24756 q^{61} +(2.65221 - 4.59376i) q^{62} -6.04425i q^{64} +(-0.321597 - 0.199692i) q^{65} +(10.8384 - 10.8384i) q^{67} -1.60142i q^{68} +(-0.00931034 - 0.0347467i) q^{70} +(1.56835 - 5.85317i) q^{71} +(-4.13084 - 4.13084i) q^{73} -4.19795i q^{74} +(2.40309 + 2.40309i) q^{76} +(0.581958 + 1.00798i) q^{77} +(8.15587 - 14.1264i) q^{79} +(0.0506235 - 0.0135645i) q^{80} +(-5.52307 + 3.18874i) q^{82} +(16.0296 - 4.29512i) q^{83} +(0.144809 - 0.0388016i) q^{85} +(2.03367 + 0.544920i) q^{86} +(-8.06747 + 4.65776i) q^{88} +(0.630472 + 2.35295i) q^{89} +(-1.16198 + 0.622062i) q^{91} +(-3.56816 - 2.06008i) q^{92} -4.28898 q^{94} +(-0.159076 + 0.275527i) q^{95} +(-8.74938 + 8.74938i) q^{97} +(6.21639 + 1.66568i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 6 q^{2} - 6 q^{4} + 6 q^{5} + 2 q^{7} + 30 q^{8} - 12 q^{10} - 6 q^{11} - 2 q^{13} + 12 q^{14} + 14 q^{16} - 4 q^{19} + 6 q^{20} + 2 q^{22} + 12 q^{23} - 48 q^{26} + 6 q^{29} + 6 q^{31} - 30 q^{32}+ \cdots + 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.242585 + 0.905339i −0.171533 + 0.640171i 0.825583 + 0.564281i \(0.190847\pi\)
−0.997116 + 0.0758902i \(0.975820\pi\)
\(3\) 0 0
\(4\) 0.971260 + 0.560757i 0.485630 + 0.280379i
\(5\) −0.0271738 + 0.101414i −0.0121525 + 0.0453537i −0.971736 0.236071i \(-0.924140\pi\)
0.959583 + 0.281425i \(0.0908069\pi\)
\(6\) 0 0
\(7\) 0.258484 + 0.258484i 0.0976976 + 0.0976976i 0.754266 0.656569i \(-0.227993\pi\)
−0.656569 + 0.754266i \(0.727993\pi\)
\(8\) −2.06880 + 2.06880i −0.731430 + 0.731430i
\(9\) 0 0
\(10\) −0.0852221 0.0492030i −0.0269496 0.0155594i
\(11\) 3.07551 + 0.824082i 0.927303 + 0.248470i 0.690704 0.723138i \(-0.257301\pi\)
0.236598 + 0.971608i \(0.423967\pi\)
\(12\) 0 0
\(13\) −1.04439 + 3.45098i −0.289663 + 0.957129i
\(14\) −0.296719 + 0.171311i −0.0793016 + 0.0457848i
\(15\) 0 0
\(16\) −0.249589 0.432300i −0.0623971 0.108075i
\(17\) −0.713952 1.23660i −0.173159 0.299920i 0.766364 0.642407i \(-0.222064\pi\)
−0.939523 + 0.342487i \(0.888731\pi\)
\(18\) 0 0
\(19\) 2.92701 + 0.784289i 0.671501 + 0.179928i 0.578431 0.815731i \(-0.303665\pi\)
0.0930701 + 0.995660i \(0.470332\pi\)
\(20\) −0.0832615 + 0.0832615i −0.0186178 + 0.0186178i
\(21\) 0 0
\(22\) −1.49215 + 2.58447i −0.318127 + 0.551011i
\(23\) −3.67374 −0.766028 −0.383014 0.923742i \(-0.625114\pi\)
−0.383014 + 0.923742i \(0.625114\pi\)
\(24\) 0 0
\(25\) 4.32058 + 2.49449i 0.864116 + 0.498898i
\(26\) −2.87095 1.78269i −0.563039 0.349613i
\(27\) 0 0
\(28\) 0.106108 + 0.396001i 0.0200526 + 0.0748372i
\(29\) 4.47859 2.58571i 0.831652 0.480155i −0.0227657 0.999741i \(-0.507247\pi\)
0.854418 + 0.519586i \(0.173914\pi\)
\(30\) 0 0
\(31\) −5.46656 1.46476i −0.981823 0.263079i −0.268011 0.963416i \(-0.586366\pi\)
−0.713812 + 0.700337i \(0.753033\pi\)
\(32\) −5.20013 + 1.39337i −0.919262 + 0.246316i
\(33\) 0 0
\(34\) 1.29274 0.346388i 0.221703 0.0594050i
\(35\) −0.0332378 + 0.0191899i −0.00561822 + 0.00324368i
\(36\) 0 0
\(37\) −4.32627 + 1.15922i −0.711234 + 0.190575i −0.596257 0.802793i \(-0.703346\pi\)
−0.114977 + 0.993368i \(0.536679\pi\)
\(38\) −1.42009 + 2.45967i −0.230370 + 0.399012i
\(39\) 0 0
\(40\) −0.153588 0.266022i −0.0242844 0.0420618i
\(41\) 4.81135 + 4.81135i 0.751407 + 0.751407i 0.974742 0.223335i \(-0.0716942\pi\)
−0.223335 + 0.974742i \(0.571694\pi\)
\(42\) 0 0
\(43\) 2.24631i 0.342559i −0.985222 0.171279i \(-0.945210\pi\)
0.985222 0.171279i \(-0.0547901\pi\)
\(44\) 2.52501 + 2.52501i 0.380660 + 0.380660i
\(45\) 0 0
\(46\) 0.891194 3.32598i 0.131399 0.490389i
\(47\) 1.18436 + 4.42009i 0.172756 + 0.644736i 0.996923 + 0.0783882i \(0.0249773\pi\)
−0.824166 + 0.566348i \(0.808356\pi\)
\(48\) 0 0
\(49\) 6.86637i 0.980910i
\(50\) −3.30646 + 3.30646i −0.467605 + 0.467605i
\(51\) 0 0
\(52\) −2.94954 + 2.76614i −0.409027 + 0.383595i
\(53\) 13.0901i 1.79807i −0.437881 0.899033i \(-0.644271\pi\)
0.437881 0.899033i \(-0.355729\pi\)
\(54\) 0 0
\(55\) −0.167147 + 0.289507i −0.0225381 + 0.0390371i
\(56\) −1.06950 −0.142918
\(57\) 0 0
\(58\) 1.25451 + 4.68189i 0.164725 + 0.614762i
\(59\) 0.895419 + 3.34175i 0.116574 + 0.435059i 0.999400 0.0346412i \(-0.0110288\pi\)
−0.882826 + 0.469700i \(0.844362\pi\)
\(60\) 0 0
\(61\) −6.24756 −0.799919 −0.399959 0.916533i \(-0.630976\pi\)
−0.399959 + 0.916533i \(0.630976\pi\)
\(62\) 2.65221 4.59376i 0.336831 0.583408i
\(63\) 0 0
\(64\) 6.04425i 0.755531i
\(65\) −0.321597 0.199692i −0.0398892 0.0247688i
\(66\) 0 0
\(67\) 10.8384 10.8384i 1.32412 1.32412i 0.413712 0.910408i \(-0.364232\pi\)
0.910408 0.413712i \(-0.135768\pi\)
\(68\) 1.60142i 0.194200i
\(69\) 0 0
\(70\) −0.00931034 0.0347467i −0.00111280 0.00415302i
\(71\) 1.56835 5.85317i 0.186129 0.694643i −0.808257 0.588830i \(-0.799589\pi\)
0.994386 0.105813i \(-0.0337445\pi\)
\(72\) 0 0
\(73\) −4.13084 4.13084i −0.483478 0.483478i 0.422763 0.906241i \(-0.361060\pi\)
−0.906241 + 0.422763i \(0.861060\pi\)
\(74\) 4.19795i 0.488002i
\(75\) 0 0
\(76\) 2.40309 + 2.40309i 0.275653 + 0.275653i
\(77\) 0.581958 + 1.00798i 0.0663203 + 0.114870i
\(78\) 0 0
\(79\) 8.15587 14.1264i 0.917607 1.58934i 0.114569 0.993415i \(-0.463451\pi\)
0.803039 0.595927i \(-0.203215\pi\)
\(80\) 0.0506235 0.0135645i 0.00565988 0.00151656i
\(81\) 0 0
\(82\) −5.52307 + 3.18874i −0.609921 + 0.352138i
\(83\) 16.0296 4.29512i 1.75948 0.471450i 0.772870 0.634565i \(-0.218821\pi\)
0.986607 + 0.163114i \(0.0521539\pi\)
\(84\) 0 0
\(85\) 0.144809 0.0388016i 0.0157068 0.00420862i
\(86\) 2.03367 + 0.544920i 0.219296 + 0.0587603i
\(87\) 0 0
\(88\) −8.06747 + 4.65776i −0.859995 + 0.496518i
\(89\) 0.630472 + 2.35295i 0.0668298 + 0.249412i 0.991257 0.131947i \(-0.0421228\pi\)
−0.924427 + 0.381359i \(0.875456\pi\)
\(90\) 0 0
\(91\) −1.16198 + 0.622062i −0.121809 + 0.0652098i
\(92\) −3.56816 2.06008i −0.372006 0.214778i
\(93\) 0 0
\(94\) −4.28898 −0.442375
\(95\) −0.159076 + 0.275527i −0.0163208 + 0.0282685i
\(96\) 0 0
\(97\) −8.74938 + 8.74938i −0.888365 + 0.888365i −0.994366 0.106001i \(-0.966195\pi\)
0.106001 + 0.994366i \(0.466195\pi\)
\(98\) 6.21639 + 1.66568i 0.627951 + 0.168259i
\(99\) 0 0
\(100\) 2.79760 + 4.84559i 0.279760 + 0.484559i
\(101\) −1.90137 3.29328i −0.189194 0.327693i 0.755788 0.654817i \(-0.227254\pi\)
−0.944982 + 0.327123i \(0.893921\pi\)
\(102\) 0 0
\(103\) 5.80875 3.35368i 0.572353 0.330448i −0.185736 0.982600i \(-0.559467\pi\)
0.758089 + 0.652152i \(0.226133\pi\)
\(104\) −4.97873 9.30001i −0.488204 0.911941i
\(105\) 0 0
\(106\) 11.8510 + 3.17546i 1.15107 + 0.308428i
\(107\) −10.4912 6.05707i −1.01422 0.585559i −0.101795 0.994805i \(-0.532458\pi\)
−0.912424 + 0.409246i \(0.865792\pi\)
\(108\) 0 0
\(109\) −0.643264 + 0.643264i −0.0616135 + 0.0616135i −0.737242 0.675629i \(-0.763872\pi\)
0.675629 + 0.737242i \(0.263872\pi\)
\(110\) −0.221554 0.221554i −0.0211244 0.0211244i
\(111\) 0 0
\(112\) 0.0472279 0.176257i 0.00446262 0.0166547i
\(113\) 2.66379 + 1.53794i 0.250588 + 0.144677i 0.620033 0.784575i \(-0.287119\pi\)
−0.369446 + 0.929252i \(0.620452\pi\)
\(114\) 0 0
\(115\) 0.0998296 0.372569i 0.00930915 0.0347422i
\(116\) 5.79983 0.538500
\(117\) 0 0
\(118\) −3.24263 −0.298508
\(119\) 0.135096 0.504186i 0.0123843 0.0462187i
\(120\) 0 0
\(121\) −0.746600 0.431050i −0.0678728 0.0391864i
\(122\) 1.51556 5.65616i 0.137213 0.512085i
\(123\) 0 0
\(124\) −4.48807 4.48807i −0.403041 0.403041i
\(125\) −0.741584 + 0.741584i −0.0663293 + 0.0663293i
\(126\) 0 0
\(127\) 11.1811 + 6.45543i 0.992165 + 0.572827i 0.905921 0.423448i \(-0.139180\pi\)
0.0862440 + 0.996274i \(0.472514\pi\)
\(128\) −4.92817 1.32050i −0.435593 0.116717i
\(129\) 0 0
\(130\) 0.258804 0.242712i 0.0226986 0.0212873i
\(131\) 13.4537 7.76749i 1.17545 0.678649i 0.220495 0.975388i \(-0.429233\pi\)
0.954958 + 0.296739i \(0.0958993\pi\)
\(132\) 0 0
\(133\) 0.553857 + 0.959308i 0.0480255 + 0.0831826i
\(134\) 7.18319 + 12.4416i 0.620533 + 1.07479i
\(135\) 0 0
\(136\) 4.03530 + 1.08125i 0.346024 + 0.0927168i
\(137\) −13.0356 + 13.0356i −1.11371 + 1.11371i −0.121062 + 0.992645i \(0.538630\pi\)
−0.992645 + 0.121062i \(0.961370\pi\)
\(138\) 0 0
\(139\) −4.54133 + 7.86581i −0.385190 + 0.667169i −0.991796 0.127834i \(-0.959198\pi\)
0.606605 + 0.795003i \(0.292531\pi\)
\(140\) −0.0430434 −0.00363783
\(141\) 0 0
\(142\) 4.91864 + 2.83978i 0.412763 + 0.238309i
\(143\) −6.05594 + 9.75286i −0.506423 + 0.815575i
\(144\) 0 0
\(145\) 0.140527 + 0.524455i 0.0116702 + 0.0435536i
\(146\) 4.74189 2.73773i 0.392441 0.226576i
\(147\) 0 0
\(148\) −4.85197 1.30008i −0.398830 0.106866i
\(149\) −11.6315 + 3.11666i −0.952892 + 0.255327i −0.701589 0.712582i \(-0.747526\pi\)
−0.251303 + 0.967908i \(0.580859\pi\)
\(150\) 0 0
\(151\) 0.0407571 0.0109208i 0.00331676 0.000888724i −0.257160 0.966369i \(-0.582787\pi\)
0.260477 + 0.965480i \(0.416120\pi\)
\(152\) −7.67791 + 4.43284i −0.622761 + 0.359551i
\(153\) 0 0
\(154\) −1.05374 + 0.282348i −0.0849127 + 0.0227523i
\(155\) 0.297094 0.514583i 0.0238632 0.0413323i
\(156\) 0 0
\(157\) −6.95508 12.0466i −0.555076 0.961420i −0.997898 0.0648102i \(-0.979356\pi\)
0.442822 0.896610i \(-0.353978\pi\)
\(158\) 10.8107 + 10.8107i 0.860051 + 0.860051i
\(159\) 0 0
\(160\) 0.565229i 0.0446853i
\(161\) −0.949602 0.949602i −0.0748391 0.0748391i
\(162\) 0 0
\(163\) 0.208136 0.776776i 0.0163025 0.0608418i −0.957295 0.289112i \(-0.906640\pi\)
0.973598 + 0.228270i \(0.0733068\pi\)
\(164\) 1.97507 + 7.37108i 0.154227 + 0.575584i
\(165\) 0 0
\(166\) 15.5541i 1.20724i
\(167\) −10.9713 + 10.9713i −0.848985 + 0.848985i −0.990007 0.141021i \(-0.954961\pi\)
0.141021 + 0.990007i \(0.454961\pi\)
\(168\) 0 0
\(169\) −10.8185 7.20836i −0.832191 0.554489i
\(170\) 0.140514i 0.0107770i
\(171\) 0 0
\(172\) 1.25963 2.18175i 0.0960462 0.166357i
\(173\) −15.3374 −1.16608 −0.583039 0.812444i \(-0.698137\pi\)
−0.583039 + 0.812444i \(0.698137\pi\)
\(174\) 0 0
\(175\) 0.472015 + 1.76158i 0.0356810 + 0.133163i
\(176\) −0.411363 1.53523i −0.0310076 0.115722i
\(177\) 0 0
\(178\) −2.28316 −0.171130
\(179\) −9.33636 + 16.1710i −0.697832 + 1.20868i 0.271385 + 0.962471i \(0.412518\pi\)
−0.969217 + 0.246209i \(0.920815\pi\)
\(180\) 0 0
\(181\) 14.2199i 1.05695i 0.848947 + 0.528477i \(0.177237\pi\)
−0.848947 + 0.528477i \(0.822763\pi\)
\(182\) −0.281298 1.20289i −0.0208512 0.0891640i
\(183\) 0 0
\(184\) 7.60022 7.60022i 0.560296 0.560296i
\(185\) 0.470245i 0.0345731i
\(186\) 0 0
\(187\) −1.17671 4.39154i −0.0860495 0.321141i
\(188\) −1.32827 + 4.95719i −0.0968744 + 0.361540i
\(189\) 0 0
\(190\) −0.210856 0.210856i −0.0152971 0.0152971i
\(191\) 7.33571i 0.530793i −0.964139 0.265397i \(-0.914497\pi\)
0.964139 0.265397i \(-0.0855029\pi\)
\(192\) 0 0
\(193\) 15.1355 + 15.1355i 1.08948 + 1.08948i 0.995582 + 0.0938977i \(0.0299327\pi\)
0.0938977 + 0.995582i \(0.470067\pi\)
\(194\) −5.79868 10.0436i −0.416321 0.721090i
\(195\) 0 0
\(196\) 3.85037 6.66903i 0.275026 0.476359i
\(197\) 3.74628 1.00381i 0.266911 0.0715186i −0.122881 0.992421i \(-0.539213\pi\)
0.389792 + 0.920903i \(0.372547\pi\)
\(198\) 0 0
\(199\) 8.87017 5.12119i 0.628790 0.363032i −0.151494 0.988458i \(-0.548408\pi\)
0.780283 + 0.625426i \(0.215075\pi\)
\(200\) −14.0990 + 3.77781i −0.996949 + 0.267132i
\(201\) 0 0
\(202\) 3.44278 0.922489i 0.242233 0.0649061i
\(203\) 1.82600 + 0.489276i 0.128160 + 0.0343405i
\(204\) 0 0
\(205\) −0.618682 + 0.357196i −0.0432106 + 0.0249476i
\(206\) 1.62710 + 6.07244i 0.113366 + 0.423087i
\(207\) 0 0
\(208\) 1.75253 0.409832i 0.121516 0.0284168i
\(209\) 8.35573 + 4.82418i 0.577978 + 0.333696i
\(210\) 0 0
\(211\) −18.0710 −1.24406 −0.622030 0.782994i \(-0.713692\pi\)
−0.622030 + 0.782994i \(0.713692\pi\)
\(212\) 7.34038 12.7139i 0.504139 0.873195i
\(213\) 0 0
\(214\) 8.02870 8.02870i 0.548831 0.548831i
\(215\) 0.227807 + 0.0610407i 0.0155363 + 0.00416294i
\(216\) 0 0
\(217\) −1.03440 1.79163i −0.0702196 0.121624i
\(218\) −0.426326 0.738418i −0.0288744 0.0500119i
\(219\) 0 0
\(220\) −0.324686 + 0.187458i −0.0218903 + 0.0126384i
\(221\) 5.01313 1.17233i 0.337220 0.0788596i
\(222\) 0 0
\(223\) −3.09913 0.830410i −0.207533 0.0556083i 0.153555 0.988140i \(-0.450928\pi\)
−0.361088 + 0.932532i \(0.617595\pi\)
\(224\) −1.70431 0.983985i −0.113874 0.0657453i
\(225\) 0 0
\(226\) −2.03855 + 2.03855i −0.135602 + 0.135602i
\(227\) 2.68532 + 2.68532i 0.178231 + 0.178231i 0.790584 0.612353i \(-0.209777\pi\)
−0.612353 + 0.790584i \(0.709777\pi\)
\(228\) 0 0
\(229\) −4.54078 + 16.9464i −0.300063 + 1.11985i 0.637050 + 0.770823i \(0.280155\pi\)
−0.937113 + 0.349027i \(0.886512\pi\)
\(230\) 0.313084 + 0.180759i 0.0206441 + 0.0119189i
\(231\) 0 0
\(232\) −3.91597 + 14.6146i −0.257096 + 0.959495i
\(233\) 14.4728 0.948143 0.474072 0.880486i \(-0.342784\pi\)
0.474072 + 0.880486i \(0.342784\pi\)
\(234\) 0 0
\(235\) −0.480442 −0.0313406
\(236\) −1.00423 + 3.74782i −0.0653695 + 0.243962i
\(237\) 0 0
\(238\) 0.423687 + 0.244616i 0.0274635 + 0.0158561i
\(239\) 5.30038 19.7813i 0.342853 1.27955i −0.552247 0.833681i \(-0.686229\pi\)
0.895100 0.445865i \(-0.147104\pi\)
\(240\) 0 0
\(241\) 17.0780 + 17.0780i 1.10009 + 1.10009i 0.994399 + 0.105692i \(0.0337058\pi\)
0.105692 + 0.994399i \(0.466294\pi\)
\(242\) 0.571360 0.571360i 0.0367284 0.0367284i
\(243\) 0 0
\(244\) −6.06801 3.50337i −0.388464 0.224280i
\(245\) 0.696346 + 0.186585i 0.0444879 + 0.0119205i
\(246\) 0 0
\(247\) −5.76351 + 9.28192i −0.366723 + 0.590594i
\(248\) 14.3395 8.27891i 0.910558 0.525711i
\(249\) 0 0
\(250\) −0.491488 0.851281i −0.0310844 0.0538398i
\(251\) 3.92544 + 6.79906i 0.247772 + 0.429153i 0.962907 0.269833i \(-0.0869684\pi\)
−0.715136 + 0.698986i \(0.753635\pi\)
\(252\) 0 0
\(253\) −11.2986 3.02746i −0.710340 0.190335i
\(254\) −8.55672 + 8.55672i −0.536896 + 0.536896i
\(255\) 0 0
\(256\) 8.43525 14.6103i 0.527203 0.913142i
\(257\) −26.3536 −1.64389 −0.821947 0.569564i \(-0.807112\pi\)
−0.821947 + 0.569564i \(0.807112\pi\)
\(258\) 0 0
\(259\) −1.41791 0.818630i −0.0881046 0.0508672i
\(260\) −0.200376 0.374291i −0.0124268 0.0232126i
\(261\) 0 0
\(262\) 3.76855 + 14.0644i 0.232822 + 0.868903i
\(263\) 18.2900 10.5598i 1.12781 0.651143i 0.184429 0.982846i \(-0.440957\pi\)
0.943384 + 0.331703i \(0.107623\pi\)
\(264\) 0 0
\(265\) 1.32752 + 0.355708i 0.0815490 + 0.0218510i
\(266\) −1.00286 + 0.268715i −0.0614891 + 0.0164759i
\(267\) 0 0
\(268\) 16.6046 4.44919i 1.01429 0.271777i
\(269\) −3.78449 + 2.18498i −0.230744 + 0.133220i −0.610915 0.791696i \(-0.709198\pi\)
0.380171 + 0.924916i \(0.375865\pi\)
\(270\) 0 0
\(271\) 13.6523 3.65813i 0.829320 0.222216i 0.180903 0.983501i \(-0.442098\pi\)
0.648417 + 0.761285i \(0.275431\pi\)
\(272\) −0.356389 + 0.617283i −0.0216092 + 0.0374283i
\(273\) 0 0
\(274\) −8.63940 14.9639i −0.521925 0.904001i
\(275\) 11.2323 + 11.2323i 0.677336 + 0.677336i
\(276\) 0 0
\(277\) 24.5946i 1.47775i 0.673844 + 0.738874i \(0.264642\pi\)
−0.673844 + 0.738874i \(0.735358\pi\)
\(278\) −6.01957 6.01957i −0.361030 0.361030i
\(279\) 0 0
\(280\) 0.0290624 0.108462i 0.00173681 0.00648186i
\(281\) −5.45626 20.3630i −0.325493 1.21476i −0.913815 0.406131i \(-0.866878\pi\)
0.588322 0.808627i \(-0.299789\pi\)
\(282\) 0 0
\(283\) 4.03021i 0.239571i 0.992800 + 0.119786i \(0.0382207\pi\)
−0.992800 + 0.119786i \(0.961779\pi\)
\(284\) 4.80548 4.80548i 0.285153 0.285153i
\(285\) 0 0
\(286\) −7.36057 7.84857i −0.435239 0.464096i
\(287\) 2.48731i 0.146821i
\(288\) 0 0
\(289\) 7.48054 12.9567i 0.440032 0.762158i
\(290\) −0.508899 −0.0298836
\(291\) 0 0
\(292\) −1.69572 6.32851i −0.0992345 0.370348i
\(293\) −2.98875 11.1541i −0.174604 0.651632i −0.996619 0.0821655i \(-0.973816\pi\)
0.822014 0.569467i \(-0.192850\pi\)
\(294\) 0 0
\(295\) −0.363232 −0.0211482
\(296\) 6.55198 11.3484i 0.380826 0.659610i
\(297\) 0 0
\(298\) 11.2865i 0.653811i
\(299\) 3.83684 12.6780i 0.221890 0.733188i
\(300\) 0 0
\(301\) 0.580634 0.580634i 0.0334672 0.0334672i
\(302\) 0.0395482i 0.00227574i
\(303\) 0 0
\(304\) −0.391499 1.46109i −0.0224540 0.0837995i
\(305\) 0.169770 0.633591i 0.00972101 0.0362793i
\(306\) 0 0
\(307\) −17.9190 17.9190i −1.02269 1.02269i −0.999737 0.0229527i \(-0.992693\pi\)
−0.0229527 0.999737i \(-0.507307\pi\)
\(308\) 1.30535i 0.0743792i
\(309\) 0 0
\(310\) 0.393801 + 0.393801i 0.0223664 + 0.0223664i
\(311\) 11.1301 + 19.2779i 0.631129 + 1.09315i 0.987321 + 0.158735i \(0.0507415\pi\)
−0.356192 + 0.934413i \(0.615925\pi\)
\(312\) 0 0
\(313\) 4.30058 7.44883i 0.243083 0.421033i −0.718508 0.695519i \(-0.755175\pi\)
0.961591 + 0.274486i \(0.0885078\pi\)
\(314\) 12.5934 3.37439i 0.710687 0.190428i
\(315\) 0 0
\(316\) 15.8429 9.14693i 0.891235 0.514555i
\(317\) −30.4177 + 8.15039i −1.70843 + 0.457771i −0.975038 0.222039i \(-0.928729\pi\)
−0.733388 + 0.679810i \(0.762062\pi\)
\(318\) 0 0
\(319\) 15.9048 4.26168i 0.890497 0.238608i
\(320\) 0.612971 + 0.164245i 0.0342661 + 0.00918158i
\(321\) 0 0
\(322\) 1.09007 0.629352i 0.0607472 0.0350724i
\(323\) −1.11989 4.17948i −0.0623123 0.232553i
\(324\) 0 0
\(325\) −13.1208 + 12.3050i −0.727812 + 0.682558i
\(326\) 0.652755 + 0.376868i 0.0361527 + 0.0208728i
\(327\) 0 0
\(328\) −19.9074 −1.09920
\(329\) −0.836382 + 1.44866i −0.0461112 + 0.0798670i
\(330\) 0 0
\(331\) −11.0641 + 11.0641i −0.608138 + 0.608138i −0.942459 0.334321i \(-0.891493\pi\)
0.334321 + 0.942459i \(0.391493\pi\)
\(332\) 17.9774 + 4.81704i 0.986639 + 0.264369i
\(333\) 0 0
\(334\) −7.27128 12.5942i −0.397867 0.689125i
\(335\) 0.804644 + 1.39368i 0.0439624 + 0.0761451i
\(336\) 0 0
\(337\) −5.42515 + 3.13221i −0.295527 + 0.170622i −0.640432 0.768015i \(-0.721244\pi\)
0.344905 + 0.938638i \(0.387911\pi\)
\(338\) 9.15041 8.04575i 0.497717 0.437631i
\(339\) 0 0
\(340\) 0.162406 + 0.0435165i 0.00880770 + 0.00236002i
\(341\) −15.6054 9.00978i −0.845080 0.487907i
\(342\) 0 0
\(343\) 3.58423 3.58423i 0.193530 0.193530i
\(344\) 4.64715 + 4.64715i 0.250558 + 0.250558i
\(345\) 0 0
\(346\) 3.72061 13.8855i 0.200021 0.746490i
\(347\) 15.7963 + 9.12001i 0.847991 + 0.489588i 0.859972 0.510340i \(-0.170481\pi\)
−0.0119815 + 0.999928i \(0.503814\pi\)
\(348\) 0 0
\(349\) 2.07490 7.74363i 0.111067 0.414507i −0.887896 0.460045i \(-0.847833\pi\)
0.998963 + 0.0455376i \(0.0145001\pi\)
\(350\) −1.70933 −0.0913677
\(351\) 0 0
\(352\) −17.1413 −0.913636
\(353\) 4.47040 16.6838i 0.237935 0.887987i −0.738868 0.673850i \(-0.764639\pi\)
0.976804 0.214137i \(-0.0686939\pi\)
\(354\) 0 0
\(355\) 0.550975 + 0.318106i 0.0292427 + 0.0168833i
\(356\) −0.707083 + 2.63887i −0.0374753 + 0.139860i
\(357\) 0 0
\(358\) −12.3754 12.3754i −0.654061 0.654061i
\(359\) 21.8853 21.8853i 1.15506 1.15506i 0.169540 0.985523i \(-0.445772\pi\)
0.985523 0.169540i \(-0.0542283\pi\)
\(360\) 0 0
\(361\) −8.50223 4.90877i −0.447486 0.258356i
\(362\) −12.8738 3.44952i −0.676632 0.181303i
\(363\) 0 0
\(364\) −1.47741 0.0474045i −0.0774373 0.00248467i
\(365\) 0.531175 0.306674i 0.0278030 0.0160521i
\(366\) 0 0
\(367\) 0.655382 + 1.13515i 0.0342106 + 0.0592546i 0.882624 0.470080i \(-0.155775\pi\)
−0.848413 + 0.529335i \(0.822442\pi\)
\(368\) 0.916924 + 1.58816i 0.0477980 + 0.0827885i
\(369\) 0 0
\(370\) 0.425731 + 0.114074i 0.0221327 + 0.00593044i
\(371\) 3.38358 3.38358i 0.175667 0.175667i
\(372\) 0 0
\(373\) 14.4107 24.9601i 0.746157 1.29238i −0.203495 0.979076i \(-0.565230\pi\)
0.949652 0.313306i \(-0.101437\pi\)
\(374\) 4.26128 0.220346
\(375\) 0 0
\(376\) −11.5945 6.69406i −0.597938 0.345220i
\(377\) 4.24582 + 18.1560i 0.218671 + 0.935081i
\(378\) 0 0
\(379\) −4.45400 16.6226i −0.228787 0.853843i −0.980852 0.194755i \(-0.937609\pi\)
0.752065 0.659088i \(-0.229058\pi\)
\(380\) −0.309008 + 0.178406i −0.0158518 + 0.00915202i
\(381\) 0 0
\(382\) 6.64130 + 1.77953i 0.339798 + 0.0910487i
\(383\) −30.9702 + 8.29843i −1.58250 + 0.424030i −0.939699 0.342003i \(-0.888895\pi\)
−0.642802 + 0.766033i \(0.722228\pi\)
\(384\) 0 0
\(385\) −0.118037 + 0.0316280i −0.00601575 + 0.00161191i
\(386\) −17.3744 + 10.0311i −0.884336 + 0.510571i
\(387\) 0 0
\(388\) −13.4042 + 3.59164i −0.680495 + 0.182338i
\(389\) −8.01814 + 13.8878i −0.406536 + 0.704141i −0.994499 0.104747i \(-0.966597\pi\)
0.587963 + 0.808888i \(0.299930\pi\)
\(390\) 0 0
\(391\) 2.62288 + 4.54295i 0.132645 + 0.229747i
\(392\) 14.2051 + 14.2051i 0.717467 + 0.717467i
\(393\) 0 0
\(394\) 3.63516i 0.183137i
\(395\) 1.21099 + 1.21099i 0.0609314 + 0.0609314i
\(396\) 0 0
\(397\) −7.81599 + 29.1697i −0.392273 + 1.46398i 0.434102 + 0.900864i \(0.357066\pi\)
−0.826375 + 0.563120i \(0.809601\pi\)
\(398\) 2.48465 + 9.27283i 0.124544 + 0.464805i
\(399\) 0 0
\(400\) 2.49038i 0.124519i
\(401\) −8.02571 + 8.02571i −0.400785 + 0.400785i −0.878510 0.477725i \(-0.841462\pi\)
0.477725 + 0.878510i \(0.341462\pi\)
\(402\) 0 0
\(403\) 10.7641 17.3352i 0.536198 0.863527i
\(404\) 4.26484i 0.212184i
\(405\) 0 0
\(406\) −0.885922 + 1.53446i −0.0439676 + 0.0761541i
\(407\) −14.2608 −0.706881
\(408\) 0 0
\(409\) 3.04978 + 11.3819i 0.150802 + 0.562800i 0.999428 + 0.0338077i \(0.0107634\pi\)
−0.848626 + 0.528993i \(0.822570\pi\)
\(410\) −0.173301 0.646767i −0.00855871 0.0319415i
\(411\) 0 0
\(412\) 7.52240 0.370602
\(413\) −0.632336 + 1.09524i −0.0311152 + 0.0538931i
\(414\) 0 0
\(415\) 1.74234i 0.0855281i
\(416\) 0.622498 19.4008i 0.0305205 0.951201i
\(417\) 0 0
\(418\) −6.39449 + 6.39449i −0.312765 + 0.312765i
\(419\) 2.88440i 0.140912i −0.997515 0.0704561i \(-0.977555\pi\)
0.997515 0.0704561i \(-0.0224455\pi\)
\(420\) 0 0
\(421\) −0.648970 2.42199i −0.0316288 0.118040i 0.948307 0.317356i \(-0.102795\pi\)
−0.979935 + 0.199315i \(0.936128\pi\)
\(422\) 4.38375 16.3604i 0.213398 0.796411i
\(423\) 0 0
\(424\) 27.0808 + 27.0808i 1.31516 + 1.31516i
\(425\) 7.12378i 0.345554i
\(426\) 0 0
\(427\) −1.61489 1.61489i −0.0781501 0.0781501i
\(428\) −6.79309 11.7660i −0.328357 0.568730i
\(429\) 0 0
\(430\) −0.110525 + 0.191435i −0.00532999 + 0.00923182i
\(431\) −14.9429 + 4.00393i −0.719773 + 0.192863i −0.600071 0.799947i \(-0.704861\pi\)
−0.119703 + 0.992810i \(0.538194\pi\)
\(432\) 0 0
\(433\) 4.53654 2.61917i 0.218012 0.125869i −0.387017 0.922072i \(-0.626495\pi\)
0.605029 + 0.796203i \(0.293161\pi\)
\(434\) 1.87296 0.501859i 0.0899051 0.0240900i
\(435\) 0 0
\(436\) −0.985491 + 0.264062i −0.0471965 + 0.0126463i
\(437\) −10.7531 2.88127i −0.514389 0.137830i
\(438\) 0 0
\(439\) −13.6623 + 7.88793i −0.652066 + 0.376470i −0.789247 0.614076i \(-0.789529\pi\)
0.137182 + 0.990546i \(0.456196\pi\)
\(440\) −0.253138 0.944723i −0.0120679 0.0450379i
\(441\) 0 0
\(442\) −0.154751 + 4.82297i −0.00736076 + 0.229405i
\(443\) 22.7538 + 13.1369i 1.08107 + 0.624155i 0.931184 0.364549i \(-0.118777\pi\)
0.149884 + 0.988704i \(0.452110\pi\)
\(444\) 0 0
\(445\) −0.255755 −0.0121239
\(446\) 1.50360 2.60432i 0.0711977 0.123318i
\(447\) 0 0
\(448\) 1.56234 1.56234i 0.0738135 0.0738135i
\(449\) 12.2297 + 3.27694i 0.577156 + 0.154648i 0.535576 0.844487i \(-0.320094\pi\)
0.0415795 + 0.999135i \(0.486761\pi\)
\(450\) 0 0
\(451\) 10.8324 + 18.7623i 0.510080 + 0.883484i
\(452\) 1.72482 + 2.98747i 0.0811286 + 0.140519i
\(453\) 0 0
\(454\) −3.08254 + 1.77971i −0.144671 + 0.0835258i
\(455\) −0.0315104 0.134745i −0.00147723 0.00631693i
\(456\) 0 0
\(457\) 12.6635 + 3.39318i 0.592374 + 0.158726i 0.542538 0.840031i \(-0.317463\pi\)
0.0498361 + 0.998757i \(0.484130\pi\)
\(458\) −14.2407 8.22188i −0.665425 0.384183i
\(459\) 0 0
\(460\) 0.305881 0.305881i 0.0142618 0.0142618i
\(461\) 23.6909 + 23.6909i 1.10340 + 1.10340i 0.993998 + 0.109399i \(0.0348926\pi\)
0.109399 + 0.993998i \(0.465107\pi\)
\(462\) 0 0
\(463\) −3.99555 + 14.9116i −0.185689 + 0.693000i 0.808793 + 0.588093i \(0.200121\pi\)
−0.994482 + 0.104907i \(0.966545\pi\)
\(464\) −2.23561 1.29073i −0.103785 0.0599206i
\(465\) 0 0
\(466\) −3.51088 + 13.1028i −0.162638 + 0.606974i
\(467\) −20.9252 −0.968302 −0.484151 0.874985i \(-0.660871\pi\)
−0.484151 + 0.874985i \(0.660871\pi\)
\(468\) 0 0
\(469\) 5.60309 0.258727
\(470\) 0.116548 0.434963i 0.00537596 0.0200633i
\(471\) 0 0
\(472\) −8.76583 5.06096i −0.403480 0.232949i
\(473\) 1.85114 6.90855i 0.0851156 0.317656i
\(474\) 0 0
\(475\) 10.6900 + 10.6900i 0.490489 + 0.490489i
\(476\) 0.413939 0.413939i 0.0189729 0.0189729i
\(477\) 0 0
\(478\) 16.6230 + 9.59729i 0.760318 + 0.438970i
\(479\) 21.9119 + 5.87127i 1.00118 + 0.268265i 0.721939 0.691957i \(-0.243251\pi\)
0.279239 + 0.960222i \(0.409918\pi\)
\(480\) 0 0
\(481\) 0.517889 16.1405i 0.0236137 0.735945i
\(482\) −19.6042 + 11.3185i −0.892949 + 0.515544i
\(483\) 0 0
\(484\) −0.483429 0.837323i −0.0219740 0.0380601i
\(485\) −0.649556 1.12506i −0.0294948 0.0510865i
\(486\) 0 0
\(487\) 6.17114 + 1.65355i 0.279641 + 0.0749295i 0.395914 0.918288i \(-0.370428\pi\)
−0.116273 + 0.993217i \(0.537095\pi\)
\(488\) 12.9249 12.9249i 0.585084 0.585084i
\(489\) 0 0
\(490\) −0.337846 + 0.585167i −0.0152623 + 0.0264351i
\(491\) 13.8081 0.623152 0.311576 0.950221i \(-0.399143\pi\)
0.311576 + 0.950221i \(0.399143\pi\)
\(492\) 0 0
\(493\) −6.39499 3.69215i −0.288016 0.166286i
\(494\) −7.00514 7.46958i −0.315176 0.336072i
\(495\) 0 0
\(496\) 0.731175 + 2.72878i 0.0328307 + 0.122526i
\(497\) 1.91834 1.10755i 0.0860493 0.0496806i
\(498\) 0 0
\(499\) 3.79783 + 1.01763i 0.170014 + 0.0455552i 0.342822 0.939400i \(-0.388617\pi\)
−0.172808 + 0.984956i \(0.555284\pi\)
\(500\) −1.13612 + 0.304422i −0.0508088 + 0.0136142i
\(501\) 0 0
\(502\) −7.10771 + 1.90450i −0.317232 + 0.0850022i
\(503\) −9.04338 + 5.22120i −0.403224 + 0.232802i −0.687874 0.725830i \(-0.741456\pi\)
0.284650 + 0.958632i \(0.408123\pi\)
\(504\) 0 0
\(505\) 0.385652 0.103335i 0.0171613 0.00459835i
\(506\) 5.48176 9.49469i 0.243694 0.422090i
\(507\) 0 0
\(508\) 7.23985 + 12.5398i 0.321217 + 0.556363i
\(509\) −22.1867 22.1867i −0.983406 0.983406i 0.0164583 0.999865i \(-0.494761\pi\)
−0.999865 + 0.0164583i \(0.994761\pi\)
\(510\) 0 0
\(511\) 2.13551i 0.0944693i
\(512\) 3.96564 + 3.96564i 0.175258 + 0.175258i
\(513\) 0 0
\(514\) 6.39299 23.8590i 0.281983 1.05237i
\(515\) 0.182265 + 0.680221i 0.00803154 + 0.0299741i
\(516\) 0 0
\(517\) 14.5700i 0.640790i
\(518\) 1.08510 1.08510i 0.0476766 0.0476766i
\(519\) 0 0
\(520\) 1.07844 0.252196i 0.0472928 0.0110595i
\(521\) 22.8205i 0.999785i 0.866087 + 0.499893i \(0.166627\pi\)
−0.866087 + 0.499893i \(0.833373\pi\)
\(522\) 0 0
\(523\) −1.54860 + 2.68225i −0.0677156 + 0.117287i −0.897895 0.440209i \(-0.854904\pi\)
0.830180 + 0.557496i \(0.188238\pi\)
\(524\) 17.4227 0.761114
\(525\) 0 0
\(526\) 5.12328 + 19.1203i 0.223385 + 0.833686i
\(527\) 2.09154 + 7.80572i 0.0911088 + 0.340023i
\(528\) 0 0
\(529\) −9.50362 −0.413201
\(530\) −0.644073 + 1.11557i −0.0279767 + 0.0484571i
\(531\) 0 0
\(532\) 1.24232i 0.0538613i
\(533\) −21.6288 + 11.5789i −0.936848 + 0.501539i
\(534\) 0 0
\(535\) 0.899357 0.899357i 0.0388826 0.0388826i
\(536\) 44.8448i 1.93700i
\(537\) 0 0
\(538\) −1.06008 3.95629i −0.0457035 0.170568i
\(539\) 5.65845 21.1176i 0.243727 0.909601i
\(540\) 0 0
\(541\) −5.55366 5.55366i −0.238771 0.238771i 0.577570 0.816341i \(-0.304001\pi\)
−0.816341 + 0.577570i \(0.804001\pi\)
\(542\) 13.2474i 0.569024i
\(543\) 0 0
\(544\) 5.43569 + 5.43569i 0.233053 + 0.233053i
\(545\) −0.0477560 0.0827159i −0.00204564 0.00354316i
\(546\) 0 0
\(547\) −8.77561 + 15.1998i −0.375218 + 0.649897i −0.990360 0.138520i \(-0.955766\pi\)
0.615142 + 0.788417i \(0.289099\pi\)
\(548\) −19.9708 + 5.35115i −0.853109 + 0.228590i
\(549\) 0 0
\(550\) −12.8939 + 7.44428i −0.549797 + 0.317425i
\(551\) 15.1368 4.05589i 0.644849 0.172787i
\(552\) 0 0
\(553\) 5.75960 1.54328i 0.244923 0.0656269i
\(554\) −22.2665 5.96628i −0.946011 0.253483i
\(555\) 0 0
\(556\) −8.82162 + 5.09316i −0.374120 + 0.215998i
\(557\) −4.44615 16.5933i −0.188390 0.703079i −0.993879 0.110470i \(-0.964764\pi\)
0.805490 0.592609i \(-0.201902\pi\)
\(558\) 0 0
\(559\) 7.75196 + 2.34603i 0.327873 + 0.0992266i
\(560\) 0.0165916 + 0.00957914i 0.000701121 + 0.000404793i
\(561\) 0 0
\(562\) 19.7591 0.833486
\(563\) −4.66104 + 8.07315i −0.196439 + 0.340243i −0.947371 0.320137i \(-0.896271\pi\)
0.750932 + 0.660379i \(0.229605\pi\)
\(564\) 0 0
\(565\) −0.228354 + 0.228354i −0.00960690 + 0.00960690i
\(566\) −3.64871 0.977668i −0.153367 0.0410945i
\(567\) 0 0
\(568\) 8.86441 + 15.3536i 0.371942 + 0.644223i
\(569\) 13.0069 + 22.5286i 0.545278 + 0.944449i 0.998589 + 0.0530970i \(0.0169092\pi\)
−0.453311 + 0.891352i \(0.649757\pi\)
\(570\) 0 0
\(571\) 2.90676 1.67822i 0.121644 0.0702313i −0.437943 0.899003i \(-0.644293\pi\)
0.559587 + 0.828771i \(0.310960\pi\)
\(572\) −11.3509 + 6.07665i −0.474604 + 0.254078i
\(573\) 0 0
\(574\) −2.25186 0.603384i −0.0939908 0.0251848i
\(575\) −15.8727 9.16411i −0.661937 0.382170i
\(576\) 0 0
\(577\) 19.0194 19.0194i 0.791788 0.791788i −0.189997 0.981785i \(-0.560848\pi\)
0.981785 + 0.189997i \(0.0608478\pi\)
\(578\) 9.91552 + 9.91552i 0.412431 + 0.412431i
\(579\) 0 0
\(580\) −0.157603 + 0.588184i −0.00654412 + 0.0244230i
\(581\) 5.25360 + 3.03317i 0.217956 + 0.125837i
\(582\) 0 0
\(583\) 10.7873 40.2588i 0.446765 1.66735i
\(584\) 17.0917 0.707260
\(585\) 0 0
\(586\) 10.8233 0.447107
\(587\) −2.76844 + 10.3320i −0.114266 + 0.426446i −0.999231 0.0392112i \(-0.987515\pi\)
0.884965 + 0.465658i \(0.154182\pi\)
\(588\) 0 0
\(589\) −14.8519 8.57472i −0.611960 0.353315i
\(590\) 0.0881146 0.328848i 0.00362762 0.0135385i
\(591\) 0 0
\(592\) 1.58092 + 1.58092i 0.0649753 + 0.0649753i
\(593\) 11.0116 11.0116i 0.452191 0.452191i −0.443890 0.896081i \(-0.646402\pi\)
0.896081 + 0.443890i \(0.146402\pi\)
\(594\) 0 0
\(595\) 0.0474604 + 0.0274013i 0.00194569 + 0.00112334i
\(596\) −13.0449 3.49538i −0.534341 0.143176i
\(597\) 0 0
\(598\) 10.5471 + 6.54913i 0.431304 + 0.267814i
\(599\) 18.9127 10.9193i 0.772752 0.446149i −0.0611031 0.998131i \(-0.519462\pi\)
0.833856 + 0.551983i \(0.186129\pi\)
\(600\) 0 0
\(601\) −6.14623 10.6456i −0.250710 0.434242i 0.713012 0.701152i \(-0.247331\pi\)
−0.963721 + 0.266910i \(0.913997\pi\)
\(602\) 0.384817 + 0.666523i 0.0156840 + 0.0271655i
\(603\) 0 0
\(604\) 0.0457096 + 0.0122479i 0.00185990 + 0.000498358i
\(605\) 0.0640025 0.0640025i 0.00260207 0.00260207i
\(606\) 0 0
\(607\) −12.5802 + 21.7895i −0.510613 + 0.884408i 0.489311 + 0.872109i \(0.337248\pi\)
−0.999924 + 0.0122987i \(0.996085\pi\)
\(608\) −16.3136 −0.661605
\(609\) 0 0
\(610\) 0.532430 + 0.307399i 0.0215575 + 0.0124462i
\(611\) −16.4905 0.529120i −0.667136 0.0214059i
\(612\) 0 0
\(613\) −0.567750 2.11887i −0.0229312 0.0855804i 0.953512 0.301355i \(-0.0974390\pi\)
−0.976443 + 0.215775i \(0.930772\pi\)
\(614\) 20.5696 11.8759i 0.830121 0.479271i
\(615\) 0 0
\(616\) −3.28926 0.881355i −0.132528 0.0355108i
\(617\) −10.8043 + 2.89501i −0.434966 + 0.116549i −0.469656 0.882849i \(-0.655622\pi\)
0.0346902 + 0.999398i \(0.488956\pi\)
\(618\) 0 0
\(619\) 10.6571 2.85556i 0.428345 0.114775i −0.0382041 0.999270i \(-0.512164\pi\)
0.466549 + 0.884495i \(0.345497\pi\)
\(620\) 0.577112 0.333196i 0.0231774 0.0133815i
\(621\) 0 0
\(622\) −20.1530 + 5.39998i −0.808061 + 0.216519i
\(623\) −0.445233 + 0.771166i −0.0178379 + 0.0308961i
\(624\) 0 0
\(625\) 12.4174 + 21.5075i 0.496695 + 0.860302i
\(626\) 5.70046 + 5.70046i 0.227836 + 0.227836i
\(627\) 0 0
\(628\) 15.6005i 0.622526i
\(629\) 4.52224 + 4.52224i 0.180314 + 0.180314i
\(630\) 0 0
\(631\) −0.654527 + 2.44273i −0.0260563 + 0.0972435i −0.977729 0.209869i \(-0.932696\pi\)
0.951673 + 0.307113i \(0.0993629\pi\)
\(632\) 12.3518 + 46.0974i 0.491327 + 1.83366i
\(633\) 0 0
\(634\) 29.5154i 1.17221i
\(635\) −0.958504 + 0.958504i −0.0380371 + 0.0380371i
\(636\) 0 0
\(637\) 23.6957 + 7.17120i 0.938857 + 0.284133i
\(638\) 15.4330i 0.611000i
\(639\) 0 0
\(640\) 0.267834 0.463903i 0.0105871 0.0183374i
\(641\) −17.9952 −0.710766 −0.355383 0.934721i \(-0.615650\pi\)
−0.355383 + 0.934721i \(0.615650\pi\)
\(642\) 0 0
\(643\) −9.25856 34.5534i −0.365122 1.36265i −0.867255 0.497864i \(-0.834118\pi\)
0.502133 0.864790i \(-0.332549\pi\)
\(644\) −0.389814 1.45481i −0.0153608 0.0573274i
\(645\) 0 0
\(646\) 4.05552 0.159562
\(647\) 10.1566 17.5918i 0.399298 0.691605i −0.594341 0.804213i \(-0.702587\pi\)
0.993639 + 0.112608i \(0.0359205\pi\)
\(648\) 0 0
\(649\) 11.0155i 0.432396i
\(650\) −7.95728 14.8638i −0.312110 0.583006i
\(651\) 0 0
\(652\) 0.637737 0.637737i 0.0249757 0.0249757i
\(653\) 29.2478i 1.14455i 0.820060 + 0.572277i \(0.193940\pi\)
−0.820060 + 0.572277i \(0.806060\pi\)
\(654\) 0 0
\(655\) 0.422144 + 1.57546i 0.0164945 + 0.0615585i
\(656\) 0.879090 3.28081i 0.0343227 0.128094i
\(657\) 0 0
\(658\) −1.10863 1.10863i −0.0432189 0.0432189i
\(659\) 42.0776i 1.63911i −0.573001 0.819554i \(-0.694221\pi\)
0.573001 0.819554i \(-0.305779\pi\)
\(660\) 0 0
\(661\) −13.2150 13.2150i −0.514003 0.514003i 0.401748 0.915750i \(-0.368403\pi\)
−0.915750 + 0.401748i \(0.868403\pi\)
\(662\) −7.33278 12.7007i −0.284997 0.493628i
\(663\) 0 0
\(664\) −24.2762 + 42.0477i −0.942101 + 1.63177i
\(665\) −0.112338 + 0.0301008i −0.00435627 + 0.00116726i
\(666\) 0 0
\(667\) −16.4532 + 9.49924i −0.637069 + 0.367812i
\(668\) −16.8082 + 4.50375i −0.650330 + 0.174255i
\(669\) 0 0
\(670\) −1.45695 + 0.390389i −0.0562869 + 0.0150820i
\(671\) −19.2145 5.14850i −0.741767 0.198756i
\(672\) 0 0
\(673\) 5.20812 3.00691i 0.200758 0.115908i −0.396251 0.918142i \(-0.629689\pi\)
0.597009 + 0.802234i \(0.296356\pi\)
\(674\) −1.51965 5.67142i −0.0585349 0.218455i
\(675\) 0 0
\(676\) −6.46542 13.0677i −0.248670 0.502605i
\(677\) −23.1275 13.3527i −0.888863 0.513185i −0.0152925 0.999883i \(-0.504868\pi\)
−0.873570 + 0.486698i \(0.838201\pi\)
\(678\) 0 0
\(679\) −4.52314 −0.173582
\(680\) −0.219309 + 0.379854i −0.00841011 + 0.0145667i
\(681\) 0 0
\(682\) 11.9425 11.9425i 0.457303 0.457303i
\(683\) 29.2534 + 7.83841i 1.11935 + 0.299929i 0.770620 0.637295i \(-0.219947\pi\)
0.348729 + 0.937224i \(0.386613\pi\)
\(684\) 0 0
\(685\) −0.967766 1.67622i −0.0369764 0.0640451i
\(686\) 2.37546 + 4.11442i 0.0906956 + 0.157089i
\(687\) 0 0
\(688\) −0.971079 + 0.560653i −0.0370220 + 0.0213747i
\(689\) 45.1737 + 13.6712i 1.72098 + 0.520833i
\(690\) 0 0
\(691\) −41.2583 11.0551i −1.56954 0.420557i −0.633872 0.773438i \(-0.718536\pi\)
−0.935668 + 0.352880i \(0.885202\pi\)
\(692\) −14.8966 8.60054i −0.566283 0.326944i
\(693\) 0 0
\(694\) −12.0886 + 12.0886i −0.458879 + 0.458879i
\(695\) −0.674298 0.674298i −0.0255776 0.0255776i
\(696\) 0 0
\(697\) 2.51465 9.38480i 0.0952492 0.355475i
\(698\) 6.50727 + 3.75697i 0.246304 + 0.142204i
\(699\) 0 0
\(700\) −0.529371 + 1.97564i −0.0200084 + 0.0746722i
\(701\) −23.1973 −0.876151 −0.438075 0.898938i \(-0.644340\pi\)
−0.438075 + 0.898938i \(0.644340\pi\)
\(702\) 0 0
\(703\) −13.5722 −0.511884
\(704\) 4.98095 18.5892i 0.187727 0.700606i
\(705\) 0 0
\(706\) 14.0200 + 8.09445i 0.527650 + 0.304639i
\(707\) 0.359784 1.34273i 0.0135311 0.0504986i
\(708\) 0 0
\(709\) −6.45646 6.45646i −0.242477 0.242477i 0.575397 0.817874i \(-0.304848\pi\)
−0.817874 + 0.575397i \(0.804848\pi\)
\(710\) −0.421651 + 0.421651i −0.0158243 + 0.0158243i
\(711\) 0 0
\(712\) −6.17209 3.56346i −0.231309 0.133546i
\(713\) 20.0827 + 5.38115i 0.752104 + 0.201526i
\(714\) 0 0
\(715\) −0.824514 0.879179i −0.0308351 0.0328794i
\(716\) −18.1361 + 10.4709i −0.677776 + 0.391314i
\(717\) 0 0
\(718\) 14.5046 + 25.1227i 0.541307 + 0.937570i
\(719\) −7.26683 12.5865i −0.271007 0.469398i 0.698113 0.715988i \(-0.254023\pi\)
−0.969120 + 0.246590i \(0.920690\pi\)
\(720\) 0 0
\(721\) 2.36834 + 0.634594i 0.0882015 + 0.0236335i
\(722\) 6.50661 6.50661i 0.242151 0.242151i
\(723\) 0 0
\(724\) −7.97389 + 13.8112i −0.296347 + 0.513289i
\(725\) 25.8001 0.958192
\(726\) 0 0
\(727\) 23.7883 + 13.7342i 0.882259 + 0.509372i 0.871403 0.490569i \(-0.163211\pi\)
0.0108564 + 0.999941i \(0.496544\pi\)
\(728\) 1.11698 3.69082i 0.0413980 0.136791i
\(729\) 0 0
\(730\) 0.148789 + 0.555288i 0.00550693 + 0.0205521i
\(731\) −2.77779 + 1.60376i −0.102740 + 0.0593171i
\(732\) 0 0
\(733\) −35.6888 9.56277i −1.31819 0.353209i −0.469893 0.882723i \(-0.655708\pi\)
−0.848301 + 0.529514i \(0.822374\pi\)
\(734\) −1.18668 + 0.317971i −0.0438013 + 0.0117365i
\(735\) 0 0
\(736\) 19.1039 5.11889i 0.704181 0.188685i
\(737\) 42.2653 24.4019i 1.55686 0.898856i
\(738\) 0 0
\(739\) −6.91898 + 1.85394i −0.254519 + 0.0681981i −0.383822 0.923407i \(-0.625393\pi\)
0.129304 + 0.991605i \(0.458726\pi\)
\(740\) 0.263693 0.456730i 0.00969355 0.0167897i
\(741\) 0 0
\(742\) 2.24248 + 3.88409i 0.0823241 + 0.142589i
\(743\) −11.1879 11.1879i −0.410445 0.410445i 0.471449 0.881894i \(-0.343731\pi\)
−0.881894 + 0.471449i \(0.843731\pi\)
\(744\) 0 0
\(745\) 1.26429i 0.0463201i
\(746\) 19.1015 + 19.1015i 0.699355 + 0.699355i
\(747\) 0 0
\(748\) 1.31970 4.92518i 0.0482529 0.180082i
\(749\) −1.14614 4.27745i −0.0418790 0.156294i
\(750\) 0 0
\(751\) 37.8476i 1.38108i −0.723295 0.690539i \(-0.757373\pi\)
0.723295 0.690539i \(-0.242627\pi\)
\(752\) 1.61520 1.61520i 0.0589003 0.0589003i
\(753\) 0 0
\(754\) −17.4673 0.560460i −0.636122 0.0204108i
\(755\) 0.00443010i 0.000161228i
\(756\) 0 0
\(757\) 8.84072 15.3126i 0.321322 0.556545i −0.659439 0.751758i \(-0.729206\pi\)
0.980761 + 0.195212i \(0.0625396\pi\)
\(758\) 16.1295 0.585850
\(759\) 0 0
\(760\) −0.240914 0.899105i −0.00873888 0.0326140i
\(761\) −12.1299 45.2692i −0.439707 1.64101i −0.729545 0.683932i \(-0.760268\pi\)
0.289839 0.957076i \(-0.406398\pi\)
\(762\) 0 0
\(763\) −0.332546 −0.0120390
\(764\) 4.11355 7.12488i 0.148823 0.257769i
\(765\) 0 0
\(766\) 30.0516i 1.08581i
\(767\) −12.4675 0.400034i −0.450174 0.0144444i
\(768\) 0 0
\(769\) −13.5222 + 13.5222i −0.487624 + 0.487624i −0.907556 0.419932i \(-0.862054\pi\)
0.419932 + 0.907556i \(0.362054\pi\)
\(770\) 0.114536i 0.00412760i
\(771\) 0 0
\(772\) 6.21318 + 23.1879i 0.223617 + 0.834551i
\(773\) 5.12420 19.1238i 0.184305 0.687834i −0.810474 0.585775i \(-0.800790\pi\)
0.994778 0.102059i \(-0.0325431\pi\)
\(774\) 0 0
\(775\) −19.9649 19.9649i −0.717160 0.717160i
\(776\) 36.2014i 1.29955i
\(777\) 0 0
\(778\) −10.6281 10.6281i −0.381036 0.381036i
\(779\) 10.3094 + 17.8563i 0.369371 + 0.639770i
\(780\) 0 0
\(781\) 9.64697 16.7090i 0.345196 0.597897i
\(782\) −4.74918 + 1.27254i −0.169830 + 0.0455059i
\(783\) 0 0
\(784\) −2.96833 + 1.71377i −0.106012 + 0.0612060i
\(785\) 1.41069 0.377992i 0.0503495 0.0134911i
\(786\) 0 0
\(787\) −6.23713 + 1.67123i −0.222330 + 0.0595730i −0.368264 0.929721i \(-0.620048\pi\)
0.145935 + 0.989294i \(0.453381\pi\)
\(788\) 4.20150 + 1.12579i 0.149672 + 0.0401046i
\(789\) 0 0
\(790\) −1.39012 + 0.802587i −0.0494583 + 0.0285547i
\(791\) 0.291013 + 1.08608i 0.0103472 + 0.0386164i
\(792\) 0 0
\(793\) 6.52492 21.5602i 0.231707 0.765625i
\(794\) −24.5124 14.1522i −0.869913 0.502244i
\(795\) 0 0
\(796\) 11.4870 0.407145
\(797\) 24.7313 42.8358i 0.876026 1.51732i 0.0203612 0.999793i \(-0.493518\pi\)
0.855665 0.517530i \(-0.173148\pi\)
\(798\) 0 0
\(799\) 4.62031 4.62031i 0.163455 0.163455i
\(800\) −25.9433 6.95150i −0.917235 0.245772i
\(801\) 0 0
\(802\) −5.31907 9.21290i −0.187823 0.325319i
\(803\) −9.30030 16.1086i −0.328201 0.568460i
\(804\) 0 0
\(805\) 0.122107 0.0704986i 0.00430371 0.00248475i
\(806\) 13.0830 + 13.9504i 0.460829 + 0.491382i
\(807\) 0 0
\(808\) 10.7467 + 2.87956i 0.378067 + 0.101303i
\(809\) 42.4000 + 24.4797i 1.49071 + 0.860659i 0.999943 0.0106348i \(-0.00338524\pi\)
0.490762 + 0.871294i \(0.336719\pi\)
\(810\) 0 0
\(811\) 2.24360 2.24360i 0.0787834 0.0787834i −0.666617 0.745400i \(-0.732258\pi\)
0.745400 + 0.666617i \(0.232258\pi\)
\(812\) 1.49916 + 1.49916i 0.0526102 + 0.0526102i
\(813\) 0 0
\(814\) 3.45945 12.9109i 0.121254 0.452525i
\(815\) 0.0731201 + 0.0422159i 0.00256129 + 0.00147876i
\(816\) 0 0
\(817\) 1.76175 6.57496i 0.0616360 0.230029i
\(818\) −11.0443 −0.386156
\(819\) 0 0
\(820\) −0.801201 −0.0279791
\(821\) 3.22800 12.0471i 0.112658 0.420446i −0.886443 0.462838i \(-0.846831\pi\)
0.999101 + 0.0423922i \(0.0134979\pi\)
\(822\) 0 0
\(823\) 10.8078 + 6.23987i 0.376735 + 0.217508i 0.676397 0.736537i \(-0.263540\pi\)
−0.299662 + 0.954046i \(0.596874\pi\)
\(824\) −5.07903 + 18.9552i −0.176936 + 0.660336i
\(825\) 0 0
\(826\) −0.838166 0.838166i −0.0291635 0.0291635i
\(827\) −9.01542 + 9.01542i −0.313497 + 0.313497i −0.846263 0.532766i \(-0.821153\pi\)
0.532766 + 0.846263i \(0.321153\pi\)
\(828\) 0 0
\(829\) −12.1868 7.03605i −0.423265 0.244372i 0.273208 0.961955i \(-0.411915\pi\)
−0.696473 + 0.717583i \(0.745249\pi\)
\(830\) −1.57741 0.422665i −0.0547526 0.0146709i
\(831\) 0 0
\(832\) 20.8586 + 6.31258i 0.723140 + 0.218849i
\(833\) −8.49097 + 4.90226i −0.294195 + 0.169853i
\(834\) 0 0
\(835\) −0.814512 1.41078i −0.0281874 0.0488219i
\(836\) 5.41039 + 9.37107i 0.187122 + 0.324105i
\(837\) 0 0
\(838\) 2.61136 + 0.699711i 0.0902079 + 0.0241711i
\(839\) −37.0235 + 37.0235i −1.27819 + 1.27819i −0.336514 + 0.941678i \(0.609248\pi\)
−0.941678 + 0.336514i \(0.890752\pi\)
\(840\) 0 0
\(841\) −1.12818 + 1.95407i −0.0389029 + 0.0673817i
\(842\) 2.35015 0.0809915
\(843\) 0 0
\(844\) −17.5516 10.1334i −0.604152 0.348808i
\(845\) 1.02501 0.901267i 0.0352614 0.0310045i
\(846\) 0 0
\(847\) −0.0815646 0.304403i −0.00280259 0.0104594i
\(848\) −5.65886 + 3.26714i −0.194326 + 0.112194i
\(849\) 0 0
\(850\) 6.44944 + 1.72812i 0.221214 + 0.0592741i
\(851\) 15.8936 4.25868i 0.544826 0.145986i
\(852\) 0 0
\(853\) −14.0861 + 3.77435i −0.482297 + 0.129231i −0.491772 0.870724i \(-0.663651\pi\)
0.00947475 + 0.999955i \(0.496984\pi\)
\(854\) 1.85377 1.07028i 0.0634348 0.0366241i
\(855\) 0 0
\(856\) 34.2349 9.17322i 1.17013 0.313534i
\(857\) −6.89566 + 11.9436i −0.235551 + 0.407986i −0.959433 0.281938i \(-0.909023\pi\)
0.723882 + 0.689924i \(0.242356\pi\)
\(858\) 0 0
\(859\) 14.9164 + 25.8359i 0.508940 + 0.881510i 0.999946 + 0.0103542i \(0.00329591\pi\)
−0.491006 + 0.871156i \(0.663371\pi\)
\(860\) 0.187031 + 0.187031i 0.00637770 + 0.00637770i
\(861\) 0 0
\(862\) 14.4997i 0.493861i
\(863\) 33.0412 + 33.0412i 1.12473 + 1.12473i 0.991020 + 0.133714i \(0.0426904\pi\)
0.133714 + 0.991020i \(0.457310\pi\)
\(864\) 0 0
\(865\) 0.416775 1.55542i 0.0141708 0.0528860i
\(866\) 1.27074 + 4.74247i 0.0431816 + 0.161156i
\(867\) 0 0
\(868\) 2.32019i 0.0787523i
\(869\) 36.7248 36.7248i 1.24580 1.24580i
\(870\) 0 0
\(871\) 26.0835 + 48.7226i 0.883805 + 1.65090i
\(872\) 2.66156i 0.0901319i
\(873\) 0 0
\(874\) 5.21706 9.03621i 0.176470 0.305654i
\(875\) −0.383374 −0.0129604
\(876\) 0 0
\(877\) −2.62939 9.81303i −0.0887883 0.331362i 0.907216 0.420664i \(-0.138203\pi\)
−0.996005 + 0.0893021i \(0.971536\pi\)
\(878\) −3.82698 14.2825i −0.129154 0.482011i
\(879\) 0 0
\(880\) 0.166872 0.00562524
\(881\) −2.67563 + 4.63432i −0.0901441 + 0.156134i −0.907572 0.419897i \(-0.862066\pi\)
0.817428 + 0.576031i \(0.195399\pi\)
\(882\) 0 0
\(883\) 11.6579i 0.392321i −0.980572 0.196161i \(-0.937153\pi\)
0.980572 0.196161i \(-0.0628474\pi\)
\(884\) 5.52645 + 1.67251i 0.185874 + 0.0562526i
\(885\) 0 0
\(886\) −17.4131 + 17.4131i −0.585005 + 0.585005i
\(887\) 9.64645i 0.323896i 0.986799 + 0.161948i \(0.0517777\pi\)
−0.986799 + 0.161948i \(0.948222\pi\)
\(888\) 0 0
\(889\) 1.22152 + 4.55876i 0.0409683 + 0.152896i
\(890\) 0.0620422 0.231545i 0.00207966 0.00776139i
\(891\) 0 0
\(892\) −2.54440 2.54440i −0.0851929 0.0851929i
\(893\) 13.8665i 0.464024i
\(894\) 0 0
\(895\) −1.38627 1.38627i −0.0463378 0.0463378i
\(896\) −0.932524 1.61518i −0.0311534 0.0539593i
\(897\) 0 0
\(898\) −5.93349 + 10.2771i −0.198003 + 0.342951i
\(899\) −28.2699 + 7.57490i −0.942854 + 0.252637i
\(900\) 0 0
\(901\) −16.1873 + 9.34572i −0.539276 + 0.311351i
\(902\) −19.6141 + 5.25557i −0.653077 + 0.174991i
\(903\) 0 0
\(904\) −8.69251 + 2.32915i −0.289108 + 0.0774664i
\(905\) −1.44209 0.386408i −0.0479368 0.0128446i
\(906\) 0 0
\(907\) 37.7680 21.8053i 1.25406 0.724035i 0.282151 0.959370i \(-0.408952\pi\)
0.971914 + 0.235336i \(0.0756189\pi\)
\(908\) 1.10233 + 4.11396i 0.0365821 + 0.136526i
\(909\) 0 0
\(910\) 0.129634 + 0.00415946i 0.00429731 + 0.000137885i
\(911\) −15.2019 8.77681i −0.503661 0.290789i 0.226563 0.973996i \(-0.427251\pi\)
−0.730224 + 0.683208i \(0.760584\pi\)
\(912\) 0 0
\(913\) 52.8388 1.74871
\(914\) −6.14395 + 10.6416i −0.203224 + 0.351994i
\(915\) 0 0
\(916\) −13.9131 + 13.9131i −0.459702 + 0.459702i
\(917\) 5.48532 + 1.46979i 0.181141 + 0.0485367i
\(918\) 0 0
\(919\) −2.44511 4.23505i −0.0806566 0.139701i 0.822876 0.568222i \(-0.192368\pi\)
−0.903532 + 0.428520i \(0.859035\pi\)
\(920\) 0.564242 + 0.977296i 0.0186025 + 0.0322205i
\(921\) 0 0
\(922\) −27.1954 + 15.7013i −0.895632 + 0.517094i
\(923\) 18.5612 + 11.5254i 0.610948 + 0.379362i
\(924\) 0 0
\(925\) −21.5837 5.78332i −0.709666 0.190154i
\(926\) −12.5308 7.23465i −0.411787 0.237745i
\(927\) 0 0
\(928\) −19.6864 + 19.6864i −0.646237 + 0.646237i
\(929\) 23.0818 + 23.0818i 0.757289 + 0.757289i 0.975828 0.218539i \(-0.0701292\pi\)
−0.218539 + 0.975828i \(0.570129\pi\)
\(930\) 0 0
\(931\) 5.38522 20.0979i 0.176493 0.658682i
\(932\) 14.0568 + 8.11571i 0.460447 + 0.265839i
\(933\) 0 0
\(934\) 5.07613 18.9444i 0.166096 0.619879i
\(935\) 0.477339 0.0156107
\(936\) 0 0
\(937\) 35.2389 1.15121 0.575603 0.817729i \(-0.304767\pi\)
0.575603 + 0.817729i \(0.304767\pi\)
\(938\) −1.35922 + 5.07269i −0.0443802 + 0.165629i
\(939\) 0 0
\(940\) −0.466634 0.269411i −0.0152199 0.00878723i
\(941\) 6.33017 23.6245i 0.206358 0.770137i −0.782674 0.622432i \(-0.786145\pi\)
0.989031 0.147705i \(-0.0471886\pi\)
\(942\) 0 0
\(943\) −17.6757 17.6757i −0.575599 0.575599i
\(944\) 1.22115 1.22115i 0.0397451 0.0397451i
\(945\) 0 0
\(946\) 5.80552 + 3.35182i 0.188754 + 0.108977i
\(947\) −3.70163 0.991850i −0.120287 0.0322308i 0.198173 0.980167i \(-0.436499\pi\)
−0.318460 + 0.947936i \(0.603166\pi\)
\(948\) 0 0
\(949\) 18.5696 9.94120i 0.602796 0.322705i
\(950\) −12.2713 + 7.08482i −0.398132 + 0.229862i
\(951\) 0 0
\(952\) 0.763571 + 1.32254i 0.0247475 + 0.0428639i
\(953\) 12.0041 + 20.7918i 0.388852 + 0.673512i 0.992295 0.123894i \(-0.0395384\pi\)
−0.603443 + 0.797406i \(0.706205\pi\)
\(954\) 0 0
\(955\) 0.743943 + 0.199339i 0.0240734 + 0.00645046i
\(956\) 16.2406 16.2406i 0.525257 0.525257i
\(957\) 0 0
\(958\) −10.6310 + 18.4134i −0.343471 + 0.594909i
\(959\) −6.73898 −0.217613
\(960\) 0 0
\(961\) 0.890953 + 0.514392i 0.0287404 + 0.0165933i
\(962\) 14.4870 + 4.38431i 0.467080 + 0.141356i
\(963\) 0 0
\(964\) 7.01057 + 26.1638i 0.225795 + 0.842679i
\(965\) −1.94625 + 1.12367i −0.0626519 + 0.0361721i
\(966\) 0 0
\(967\) 10.3554 + 2.77473i 0.333009 + 0.0892294i 0.421449 0.906852i \(-0.361522\pi\)
−0.0884405 + 0.996081i \(0.528188\pi\)
\(968\) 2.43632 0.652809i 0.0783062 0.0209821i
\(969\) 0 0
\(970\) 1.17614 0.315145i 0.0377634 0.0101187i
\(971\) −46.2535 + 26.7045i −1.48435 + 0.856988i −0.999842 0.0178003i \(-0.994334\pi\)
−0.484505 + 0.874788i \(0.661000\pi\)
\(972\) 0 0
\(973\) −3.20704 + 0.859324i −0.102813 + 0.0275487i
\(974\) −2.99405 + 5.18584i −0.0959355 + 0.166165i
\(975\) 0 0
\(976\) 1.55932 + 2.70082i 0.0499126 + 0.0864512i
\(977\) −26.3627 26.3627i −0.843419 0.843419i 0.145883 0.989302i \(-0.453398\pi\)
−0.989302 + 0.145883i \(0.953398\pi\)
\(978\) 0 0
\(979\) 7.75610i 0.247886i
\(980\) 0.571704 + 0.571704i 0.0182624 + 0.0182624i
\(981\) 0 0
\(982\) −3.34964 + 12.5010i −0.106891 + 0.398924i
\(983\) −4.23860 15.8187i −0.135190 0.504537i −0.999997 0.00243220i \(-0.999226\pi\)
0.864807 0.502105i \(-0.167441\pi\)
\(984\) 0 0
\(985\) 0.407202i 0.0129745i
\(986\) 4.89397 4.89397i 0.155856 0.155856i
\(987\) 0 0
\(988\) −10.8028 + 5.78323i −0.343682 + 0.183989i
\(989\) 8.25236i 0.262410i
\(990\) 0 0
\(991\) −25.9576 + 44.9599i −0.824571 + 1.42820i 0.0776754 + 0.996979i \(0.475250\pi\)
−0.902247 + 0.431220i \(0.858083\pi\)
\(992\) 30.4678 0.967353
\(993\) 0 0
\(994\) 0.537351 + 2.00542i 0.0170438 + 0.0636082i
\(995\) 0.278325 + 1.03872i 0.00882348 + 0.0329297i
\(996\) 0 0
\(997\) 1.46367 0.0463549 0.0231774 0.999731i \(-0.492622\pi\)
0.0231774 + 0.999731i \(0.492622\pi\)
\(998\) −1.84259 + 3.19146i −0.0583262 + 0.101024i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 351.2.bf.a.305.5 48
3.2 odd 2 117.2.bc.a.110.8 yes 48
9.4 even 3 117.2.x.a.32.5 yes 48
9.5 odd 6 351.2.ba.a.71.8 48
13.11 odd 12 351.2.ba.a.89.8 48
39.11 even 12 117.2.x.a.11.5 48
117.50 even 12 inner 351.2.bf.a.206.5 48
117.76 odd 12 117.2.bc.a.50.8 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.x.a.11.5 48 39.11 even 12
117.2.x.a.32.5 yes 48 9.4 even 3
117.2.bc.a.50.8 yes 48 117.76 odd 12
117.2.bc.a.110.8 yes 48 3.2 odd 2
351.2.ba.a.71.8 48 9.5 odd 6
351.2.ba.a.89.8 48 13.11 odd 12
351.2.bf.a.206.5 48 117.50 even 12 inner
351.2.bf.a.305.5 48 1.1 even 1 trivial