Properties

Label 351.2.bf.a.305.4
Level $351$
Weight $2$
Character 351.305
Analytic conductor $2.803$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [351,2,Mod(206,351)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(351, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([10, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("351.206"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.bf (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.80274911095\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 305.4
Character \(\chi\) \(=\) 351.305
Dual form 351.2.bf.a.206.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.308060 + 1.14969i) q^{2} +(0.505155 + 0.291651i) q^{4} +(0.744040 - 2.77680i) q^{5} +(1.04357 + 1.04357i) q^{7} +(-2.17420 + 2.17420i) q^{8} +(2.96326 + 1.71084i) q^{10} +(1.68335 + 0.451052i) q^{11} +(1.90363 - 3.06206i) q^{13} +(-1.52127 + 0.878303i) q^{14} +(-1.24658 - 2.15913i) q^{16} +(0.939625 + 1.62748i) q^{17} +(4.34907 + 1.16533i) q^{19} +(1.18571 - 1.18571i) q^{20} +(-1.03714 + 1.79639i) q^{22} +5.65176 q^{23} +(-2.82688 - 1.63210i) q^{25} +(2.93400 + 3.13189i) q^{26} +(0.222806 + 0.831522i) q^{28} +(-5.80315 + 3.35045i) q^{29} +(-2.52515 - 0.676611i) q^{31} +(-3.07365 + 0.823583i) q^{32} +(-2.16056 + 0.578921i) q^{34} +(3.67424 - 2.12132i) q^{35} +(-11.1775 + 2.99499i) q^{37} +(-2.67955 + 4.64111i) q^{38} +(4.41961 + 7.65499i) q^{40} +(0.459167 + 0.459167i) q^{41} -2.05612i q^{43} +(0.718802 + 0.718802i) q^{44} +(-1.74108 + 6.49779i) q^{46} +(-0.619735 - 2.31288i) q^{47} -4.82193i q^{49} +(2.74726 - 2.74726i) q^{50} +(1.85468 - 0.991618i) q^{52} +11.5633i q^{53} +(2.50496 - 4.33872i) q^{55} -4.53785 q^{56} +(-2.06428 - 7.70398i) q^{58} +(-3.35246 - 12.5115i) q^{59} +10.4856 q^{61} +(1.55579 - 2.69471i) q^{62} -8.77378i q^{64} +(-7.08634 - 7.56428i) q^{65} +(-2.56688 + 2.56688i) q^{67} +1.09617i q^{68} +(1.30699 + 4.87774i) q^{70} +(2.99663 - 11.1836i) q^{71} +(-8.97423 - 8.97423i) q^{73} -13.7733i q^{74} +(1.85709 + 1.85709i) q^{76} +(1.28599 + 2.22739i) q^{77} +(-4.85927 + 8.41651i) q^{79} +(-6.92298 + 1.85501i) q^{80} +(-0.669352 + 0.386451i) q^{82} +(-2.65776 + 0.712145i) q^{83} +(5.21830 - 1.39824i) q^{85} +(2.36391 + 0.633407i) q^{86} +(-4.64061 + 2.67926i) q^{88} +(-1.57286 - 5.86998i) q^{89} +(5.18203 - 1.20890i) q^{91} +(2.85501 + 1.64834i) q^{92} +2.85002 q^{94} +(6.47177 - 11.2094i) q^{95} +(-3.70756 + 3.70756i) q^{97} +(5.54374 + 1.48544i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 6 q^{2} - 6 q^{4} + 6 q^{5} + 2 q^{7} + 30 q^{8} - 12 q^{10} - 6 q^{11} - 2 q^{13} + 12 q^{14} + 14 q^{16} - 4 q^{19} + 6 q^{20} + 2 q^{22} + 12 q^{23} - 48 q^{26} + 6 q^{29} + 6 q^{31} - 30 q^{32}+ \cdots + 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.308060 + 1.14969i −0.217831 + 0.812956i 0.767320 + 0.641265i \(0.221590\pi\)
−0.985151 + 0.171692i \(0.945077\pi\)
\(3\) 0 0
\(4\) 0.505155 + 0.291651i 0.252578 + 0.145826i
\(5\) 0.744040 2.77680i 0.332745 1.24182i −0.573548 0.819172i \(-0.694433\pi\)
0.906293 0.422650i \(-0.138900\pi\)
\(6\) 0 0
\(7\) 1.04357 + 1.04357i 0.394432 + 0.394432i 0.876264 0.481832i \(-0.160028\pi\)
−0.481832 + 0.876264i \(0.660028\pi\)
\(8\) −2.17420 + 2.17420i −0.768695 + 0.768695i
\(9\) 0 0
\(10\) 2.96326 + 1.71084i 0.937065 + 0.541014i
\(11\) 1.68335 + 0.451052i 0.507549 + 0.135997i 0.503501 0.863994i \(-0.332045\pi\)
0.00404763 + 0.999992i \(0.498712\pi\)
\(12\) 0 0
\(13\) 1.90363 3.06206i 0.527971 0.849262i
\(14\) −1.52127 + 0.878303i −0.406575 + 0.234736i
\(15\) 0 0
\(16\) −1.24658 2.15913i −0.311644 0.539783i
\(17\) 0.939625 + 1.62748i 0.227893 + 0.394722i 0.957183 0.289482i \(-0.0934831\pi\)
−0.729291 + 0.684204i \(0.760150\pi\)
\(18\) 0 0
\(19\) 4.34907 + 1.16533i 0.997745 + 0.267345i 0.720501 0.693454i \(-0.243912\pi\)
0.277245 + 0.960799i \(0.410579\pi\)
\(20\) 1.18571 1.18571i 0.265133 0.265133i
\(21\) 0 0
\(22\) −1.03714 + 1.79639i −0.221120 + 0.382991i
\(23\) 5.65176 1.17847 0.589237 0.807961i \(-0.299429\pi\)
0.589237 + 0.807961i \(0.299429\pi\)
\(24\) 0 0
\(25\) −2.82688 1.63210i −0.565376 0.326420i
\(26\) 2.93400 + 3.13189i 0.575405 + 0.614213i
\(27\) 0 0
\(28\) 0.222806 + 0.831522i 0.0421063 + 0.157143i
\(29\) −5.80315 + 3.35045i −1.07762 + 0.622162i −0.930253 0.366920i \(-0.880412\pi\)
−0.147364 + 0.989082i \(0.547079\pi\)
\(30\) 0 0
\(31\) −2.52515 0.676611i −0.453530 0.121523i 0.0248208 0.999692i \(-0.492098\pi\)
−0.478350 + 0.878169i \(0.658765\pi\)
\(32\) −3.07365 + 0.823583i −0.543350 + 0.145590i
\(33\) 0 0
\(34\) −2.16056 + 0.578921i −0.370534 + 0.0992842i
\(35\) 3.67424 2.12132i 0.621059 0.358569i
\(36\) 0 0
\(37\) −11.1775 + 2.99499i −1.83756 + 0.492374i −0.998653 0.0518927i \(-0.983475\pi\)
−0.838912 + 0.544267i \(0.816808\pi\)
\(38\) −2.67955 + 4.64111i −0.434680 + 0.752888i
\(39\) 0 0
\(40\) 4.41961 + 7.65499i 0.698802 + 1.21036i
\(41\) 0.459167 + 0.459167i 0.0717098 + 0.0717098i 0.742052 0.670342i \(-0.233853\pi\)
−0.670342 + 0.742052i \(0.733853\pi\)
\(42\) 0 0
\(43\) 2.05612i 0.313555i −0.987634 0.156778i \(-0.949889\pi\)
0.987634 0.156778i \(-0.0501106\pi\)
\(44\) 0.718802 + 0.718802i 0.108364 + 0.108364i
\(45\) 0 0
\(46\) −1.74108 + 6.49779i −0.256708 + 0.958048i
\(47\) −0.619735 2.31288i −0.0903977 0.337369i 0.905884 0.423526i \(-0.139208\pi\)
−0.996282 + 0.0861575i \(0.972541\pi\)
\(48\) 0 0
\(49\) 4.82193i 0.688847i
\(50\) 2.74726 2.74726i 0.388521 0.388521i
\(51\) 0 0
\(52\) 1.85468 0.991618i 0.257198 0.137513i
\(53\) 11.5633i 1.58834i 0.607698 + 0.794168i \(0.292093\pi\)
−0.607698 + 0.794168i \(0.707907\pi\)
\(54\) 0 0
\(55\) 2.50496 4.33872i 0.337769 0.585033i
\(56\) −4.53785 −0.606395
\(57\) 0 0
\(58\) −2.06428 7.70398i −0.271053 1.01158i
\(59\) −3.35246 12.5115i −0.436453 1.62886i −0.737566 0.675275i \(-0.764025\pi\)
0.301113 0.953589i \(-0.402642\pi\)
\(60\) 0 0
\(61\) 10.4856 1.34254 0.671269 0.741213i \(-0.265749\pi\)
0.671269 + 0.741213i \(0.265749\pi\)
\(62\) 1.55579 2.69471i 0.197586 0.342228i
\(63\) 0 0
\(64\) 8.77378i 1.09672i
\(65\) −7.08634 7.56428i −0.878952 0.938234i
\(66\) 0 0
\(67\) −2.56688 + 2.56688i −0.313595 + 0.313595i −0.846300 0.532706i \(-0.821175\pi\)
0.532706 + 0.846300i \(0.321175\pi\)
\(68\) 1.09617i 0.132930i
\(69\) 0 0
\(70\) 1.30699 + 4.87774i 0.156215 + 0.583001i
\(71\) 2.99663 11.1836i 0.355635 1.32725i −0.524049 0.851688i \(-0.675579\pi\)
0.879684 0.475559i \(-0.157754\pi\)
\(72\) 0 0
\(73\) −8.97423 8.97423i −1.05035 1.05035i −0.998663 0.0516906i \(-0.983539\pi\)
−0.0516906 0.998663i \(-0.516461\pi\)
\(74\) 13.7733i 1.60111i
\(75\) 0 0
\(76\) 1.85709 + 1.85709i 0.213022 + 0.213022i
\(77\) 1.28599 + 2.22739i 0.146552 + 0.253835i
\(78\) 0 0
\(79\) −4.85927 + 8.41651i −0.546711 + 0.946931i 0.451786 + 0.892126i \(0.350787\pi\)
−0.998497 + 0.0548048i \(0.982546\pi\)
\(80\) −6.92298 + 1.85501i −0.774012 + 0.207396i
\(81\) 0 0
\(82\) −0.669352 + 0.386451i −0.0739176 + 0.0426763i
\(83\) −2.65776 + 0.712145i −0.291727 + 0.0781681i −0.401715 0.915765i \(-0.631586\pi\)
0.109987 + 0.993933i \(0.464919\pi\)
\(84\) 0 0
\(85\) 5.21830 1.39824i 0.566004 0.151660i
\(86\) 2.36391 + 0.633407i 0.254907 + 0.0683020i
\(87\) 0 0
\(88\) −4.64061 + 2.67926i −0.494690 + 0.285610i
\(89\) −1.57286 5.86998i −0.166722 0.622217i −0.997814 0.0660814i \(-0.978950\pi\)
0.831092 0.556135i \(-0.187716\pi\)
\(90\) 0 0
\(91\) 5.18203 1.20890i 0.543225 0.126727i
\(92\) 2.85501 + 1.64834i 0.297656 + 0.171852i
\(93\) 0 0
\(94\) 2.85002 0.293957
\(95\) 6.47177 11.2094i 0.663990 1.15006i
\(96\) 0 0
\(97\) −3.70756 + 3.70756i −0.376446 + 0.376446i −0.869818 0.493372i \(-0.835764\pi\)
0.493372 + 0.869818i \(0.335764\pi\)
\(98\) 5.54374 + 1.48544i 0.560003 + 0.150052i
\(99\) 0 0
\(100\) −0.952008 1.64893i −0.0952008 0.164893i
\(101\) 1.51426 + 2.62277i 0.150674 + 0.260975i 0.931475 0.363804i \(-0.118522\pi\)
−0.780801 + 0.624779i \(0.785189\pi\)
\(102\) 0 0
\(103\) −15.9431 + 9.20475i −1.57092 + 0.906971i −0.574864 + 0.818249i \(0.694945\pi\)
−0.996056 + 0.0887220i \(0.971722\pi\)
\(104\) 2.51865 + 10.7964i 0.246974 + 1.05867i
\(105\) 0 0
\(106\) −13.2942 3.56217i −1.29125 0.345989i
\(107\) 3.97340 + 2.29404i 0.384123 + 0.221774i 0.679611 0.733573i \(-0.262149\pi\)
−0.295487 + 0.955347i \(0.595482\pi\)
\(108\) 0 0
\(109\) 0.138592 0.138592i 0.0132747 0.0132747i −0.700438 0.713713i \(-0.747012\pi\)
0.713713 + 0.700438i \(0.247012\pi\)
\(110\) 4.21652 + 4.21652i 0.402030 + 0.402030i
\(111\) 0 0
\(112\) 0.952316 3.55409i 0.0899854 0.335830i
\(113\) −6.46742 3.73397i −0.608404 0.351262i 0.163937 0.986471i \(-0.447581\pi\)
−0.772341 + 0.635209i \(0.780914\pi\)
\(114\) 0 0
\(115\) 4.20514 15.6938i 0.392131 1.46345i
\(116\) −3.90865 −0.362909
\(117\) 0 0
\(118\) 15.4172 1.41927
\(119\) −0.717822 + 2.67895i −0.0658027 + 0.245579i
\(120\) 0 0
\(121\) −6.89606 3.98144i −0.626915 0.361949i
\(122\) −3.23018 + 12.0552i −0.292447 + 1.09143i
\(123\) 0 0
\(124\) −1.07826 1.07826i −0.0968302 0.0968302i
\(125\) 3.52846 3.52846i 0.315595 0.315595i
\(126\) 0 0
\(127\) −9.37062 5.41013i −0.831508 0.480071i 0.0228608 0.999739i \(-0.492723\pi\)
−0.854369 + 0.519667i \(0.826056\pi\)
\(128\) 3.93985 + 1.05568i 0.348237 + 0.0933099i
\(129\) 0 0
\(130\) 10.8796 5.81687i 0.954206 0.510173i
\(131\) −6.84566 + 3.95234i −0.598108 + 0.345318i −0.768297 0.640094i \(-0.778896\pi\)
0.170189 + 0.985411i \(0.445562\pi\)
\(132\) 0 0
\(133\) 3.32245 + 5.75466i 0.288093 + 0.498992i
\(134\) −2.16038 3.74188i −0.186628 0.323249i
\(135\) 0 0
\(136\) −5.58139 1.49553i −0.478600 0.128241i
\(137\) −5.98485 + 5.98485i −0.511320 + 0.511320i −0.914931 0.403611i \(-0.867755\pi\)
0.403611 + 0.914931i \(0.367755\pi\)
\(138\) 0 0
\(139\) −0.234959 + 0.406962i −0.0199290 + 0.0345180i −0.875818 0.482642i \(-0.839677\pi\)
0.855889 + 0.517160i \(0.173011\pi\)
\(140\) 2.47474 0.209154
\(141\) 0 0
\(142\) 11.9346 + 6.89042i 1.00153 + 0.578231i
\(143\) 4.58562 4.29588i 0.383469 0.359239i
\(144\) 0 0
\(145\) 4.98574 + 18.6070i 0.414043 + 1.54523i
\(146\) 13.0822 7.55302i 1.08269 0.625092i
\(147\) 0 0
\(148\) −6.51985 1.74699i −0.535928 0.143602i
\(149\) 5.24080 1.40427i 0.429343 0.115042i −0.0376745 0.999290i \(-0.511995\pi\)
0.467018 + 0.884248i \(0.345328\pi\)
\(150\) 0 0
\(151\) 19.1087 5.12016i 1.55504 0.416673i 0.623953 0.781462i \(-0.285525\pi\)
0.931090 + 0.364789i \(0.118859\pi\)
\(152\) −11.9894 + 6.92208i −0.972468 + 0.561455i
\(153\) 0 0
\(154\) −2.95698 + 0.792321i −0.238280 + 0.0638470i
\(155\) −3.75762 + 6.50839i −0.301819 + 0.522767i
\(156\) 0 0
\(157\) 11.5326 + 19.9750i 0.920401 + 1.59418i 0.798796 + 0.601602i \(0.205471\pi\)
0.121605 + 0.992579i \(0.461196\pi\)
\(158\) −8.17946 8.17946i −0.650723 0.650723i
\(159\) 0 0
\(160\) 9.14769i 0.723188i
\(161\) 5.89800 + 5.89800i 0.464827 + 0.464827i
\(162\) 0 0
\(163\) 1.15428 4.30782i 0.0904100 0.337415i −0.905874 0.423548i \(-0.860784\pi\)
0.996284 + 0.0861334i \(0.0274511\pi\)
\(164\) 0.0980338 + 0.365867i 0.00765515 + 0.0285694i
\(165\) 0 0
\(166\) 3.27500i 0.254189i
\(167\) −0.251999 + 0.251999i −0.0195002 + 0.0195002i −0.716790 0.697289i \(-0.754389\pi\)
0.697289 + 0.716790i \(0.254389\pi\)
\(168\) 0 0
\(169\) −5.75240 11.6580i −0.442492 0.896772i
\(170\) 6.43019i 0.493173i
\(171\) 0 0
\(172\) 0.599670 1.03866i 0.0457244 0.0791970i
\(173\) 11.8976 0.904559 0.452280 0.891876i \(-0.350611\pi\)
0.452280 + 0.891876i \(0.350611\pi\)
\(174\) 0 0
\(175\) −1.24683 4.65325i −0.0942518 0.351752i
\(176\) −1.12454 4.19685i −0.0847655 0.316349i
\(177\) 0 0
\(178\) 7.23322 0.542152
\(179\) −2.92970 + 5.07439i −0.218976 + 0.379278i −0.954495 0.298226i \(-0.903605\pi\)
0.735519 + 0.677504i \(0.236938\pi\)
\(180\) 0 0
\(181\) 8.29778i 0.616769i 0.951262 + 0.308384i \(0.0997883\pi\)
−0.951262 + 0.308384i \(0.900212\pi\)
\(182\) −0.206509 + 6.33017i −0.0153075 + 0.469223i
\(183\) 0 0
\(184\) −12.2880 + 12.2880i −0.905886 + 0.905886i
\(185\) 33.2660i 2.44576i
\(186\) 0 0
\(187\) 0.847640 + 3.16344i 0.0619856 + 0.231333i
\(188\) 0.361493 1.34911i 0.0263646 0.0983940i
\(189\) 0 0
\(190\) 10.8937 + 10.8937i 0.790314 + 0.790314i
\(191\) 7.16012i 0.518088i 0.965865 + 0.259044i \(0.0834075\pi\)
−0.965865 + 0.259044i \(0.916592\pi\)
\(192\) 0 0
\(193\) −1.93708 1.93708i −0.139434 0.139434i 0.633945 0.773378i \(-0.281435\pi\)
−0.773378 + 0.633945i \(0.781435\pi\)
\(194\) −3.12041 5.40471i −0.224033 0.388036i
\(195\) 0 0
\(196\) 1.40632 2.43582i 0.100452 0.173987i
\(197\) −23.1428 + 6.20110i −1.64886 + 0.441810i −0.959292 0.282414i \(-0.908865\pi\)
−0.689564 + 0.724224i \(0.742198\pi\)
\(198\) 0 0
\(199\) 8.08608 4.66850i 0.573207 0.330941i −0.185222 0.982697i \(-0.559300\pi\)
0.758429 + 0.651755i \(0.225967\pi\)
\(200\) 9.69469 2.59768i 0.685518 0.183684i
\(201\) 0 0
\(202\) −3.48186 + 0.932962i −0.244983 + 0.0656429i
\(203\) −9.55240 2.55956i −0.670447 0.179646i
\(204\) 0 0
\(205\) 1.61665 0.933374i 0.112912 0.0651897i
\(206\) −5.67122 21.1653i −0.395133 1.47466i
\(207\) 0 0
\(208\) −8.98441 0.293098i −0.622957 0.0203227i
\(209\) 6.79538 + 3.92332i 0.470046 + 0.271381i
\(210\) 0 0
\(211\) 5.21114 0.358750 0.179375 0.983781i \(-0.442592\pi\)
0.179375 + 0.983781i \(0.442592\pi\)
\(212\) −3.37244 + 5.84124i −0.231620 + 0.401178i
\(213\) 0 0
\(214\) −3.86149 + 3.86149i −0.263966 + 0.263966i
\(215\) −5.70942 1.52984i −0.389379 0.104334i
\(216\) 0 0
\(217\) −1.92907 3.34125i −0.130954 0.226819i
\(218\) 0.116643 + 0.202032i 0.00790009 + 0.0136834i
\(219\) 0 0
\(220\) 2.53079 1.46115i 0.170626 0.0985107i
\(221\) 6.77213 + 0.220927i 0.455543 + 0.0148612i
\(222\) 0 0
\(223\) −6.61056 1.77129i −0.442676 0.118615i 0.0305945 0.999532i \(-0.490260\pi\)
−0.473270 + 0.880917i \(0.656927\pi\)
\(224\) −4.06703 2.34810i −0.271740 0.156889i
\(225\) 0 0
\(226\) 6.28527 6.28527i 0.418090 0.418090i
\(227\) 9.03058 + 9.03058i 0.599381 + 0.599381i 0.940148 0.340767i \(-0.110687\pi\)
−0.340767 + 0.940148i \(0.610687\pi\)
\(228\) 0 0
\(229\) −4.71861 + 17.6101i −0.311815 + 1.16371i 0.615104 + 0.788446i \(0.289114\pi\)
−0.926919 + 0.375263i \(0.877553\pi\)
\(230\) 16.7476 + 9.66924i 1.10431 + 0.637571i
\(231\) 0 0
\(232\) 5.33265 19.9017i 0.350105 1.30661i
\(233\) 4.27048 0.279769 0.139884 0.990168i \(-0.455327\pi\)
0.139884 + 0.990168i \(0.455327\pi\)
\(234\) 0 0
\(235\) −6.88351 −0.449031
\(236\) 1.95550 7.29802i 0.127292 0.475060i
\(237\) 0 0
\(238\) −2.85884 1.65055i −0.185311 0.106989i
\(239\) 0.291572 1.08816i 0.0188603 0.0703874i −0.955854 0.293841i \(-0.905066\pi\)
0.974715 + 0.223453i \(0.0717331\pi\)
\(240\) 0 0
\(241\) −6.24227 6.24227i −0.402100 0.402100i 0.476872 0.878972i \(-0.341770\pi\)
−0.878972 + 0.476872i \(0.841770\pi\)
\(242\) 6.70184 6.70184i 0.430811 0.430811i
\(243\) 0 0
\(244\) 5.29684 + 3.05813i 0.339095 + 0.195777i
\(245\) −13.3895 3.58771i −0.855425 0.229210i
\(246\) 0 0
\(247\) 11.8473 11.0988i 0.753827 0.706197i
\(248\) 6.96125 4.01908i 0.442040 0.255212i
\(249\) 0 0
\(250\) 2.96968 + 5.14363i 0.187819 + 0.325312i
\(251\) 8.72352 + 15.1096i 0.550624 + 0.953708i 0.998230 + 0.0594773i \(0.0189434\pi\)
−0.447606 + 0.894231i \(0.647723\pi\)
\(252\) 0 0
\(253\) 9.51388 + 2.54924i 0.598133 + 0.160269i
\(254\) 9.10670 9.10670i 0.571405 0.571405i
\(255\) 0 0
\(256\) 6.34636 10.9922i 0.396647 0.687013i
\(257\) −3.25035 −0.202751 −0.101376 0.994848i \(-0.532324\pi\)
−0.101376 + 0.994848i \(0.532324\pi\)
\(258\) 0 0
\(259\) −14.7899 8.53897i −0.919002 0.530586i
\(260\) −1.37356 5.88788i −0.0851849 0.365151i
\(261\) 0 0
\(262\) −2.43511 9.08797i −0.150442 0.561457i
\(263\) 15.6551 9.03849i 0.965337 0.557337i 0.0675253 0.997718i \(-0.478490\pi\)
0.897811 + 0.440380i \(0.145156\pi\)
\(264\) 0 0
\(265\) 32.1088 + 8.60353i 1.97243 + 0.528511i
\(266\) −7.63961 + 2.04703i −0.468414 + 0.125511i
\(267\) 0 0
\(268\) −2.04531 + 0.548039i −0.124937 + 0.0334768i
\(269\) −0.992035 + 0.572752i −0.0604854 + 0.0349213i −0.529938 0.848037i \(-0.677785\pi\)
0.469452 + 0.882958i \(0.344451\pi\)
\(270\) 0 0
\(271\) −8.64641 + 2.31680i −0.525232 + 0.140736i −0.511686 0.859173i \(-0.670979\pi\)
−0.0135464 + 0.999908i \(0.504312\pi\)
\(272\) 2.34263 4.05755i 0.142043 0.246025i
\(273\) 0 0
\(274\) −5.03705 8.72443i −0.304299 0.527062i
\(275\) −4.02246 4.02246i −0.242564 0.242564i
\(276\) 0 0
\(277\) 25.7028i 1.54433i 0.635422 + 0.772165i \(0.280826\pi\)
−0.635422 + 0.772165i \(0.719174\pi\)
\(278\) −0.395500 0.395500i −0.0237205 0.0237205i
\(279\) 0 0
\(280\) −3.37634 + 12.6007i −0.201775 + 0.753035i
\(281\) −0.232804 0.868838i −0.0138879 0.0518305i 0.958634 0.284641i \(-0.0918744\pi\)
−0.972522 + 0.232811i \(0.925208\pi\)
\(282\) 0 0
\(283\) 18.1950i 1.08158i −0.841157 0.540791i \(-0.818125\pi\)
0.841157 0.540791i \(-0.181875\pi\)
\(284\) 4.77547 4.77547i 0.283372 0.283372i
\(285\) 0 0
\(286\) 3.52630 + 6.59544i 0.208515 + 0.389997i
\(287\) 0.958344i 0.0565693i
\(288\) 0 0
\(289\) 6.73421 11.6640i 0.396130 0.686117i
\(290\) −22.9283 −1.34640
\(291\) 0 0
\(292\) −1.91603 7.15072i −0.112127 0.418464i
\(293\) −1.18857 4.43581i −0.0694371 0.259143i 0.922477 0.386051i \(-0.126161\pi\)
−0.991914 + 0.126908i \(0.959495\pi\)
\(294\) 0 0
\(295\) −37.2364 −2.16799
\(296\) 17.7903 30.8137i 1.03404 1.79101i
\(297\) 0 0
\(298\) 6.45792i 0.374097i
\(299\) 10.7588 17.3060i 0.622200 1.00083i
\(300\) 0 0
\(301\) 2.14570 2.14570i 0.123676 0.123676i
\(302\) 23.5465i 1.35495i
\(303\) 0 0
\(304\) −2.90535 10.8429i −0.166633 0.621883i
\(305\) 7.80168 29.1163i 0.446723 1.66719i
\(306\) 0 0
\(307\) 3.93098 + 3.93098i 0.224353 + 0.224353i 0.810329 0.585976i \(-0.199289\pi\)
−0.585976 + 0.810329i \(0.699289\pi\)
\(308\) 1.50024i 0.0854840i
\(309\) 0 0
\(310\) −6.32509 6.32509i −0.359241 0.359241i
\(311\) −10.9466 18.9600i −0.620724 1.07513i −0.989351 0.145548i \(-0.953506\pi\)
0.368627 0.929577i \(-0.379828\pi\)
\(312\) 0 0
\(313\) −3.78444 + 6.55485i −0.213909 + 0.370502i −0.952935 0.303176i \(-0.901953\pi\)
0.739025 + 0.673678i \(0.235286\pi\)
\(314\) −26.5179 + 7.10545i −1.49649 + 0.400984i
\(315\) 0 0
\(316\) −4.90937 + 2.83443i −0.276174 + 0.159449i
\(317\) −28.5136 + 7.64018i −1.60148 + 0.429116i −0.945489 0.325653i \(-0.894416\pi\)
−0.655992 + 0.754768i \(0.727749\pi\)
\(318\) 0 0
\(319\) −11.2799 + 3.02245i −0.631556 + 0.169225i
\(320\) −24.3630 6.52805i −1.36193 0.364929i
\(321\) 0 0
\(322\) −8.59783 + 4.96396i −0.479138 + 0.276631i
\(323\) 2.18995 + 8.17300i 0.121852 + 0.454758i
\(324\) 0 0
\(325\) −10.3789 + 5.54916i −0.575718 + 0.307812i
\(326\) 4.59709 + 2.65413i 0.254609 + 0.146999i
\(327\) 0 0
\(328\) −1.99664 −0.110246
\(329\) 1.76692 3.06039i 0.0974132 0.168725i
\(330\) 0 0
\(331\) 13.6196 13.6196i 0.748603 0.748603i −0.225614 0.974217i \(-0.572439\pi\)
0.974217 + 0.225614i \(0.0724387\pi\)
\(332\) −1.55028 0.415396i −0.0850827 0.0227978i
\(333\) 0 0
\(334\) −0.212091 0.367352i −0.0116051 0.0201006i
\(335\) 5.21785 + 9.03757i 0.285081 + 0.493775i
\(336\) 0 0
\(337\) 15.6291 9.02348i 0.851373 0.491541i −0.00974077 0.999953i \(-0.503101\pi\)
0.861114 + 0.508412i \(0.169767\pi\)
\(338\) 15.1753 3.02213i 0.825425 0.164382i
\(339\) 0 0
\(340\) 3.04385 + 0.815596i 0.165076 + 0.0442319i
\(341\) −3.94552 2.27794i −0.213662 0.123358i
\(342\) 0 0
\(343\) 12.3370 12.3370i 0.666135 0.666135i
\(344\) 4.47041 + 4.47041i 0.241028 + 0.241028i
\(345\) 0 0
\(346\) −3.66518 + 13.6786i −0.197041 + 0.735367i
\(347\) 21.7625 + 12.5646i 1.16827 + 0.674503i 0.953273 0.302111i \(-0.0976914\pi\)
0.215000 + 0.976614i \(0.431025\pi\)
\(348\) 0 0
\(349\) −6.03993 + 22.5413i −0.323310 + 1.20661i 0.592689 + 0.805431i \(0.298066\pi\)
−0.916000 + 0.401179i \(0.868601\pi\)
\(350\) 5.73391 0.306490
\(351\) 0 0
\(352\) −5.54551 −0.295577
\(353\) 5.17925 19.3292i 0.275663 1.02879i −0.679732 0.733461i \(-0.737904\pi\)
0.955395 0.295329i \(-0.0954294\pi\)
\(354\) 0 0
\(355\) −28.8249 16.6421i −1.52987 0.883269i
\(356\) 0.917452 3.42398i 0.0486248 0.181470i
\(357\) 0 0
\(358\) −4.93147 4.93147i −0.260636 0.260636i
\(359\) −1.97346 + 1.97346i −0.104155 + 0.104155i −0.757264 0.653109i \(-0.773464\pi\)
0.653109 + 0.757264i \(0.273464\pi\)
\(360\) 0 0
\(361\) 1.10195 + 0.636209i 0.0579972 + 0.0334847i
\(362\) −9.53991 2.55621i −0.501406 0.134351i
\(363\) 0 0
\(364\) 2.97031 + 0.900665i 0.155686 + 0.0472077i
\(365\) −31.5968 + 18.2424i −1.65385 + 0.954852i
\(366\) 0 0
\(367\) 16.4946 + 28.5695i 0.861011 + 1.49131i 0.870954 + 0.491364i \(0.163502\pi\)
−0.00994343 + 0.999951i \(0.503165\pi\)
\(368\) −7.04535 12.2029i −0.367264 0.636120i
\(369\) 0 0
\(370\) −38.2457 10.2479i −1.98830 0.532763i
\(371\) −12.0671 + 12.0671i −0.626490 + 0.626490i
\(372\) 0 0
\(373\) 2.35231 4.07432i 0.121798 0.210960i −0.798679 0.601758i \(-0.794467\pi\)
0.920477 + 0.390797i \(0.127801\pi\)
\(374\) −3.89811 −0.201566
\(375\) 0 0
\(376\) 6.37609 + 3.68124i 0.328822 + 0.189845i
\(377\) −0.787765 + 24.1476i −0.0405720 + 1.24366i
\(378\) 0 0
\(379\) 5.09903 + 19.0299i 0.261920 + 0.977498i 0.964109 + 0.265507i \(0.0855394\pi\)
−0.702189 + 0.711991i \(0.747794\pi\)
\(380\) 6.53849 3.77500i 0.335418 0.193653i
\(381\) 0 0
\(382\) −8.23195 2.20574i −0.421183 0.112856i
\(383\) −5.52669 + 1.48087i −0.282401 + 0.0756690i −0.397239 0.917715i \(-0.630032\pi\)
0.114838 + 0.993384i \(0.463365\pi\)
\(384\) 0 0
\(385\) 7.14185 1.91365i 0.363982 0.0975287i
\(386\) 2.82378 1.63031i 0.143727 0.0829806i
\(387\) 0 0
\(388\) −2.95421 + 0.791578i −0.149977 + 0.0401863i
\(389\) 8.59884 14.8936i 0.435978 0.755137i −0.561397 0.827547i \(-0.689736\pi\)
0.997375 + 0.0724102i \(0.0230691\pi\)
\(390\) 0 0
\(391\) 5.31054 + 9.19812i 0.268565 + 0.465169i
\(392\) 10.4838 + 10.4838i 0.529513 + 0.529513i
\(393\) 0 0
\(394\) 28.5175i 1.43669i
\(395\) 19.7554 + 19.7554i 0.994004 + 0.994004i
\(396\) 0 0
\(397\) −0.701121 + 2.61662i −0.0351882 + 0.131324i −0.981286 0.192558i \(-0.938322\pi\)
0.946097 + 0.323882i \(0.104988\pi\)
\(398\) 2.87635 + 10.7347i 0.144179 + 0.538082i
\(399\) 0 0
\(400\) 8.13814i 0.406907i
\(401\) −5.47997 + 5.47997i −0.273657 + 0.273657i −0.830570 0.556914i \(-0.811985\pi\)
0.556914 + 0.830570i \(0.311985\pi\)
\(402\) 0 0
\(403\) −6.87876 + 6.44413i −0.342655 + 0.321005i
\(404\) 1.76654i 0.0878886i
\(405\) 0 0
\(406\) 5.88542 10.1938i 0.292088 0.505912i
\(407\) −20.1665 −0.999616
\(408\) 0 0
\(409\) −2.05083 7.65382i −0.101407 0.378457i 0.896506 0.443032i \(-0.146097\pi\)
−0.997913 + 0.0645754i \(0.979431\pi\)
\(410\) 0.575070 + 2.14619i 0.0284007 + 0.105993i
\(411\) 0 0
\(412\) −10.7383 −0.529039
\(413\) 9.55813 16.5552i 0.470325 0.814627i
\(414\) 0 0
\(415\) 7.90993i 0.388283i
\(416\) −3.32923 + 10.9795i −0.163229 + 0.538314i
\(417\) 0 0
\(418\) −6.60400 + 6.60400i −0.323012 + 0.323012i
\(419\) 30.4873i 1.48940i −0.667399 0.744700i \(-0.732592\pi\)
0.667399 0.744700i \(-0.267408\pi\)
\(420\) 0 0
\(421\) 2.02029 + 7.53981i 0.0984628 + 0.367468i 0.997522 0.0703596i \(-0.0224147\pi\)
−0.899059 + 0.437828i \(0.855748\pi\)
\(422\) −1.60534 + 5.99122i −0.0781469 + 0.291648i
\(423\) 0 0
\(424\) −25.1408 25.1408i −1.22095 1.22095i
\(425\) 6.13425i 0.297555i
\(426\) 0 0
\(427\) 10.9424 + 10.9424i 0.529540 + 0.529540i
\(428\) 1.33812 + 2.31770i 0.0646806 + 0.112030i
\(429\) 0 0
\(430\) 3.51769 6.09281i 0.169638 0.293821i
\(431\) 30.9395 8.29022i 1.49030 0.399326i 0.580465 0.814285i \(-0.302871\pi\)
0.909840 + 0.414960i \(0.136204\pi\)
\(432\) 0 0
\(433\) 19.6303 11.3335i 0.943371 0.544655i 0.0523555 0.998629i \(-0.483327\pi\)
0.891015 + 0.453973i \(0.149994\pi\)
\(434\) 4.43569 1.18854i 0.212920 0.0570517i
\(435\) 0 0
\(436\) 0.110431 0.0295898i 0.00528867 0.00141709i
\(437\) 24.5799 + 6.58617i 1.17582 + 0.315059i
\(438\) 0 0
\(439\) 28.0428 16.1905i 1.33841 0.772730i 0.351836 0.936062i \(-0.385557\pi\)
0.986571 + 0.163332i \(0.0522241\pi\)
\(440\) 3.98695 + 14.8795i 0.190070 + 0.709352i
\(441\) 0 0
\(442\) −2.34022 + 7.71782i −0.111313 + 0.367099i
\(443\) −21.0067 12.1282i −0.998059 0.576230i −0.0903854 0.995907i \(-0.528810\pi\)
−0.907673 + 0.419677i \(0.862143\pi\)
\(444\) 0 0
\(445\) −17.4700 −0.828158
\(446\) 4.07289 7.05446i 0.192857 0.334038i
\(447\) 0 0
\(448\) 9.15604 9.15604i 0.432582 0.432582i
\(449\) −10.4048 2.78796i −0.491032 0.131572i 0.00480262 0.999988i \(-0.498471\pi\)
−0.495835 + 0.868417i \(0.665138\pi\)
\(450\) 0 0
\(451\) 0.565830 + 0.980046i 0.0266439 + 0.0461486i
\(452\) −2.17803 3.77247i −0.102446 0.177442i
\(453\) 0 0
\(454\) −13.1644 + 7.60045i −0.617834 + 0.356707i
\(455\) 0.498770 15.2889i 0.0233827 0.716756i
\(456\) 0 0
\(457\) 23.2711 + 6.23548i 1.08858 + 0.291684i 0.758106 0.652132i \(-0.226125\pi\)
0.330473 + 0.943816i \(0.392792\pi\)
\(458\) −18.7926 10.8499i −0.878122 0.506984i
\(459\) 0 0
\(460\) 6.70136 6.70136i 0.312453 0.312453i
\(461\) −2.08882 2.08882i −0.0972863 0.0972863i 0.656789 0.754075i \(-0.271914\pi\)
−0.754075 + 0.656789i \(0.771914\pi\)
\(462\) 0 0
\(463\) −0.480789 + 1.79433i −0.0223442 + 0.0833896i −0.976198 0.216883i \(-0.930411\pi\)
0.953853 + 0.300273i \(0.0970776\pi\)
\(464\) 14.4681 + 8.35318i 0.671666 + 0.387786i
\(465\) 0 0
\(466\) −1.31556 + 4.90975i −0.0609423 + 0.227440i
\(467\) −16.0374 −0.742122 −0.371061 0.928608i \(-0.621006\pi\)
−0.371061 + 0.928608i \(0.621006\pi\)
\(468\) 0 0
\(469\) −5.35743 −0.247383
\(470\) 2.12053 7.91394i 0.0978129 0.365043i
\(471\) 0 0
\(472\) 34.4915 + 19.9137i 1.58760 + 0.916600i
\(473\) 0.927416 3.46117i 0.0426427 0.159145i
\(474\) 0 0
\(475\) −10.3924 10.3924i −0.476834 0.476834i
\(476\) −1.14393 + 1.14393i −0.0524320 + 0.0524320i
\(477\) 0 0
\(478\) 1.16123 + 0.670438i 0.0531136 + 0.0306651i
\(479\) 35.7803 + 9.58729i 1.63484 + 0.438055i 0.955313 0.295595i \(-0.0955178\pi\)
0.679528 + 0.733649i \(0.262184\pi\)
\(480\) 0 0
\(481\) −12.1069 + 39.9274i −0.552027 + 1.82053i
\(482\) 9.09969 5.25371i 0.414480 0.239300i
\(483\) 0 0
\(484\) −2.32239 4.02249i −0.105563 0.182841i
\(485\) 7.53657 + 13.0537i 0.342218 + 0.592739i
\(486\) 0 0
\(487\) 19.5635 + 5.24201i 0.886505 + 0.237538i 0.673212 0.739450i \(-0.264914\pi\)
0.213293 + 0.976988i \(0.431581\pi\)
\(488\) −22.7977 + 22.7977i −1.03200 + 1.03200i
\(489\) 0 0
\(490\) 8.24954 14.2886i 0.372676 0.645494i
\(491\) −11.3387 −0.511707 −0.255854 0.966716i \(-0.582356\pi\)
−0.255854 + 0.966716i \(0.582356\pi\)
\(492\) 0 0
\(493\) −10.9056 6.29633i −0.491162 0.283572i
\(494\) 9.11049 + 17.0399i 0.409900 + 0.766660i
\(495\) 0 0
\(496\) 1.68689 + 6.29557i 0.0757438 + 0.282680i
\(497\) 14.7980 8.54364i 0.663782 0.383235i
\(498\) 0 0
\(499\) 4.93618 + 1.32264i 0.220974 + 0.0592097i 0.367607 0.929981i \(-0.380177\pi\)
−0.146634 + 0.989191i \(0.546844\pi\)
\(500\) 2.81150 0.753340i 0.125734 0.0336904i
\(501\) 0 0
\(502\) −20.0588 + 5.37473i −0.895266 + 0.239886i
\(503\) −16.1644 + 9.33251i −0.720734 + 0.416116i −0.815023 0.579429i \(-0.803276\pi\)
0.0942889 + 0.995545i \(0.469942\pi\)
\(504\) 0 0
\(505\) 8.40956 2.25333i 0.374220 0.100272i
\(506\) −5.86169 + 10.1527i −0.260584 + 0.451344i
\(507\) 0 0
\(508\) −3.15574 5.46591i −0.140013 0.242510i
\(509\) 2.28498 + 2.28498i 0.101280 + 0.101280i 0.755931 0.654651i \(-0.227185\pi\)
−0.654651 + 0.755931i \(0.727185\pi\)
\(510\) 0 0
\(511\) 18.7304i 0.828586i
\(512\) 16.4510 + 16.4510i 0.727037 + 0.727037i
\(513\) 0 0
\(514\) 1.00130 3.73691i 0.0441655 0.164828i
\(515\) 13.6974 + 51.1195i 0.603580 + 2.25259i
\(516\) 0 0
\(517\) 4.17292i 0.183525i
\(518\) 14.3734 14.3734i 0.631531 0.631531i
\(519\) 0 0
\(520\) 31.8533 + 1.03915i 1.39686 + 0.0455698i
\(521\) 21.9128i 0.960018i 0.877263 + 0.480009i \(0.159367\pi\)
−0.877263 + 0.480009i \(0.840633\pi\)
\(522\) 0 0
\(523\) 9.66002 16.7316i 0.422403 0.731624i −0.573771 0.819016i \(-0.694520\pi\)
0.996174 + 0.0873922i \(0.0278533\pi\)
\(524\) −4.61083 −0.201425
\(525\) 0 0
\(526\) 5.56879 + 20.7830i 0.242811 + 0.906182i
\(527\) −1.27152 4.74538i −0.0553883 0.206712i
\(528\) 0 0
\(529\) 8.94238 0.388799
\(530\) −19.7829 + 34.2649i −0.859313 + 1.48837i
\(531\) 0 0
\(532\) 3.87599i 0.168046i
\(533\) 2.28008 0.531913i 0.0987612 0.0230397i
\(534\) 0 0
\(535\) 9.32647 9.32647i 0.403218 0.403218i
\(536\) 11.1618i 0.482117i
\(537\) 0 0
\(538\) −0.352883 1.31698i −0.0152139 0.0567790i
\(539\) 2.17494 8.11699i 0.0936814 0.349624i
\(540\) 0 0
\(541\) −1.88126 1.88126i −0.0808815 0.0808815i 0.665509 0.746390i \(-0.268215\pi\)
−0.746390 + 0.665509i \(0.768215\pi\)
\(542\) 10.6544i 0.457647i
\(543\) 0 0
\(544\) −4.22845 4.22845i −0.181293 0.181293i
\(545\) −0.281723 0.487958i −0.0120677 0.0209018i
\(546\) 0 0
\(547\) 14.0438 24.3246i 0.600469 1.04004i −0.392281 0.919846i \(-0.628314\pi\)
0.992750 0.120198i \(-0.0383529\pi\)
\(548\) −4.76876 + 1.27779i −0.203711 + 0.0545843i
\(549\) 0 0
\(550\) 5.86376 3.38544i 0.250031 0.144356i
\(551\) −29.1427 + 7.80876i −1.24152 + 0.332664i
\(552\) 0 0
\(553\) −13.8542 + 3.71222i −0.589140 + 0.157860i
\(554\) −29.5503 7.91798i −1.25547 0.336403i
\(555\) 0 0
\(556\) −0.237382 + 0.137052i −0.0100672 + 0.00581232i
\(557\) −3.91190 14.5994i −0.165753 0.618597i −0.997943 0.0641073i \(-0.979580\pi\)
0.832190 0.554490i \(-0.187087\pi\)
\(558\) 0 0
\(559\) −6.29595 3.91408i −0.266290 0.165548i
\(560\) −9.16043 5.28878i −0.387099 0.223492i
\(561\) 0 0
\(562\) 1.07062 0.0451612
\(563\) 12.7053 22.0062i 0.535463 0.927450i −0.463677 0.886004i \(-0.653470\pi\)
0.999141 0.0414457i \(-0.0131964\pi\)
\(564\) 0 0
\(565\) −15.1805 + 15.1805i −0.638648 + 0.638648i
\(566\) 20.9187 + 5.60516i 0.879280 + 0.235602i
\(567\) 0 0
\(568\) 17.8000 + 30.8306i 0.746873 + 1.29362i
\(569\) −12.5182 21.6821i −0.524789 0.908962i −0.999583 0.0288649i \(-0.990811\pi\)
0.474794 0.880097i \(-0.342523\pi\)
\(570\) 0 0
\(571\) 23.2909 13.4470i 0.974693 0.562739i 0.0740294 0.997256i \(-0.476414\pi\)
0.900664 + 0.434517i \(0.143081\pi\)
\(572\) 3.56935 0.832682i 0.149242 0.0348162i
\(573\) 0 0
\(574\) −1.10180 0.295227i −0.0459884 0.0123225i
\(575\) −15.9768 9.22423i −0.666280 0.384677i
\(576\) 0 0
\(577\) −12.8490 + 12.8490i −0.534912 + 0.534912i −0.922030 0.387118i \(-0.873470\pi\)
0.387118 + 0.922030i \(0.373470\pi\)
\(578\) 11.3355 + 11.3355i 0.471494 + 0.471494i
\(579\) 0 0
\(580\) −2.90819 + 10.8535i −0.120756 + 0.450668i
\(581\) −3.51673 2.03038i −0.145899 0.0842345i
\(582\) 0 0
\(583\) −5.21563 + 19.4650i −0.216009 + 0.806158i
\(584\) 39.0235 1.61480
\(585\) 0 0
\(586\) 5.46598 0.225797
\(587\) −3.68465 + 13.7513i −0.152082 + 0.567576i 0.847256 + 0.531185i \(0.178253\pi\)
−0.999338 + 0.0363915i \(0.988414\pi\)
\(588\) 0 0
\(589\) −10.1936 5.88526i −0.420019 0.242498i
\(590\) 11.4710 42.8104i 0.472255 1.76248i
\(591\) 0 0
\(592\) 20.4002 + 20.4002i 0.838441 + 0.838441i
\(593\) −14.8629 + 14.8629i −0.610345 + 0.610345i −0.943036 0.332691i \(-0.892043\pi\)
0.332691 + 0.943036i \(0.392043\pi\)
\(594\) 0 0
\(595\) 6.90481 + 3.98649i 0.283070 + 0.163430i
\(596\) 3.05698 + 0.819114i 0.125219 + 0.0335522i
\(597\) 0 0
\(598\) 16.5823 + 17.7007i 0.678099 + 0.723834i
\(599\) 29.6012 17.0903i 1.20947 0.698289i 0.246828 0.969059i \(-0.420612\pi\)
0.962644 + 0.270770i \(0.0872783\pi\)
\(600\) 0 0
\(601\) −4.47135 7.74461i −0.182390 0.315909i 0.760304 0.649568i \(-0.225050\pi\)
−0.942694 + 0.333659i \(0.891717\pi\)
\(602\) 1.80590 + 3.12790i 0.0736028 + 0.127484i
\(603\) 0 0
\(604\) 11.1462 + 2.98660i 0.453531 + 0.121523i
\(605\) −16.1866 + 16.1866i −0.658079 + 0.658079i
\(606\) 0 0
\(607\) −4.58314 + 7.93823i −0.186024 + 0.322203i −0.943921 0.330171i \(-0.892894\pi\)
0.757897 + 0.652374i \(0.226227\pi\)
\(608\) −14.3273 −0.581048
\(609\) 0 0
\(610\) 31.0714 + 17.9391i 1.25805 + 0.726333i
\(611\) −8.26193 2.50520i −0.334242 0.101350i
\(612\) 0 0
\(613\) −0.197913 0.738622i −0.00799364 0.0298327i 0.961814 0.273705i \(-0.0882490\pi\)
−0.969807 + 0.243872i \(0.921582\pi\)
\(614\) −5.73041 + 3.30845i −0.231260 + 0.133518i
\(615\) 0 0
\(616\) −7.63878 2.04680i −0.307775 0.0824681i
\(617\) −16.1154 + 4.31810i −0.648780 + 0.173840i −0.568177 0.822906i \(-0.692351\pi\)
−0.0806029 + 0.996746i \(0.525685\pi\)
\(618\) 0 0
\(619\) 3.71367 0.995076i 0.149265 0.0399955i −0.183413 0.983036i \(-0.558714\pi\)
0.332678 + 0.943041i \(0.392048\pi\)
\(620\) −3.79636 + 2.19183i −0.152466 + 0.0880261i
\(621\) 0 0
\(622\) 25.1704 6.74440i 1.00924 0.270426i
\(623\) 4.48434 7.76711i 0.179661 0.311183i
\(624\) 0 0
\(625\) −15.3330 26.5575i −0.613320 1.06230i
\(626\) −6.37023 6.37023i −0.254606 0.254606i
\(627\) 0 0
\(628\) 13.4540i 0.536872i
\(629\) −15.3769 15.3769i −0.613118 0.613118i
\(630\) 0 0
\(631\) 3.46710 12.9394i 0.138023 0.515110i −0.861944 0.507004i \(-0.830753\pi\)
0.999967 0.00810607i \(-0.00258027\pi\)
\(632\) −7.73413 28.8642i −0.307647 1.14815i
\(633\) 0 0
\(634\) 35.1355i 1.39541i
\(635\) −21.9949 + 21.9949i −0.872843 + 0.872843i
\(636\) 0 0
\(637\) −14.7650 9.17916i −0.585012 0.363692i
\(638\) 13.8996i 0.550290i
\(639\) 0 0
\(640\) 5.86282 10.1547i 0.231748 0.401400i
\(641\) 25.4888 1.00675 0.503375 0.864068i \(-0.332092\pi\)
0.503375 + 0.864068i \(0.332092\pi\)
\(642\) 0 0
\(643\) −1.44538 5.39422i −0.0570001 0.212727i 0.931552 0.363609i \(-0.118455\pi\)
−0.988552 + 0.150881i \(0.951789\pi\)
\(644\) 1.25924 + 4.69956i 0.0496212 + 0.185189i
\(645\) 0 0
\(646\) −10.0711 −0.396241
\(647\) 1.23117 2.13245i 0.0484024 0.0838354i −0.840809 0.541332i \(-0.817920\pi\)
0.889212 + 0.457496i \(0.151254\pi\)
\(648\) 0 0
\(649\) 22.5734i 0.886085i
\(650\) −3.18251 13.6420i −0.124828 0.535085i
\(651\) 0 0
\(652\) 1.83947 1.83947i 0.0720393 0.0720393i
\(653\) 32.0947i 1.25596i 0.778229 + 0.627981i \(0.216118\pi\)
−0.778229 + 0.627981i \(0.783882\pi\)
\(654\) 0 0
\(655\) 5.88141 + 21.9497i 0.229806 + 0.857646i
\(656\) 0.419016 1.56379i 0.0163598 0.0610557i
\(657\) 0 0
\(658\) 2.97419 + 2.97419i 0.115946 + 0.115946i
\(659\) 5.31859i 0.207183i −0.994620 0.103591i \(-0.966967\pi\)
0.994620 0.103591i \(-0.0330335\pi\)
\(660\) 0 0
\(661\) −16.1836 16.1836i −0.629470 0.629470i 0.318464 0.947935i \(-0.396833\pi\)
−0.947935 + 0.318464i \(0.896833\pi\)
\(662\) 11.4628 + 19.8541i 0.445513 + 0.771651i
\(663\) 0 0
\(664\) 4.23015 7.32684i 0.164162 0.284337i
\(665\) 18.4516 4.94408i 0.715520 0.191723i
\(666\) 0 0
\(667\) −32.7980 + 18.9359i −1.26994 + 0.733202i
\(668\) −0.200794 + 0.0538026i −0.00776896 + 0.00208169i
\(669\) 0 0
\(670\) −11.9979 + 3.21481i −0.463517 + 0.124199i
\(671\) 17.6509 + 4.72954i 0.681404 + 0.182582i
\(672\) 0 0
\(673\) −24.6097 + 14.2084i −0.948633 + 0.547693i −0.892656 0.450739i \(-0.851161\pi\)
−0.0559769 + 0.998432i \(0.517827\pi\)
\(674\) 5.55954 + 20.7485i 0.214146 + 0.799202i
\(675\) 0 0
\(676\) 0.494230 7.56681i 0.0190088 0.291031i
\(677\) −19.5004 11.2586i −0.749461 0.432701i 0.0760383 0.997105i \(-0.475773\pi\)
−0.825499 + 0.564404i \(0.809106\pi\)
\(678\) 0 0
\(679\) −7.73819 −0.296965
\(680\) −8.30556 + 14.3857i −0.318504 + 0.551665i
\(681\) 0 0
\(682\) 3.83439 3.83439i 0.146827 0.146827i
\(683\) 38.9958 + 10.4489i 1.49213 + 0.399816i 0.910457 0.413604i \(-0.135730\pi\)
0.581677 + 0.813420i \(0.302397\pi\)
\(684\) 0 0
\(685\) 12.1657 + 21.0717i 0.464829 + 0.805107i
\(686\) 10.3832 + 17.9843i 0.396434 + 0.686644i
\(687\) 0 0
\(688\) −4.43943 + 2.56311i −0.169252 + 0.0977176i
\(689\) 35.4074 + 22.0121i 1.34891 + 0.838596i
\(690\) 0 0
\(691\) −32.4618 8.69813i −1.23491 0.330892i −0.418419 0.908254i \(-0.637415\pi\)
−0.816488 + 0.577362i \(0.804082\pi\)
\(692\) 6.01014 + 3.46996i 0.228471 + 0.131908i
\(693\) 0 0
\(694\) −21.1496 + 21.1496i −0.802828 + 0.802828i
\(695\) 0.955230 + 0.955230i 0.0362339 + 0.0362339i
\(696\) 0 0
\(697\) −0.315840 + 1.17873i −0.0119633 + 0.0446476i
\(698\) −24.0550 13.8882i −0.910495 0.525674i
\(699\) 0 0
\(700\) 0.727282 2.71425i 0.0274887 0.102589i
\(701\) −34.8493 −1.31624 −0.658120 0.752913i \(-0.728648\pi\)
−0.658120 + 0.752913i \(0.728648\pi\)
\(702\) 0 0
\(703\) −52.1018 −1.96506
\(704\) 3.95743 14.7693i 0.149151 0.556640i
\(705\) 0 0
\(706\) 20.6272 + 11.9091i 0.776313 + 0.448205i
\(707\) −1.15681 + 4.31727i −0.0435062 + 0.162367i
\(708\) 0 0
\(709\) −6.24720 6.24720i −0.234619 0.234619i 0.579999 0.814617i \(-0.303053\pi\)
−0.814617 + 0.579999i \(0.803053\pi\)
\(710\) 28.0131 28.0131i 1.05131 1.05131i
\(711\) 0 0
\(712\) 16.1822 + 9.34279i 0.606453 + 0.350136i
\(713\) −14.2715 3.82404i −0.534473 0.143211i
\(714\) 0 0
\(715\) −8.51689 15.9296i −0.318514 0.595735i
\(716\) −2.95991 + 1.70890i −0.110617 + 0.0638647i
\(717\) 0 0
\(718\) −1.66094 2.87683i −0.0619856 0.107362i
\(719\) 12.4677 + 21.5947i 0.464966 + 0.805345i 0.999200 0.0399915i \(-0.0127331\pi\)
−0.534234 + 0.845337i \(0.679400\pi\)
\(720\) 0 0
\(721\) −26.2435 7.03193i −0.977359 0.261883i
\(722\) −1.07091 + 1.07091i −0.0398552 + 0.0398552i
\(723\) 0 0
\(724\) −2.42006 + 4.19166i −0.0899408 + 0.155782i
\(725\) 21.8730 0.812344
\(726\) 0 0
\(727\) −15.7972 9.12055i −0.585888 0.338262i 0.177582 0.984106i \(-0.443172\pi\)
−0.763470 + 0.645844i \(0.776506\pi\)
\(728\) −8.63837 + 13.8951i −0.320159 + 0.514989i
\(729\) 0 0
\(730\) −11.2395 41.9464i −0.415993 1.55251i
\(731\) 3.34629 1.93198i 0.123767 0.0714569i
\(732\) 0 0
\(733\) −22.3310 5.98357i −0.824814 0.221008i −0.178364 0.983965i \(-0.557081\pi\)
−0.646450 + 0.762956i \(0.723747\pi\)
\(734\) −37.9275 + 10.1626i −1.39993 + 0.375110i
\(735\) 0 0
\(736\) −17.3715 + 4.65469i −0.640324 + 0.171574i
\(737\) −5.47876 + 3.16316i −0.201813 + 0.116517i
\(738\) 0 0
\(739\) 11.4323 3.06326i 0.420542 0.112684i −0.0423409 0.999103i \(-0.513482\pi\)
0.462883 + 0.886419i \(0.346815\pi\)
\(740\) −9.70206 + 16.8045i −0.356655 + 0.617745i
\(741\) 0 0
\(742\) −10.1560 17.5908i −0.372840 0.645778i
\(743\) 31.1023 + 31.1023i 1.14103 + 1.14103i 0.988262 + 0.152771i \(0.0488196\pi\)
0.152771 + 0.988262i \(0.451180\pi\)
\(744\) 0 0
\(745\) 15.5975i 0.571448i
\(746\) 3.95957 + 3.95957i 0.144970 + 0.144970i
\(747\) 0 0
\(748\) −0.494431 + 1.84524i −0.0180782 + 0.0674687i
\(749\) 1.75252 + 6.54051i 0.0640358 + 0.238985i
\(750\) 0 0
\(751\) 37.0028i 1.35025i 0.737702 + 0.675126i \(0.235911\pi\)
−0.737702 + 0.675126i \(0.764089\pi\)
\(752\) −4.22128 + 4.22128i −0.153934 + 0.153934i
\(753\) 0 0
\(754\) −27.5196 8.34458i −1.00221 0.303892i
\(755\) 56.8706i 2.06973i
\(756\) 0 0
\(757\) −23.2842 + 40.3294i −0.846278 + 1.46580i 0.0382287 + 0.999269i \(0.487828\pi\)
−0.884507 + 0.466527i \(0.845505\pi\)
\(758\) −23.4493 −0.851717
\(759\) 0 0
\(760\) 10.3006 + 38.4424i 0.373643 + 1.39445i
\(761\) −7.83690 29.2477i −0.284088 1.06023i −0.949504 0.313756i \(-0.898412\pi\)
0.665416 0.746473i \(-0.268254\pi\)
\(762\) 0 0
\(763\) 0.289259 0.0104719
\(764\) −2.08826 + 3.61697i −0.0755506 + 0.130857i
\(765\) 0 0
\(766\) 6.81020i 0.246062i
\(767\) −44.6929 13.5519i −1.61377 0.489331i
\(768\) 0 0
\(769\) 37.1880 37.1880i 1.34103 1.34103i 0.445999 0.895033i \(-0.352848\pi\)
0.895033 0.445999i \(-0.147152\pi\)
\(770\) 8.80046i 0.317146i
\(771\) 0 0
\(772\) −0.413573 1.54347i −0.0148848 0.0555508i
\(773\) 5.09988 19.0330i 0.183430 0.684570i −0.811531 0.584309i \(-0.801366\pi\)
0.994961 0.100261i \(-0.0319677\pi\)
\(774\) 0 0
\(775\) 6.03398 + 6.03398i 0.216747 + 0.216747i
\(776\) 16.1219i 0.578744i
\(777\) 0 0
\(778\) 14.4742 + 14.4742i 0.518924 + 0.518924i
\(779\) 1.46187 + 2.53203i 0.0523769 + 0.0907194i
\(780\) 0 0
\(781\) 10.0888 17.4742i 0.361004 0.625277i
\(782\) −12.2110 + 3.27192i −0.436664 + 0.117004i
\(783\) 0 0
\(784\) −10.4112 + 6.01090i −0.371828 + 0.214675i
\(785\) 64.0473 17.1614i 2.28595 0.612517i
\(786\) 0 0
\(787\) 9.80128 2.62624i 0.349378 0.0936155i −0.0798623 0.996806i \(-0.525448\pi\)
0.429240 + 0.903190i \(0.358781\pi\)
\(788\) −13.4993 3.61712i −0.480891 0.128854i
\(789\) 0 0
\(790\) −28.7986 + 16.6269i −1.02461 + 0.591557i
\(791\) −2.85255 10.6459i −0.101425 0.378523i
\(792\) 0 0
\(793\) 19.9606 32.1074i 0.708822 1.14017i
\(794\) −2.79232 1.61215i −0.0990958 0.0572130i
\(795\) 0 0
\(796\) 5.44630 0.193039
\(797\) 20.6189 35.7129i 0.730358 1.26502i −0.226373 0.974041i \(-0.572687\pi\)
0.956730 0.290976i \(-0.0939799\pi\)
\(798\) 0 0
\(799\) 3.18185 3.18185i 0.112566 0.112566i
\(800\) 10.0330 + 2.68834i 0.354720 + 0.0950471i
\(801\) 0 0
\(802\) −4.61213 7.98844i −0.162860 0.282082i
\(803\) −11.0589 19.1546i −0.390261 0.675951i
\(804\) 0 0
\(805\) 20.7659 11.9892i 0.731902 0.422564i
\(806\) −5.28971 9.89365i −0.186322 0.348489i
\(807\) 0 0
\(808\) −8.99470 2.41012i −0.316432 0.0847878i
\(809\) −22.9401 13.2445i −0.806532 0.465651i 0.0392184 0.999231i \(-0.487513\pi\)
−0.845750 + 0.533579i \(0.820847\pi\)
\(810\) 0 0
\(811\) −27.7759 + 27.7759i −0.975343 + 0.975343i −0.999703 0.0243602i \(-0.992245\pi\)
0.0243602 + 0.999703i \(0.492245\pi\)
\(812\) −4.07894 4.07894i −0.143143 0.143143i
\(813\) 0 0
\(814\) 6.21248 23.1853i 0.217747 0.812644i
\(815\) −11.1031 6.41039i −0.388925 0.224546i
\(816\) 0 0
\(817\) 2.39606 8.94221i 0.0838274 0.312848i
\(818\) 9.43133 0.329759
\(819\) 0 0
\(820\) 1.08888 0.0380253
\(821\) −7.32634 + 27.3423i −0.255691 + 0.954251i 0.712014 + 0.702165i \(0.247783\pi\)
−0.967705 + 0.252086i \(0.918883\pi\)
\(822\) 0 0
\(823\) 2.76090 + 1.59401i 0.0962390 + 0.0555636i 0.547347 0.836906i \(-0.315638\pi\)
−0.451108 + 0.892469i \(0.648971\pi\)
\(824\) 14.6505 54.6764i 0.510374 1.90474i
\(825\) 0 0
\(826\) 16.0889 + 16.0889i 0.559805 + 0.559805i
\(827\) 40.4226 40.4226i 1.40563 1.40563i 0.625027 0.780603i \(-0.285088\pi\)
0.780603 0.625027i \(-0.214912\pi\)
\(828\) 0 0
\(829\) 0.372721 + 0.215190i 0.0129451 + 0.00747387i 0.506459 0.862264i \(-0.330954\pi\)
−0.493513 + 0.869738i \(0.664288\pi\)
\(830\) −9.09400 2.43673i −0.315657 0.0845801i
\(831\) 0 0
\(832\) −26.8658 16.7020i −0.931405 0.579038i
\(833\) 7.84759 4.53081i 0.271903 0.156983i
\(834\) 0 0
\(835\) 0.512252 + 0.887247i 0.0177272 + 0.0307044i
\(836\) 2.28848 + 3.96376i 0.0791488 + 0.137090i
\(837\) 0 0
\(838\) 35.0510 + 9.39190i 1.21082 + 0.324438i
\(839\) 3.41628 3.41628i 0.117943 0.117943i −0.645672 0.763615i \(-0.723423\pi\)
0.763615 + 0.645672i \(0.223423\pi\)
\(840\) 0 0
\(841\) 7.95100 13.7715i 0.274172 0.474880i
\(842\) −9.29085 −0.320184
\(843\) 0 0
\(844\) 2.63244 + 1.51984i 0.0906122 + 0.0523150i
\(845\) −36.6520 + 7.29919i −1.26087 + 0.251100i
\(846\) 0 0
\(847\) −3.04160 11.3514i −0.104511 0.390040i
\(848\) 24.9666 14.4145i 0.857357 0.494995i
\(849\) 0 0
\(850\) 7.05251 + 1.88971i 0.241899 + 0.0648166i
\(851\) −63.1724 + 16.9270i −2.16552 + 0.580250i
\(852\) 0 0
\(853\) 43.1437 11.5603i 1.47721 0.395818i 0.571815 0.820383i \(-0.306240\pi\)
0.905397 + 0.424565i \(0.139573\pi\)
\(854\) −15.9513 + 9.20951i −0.545843 + 0.315143i
\(855\) 0 0
\(856\) −13.6267 + 3.65125i −0.465750 + 0.124797i
\(857\) 25.1388 43.5417i 0.858725 1.48736i −0.0144207 0.999896i \(-0.504590\pi\)
0.873146 0.487459i \(-0.162076\pi\)
\(858\) 0 0
\(859\) 25.1679 + 43.5920i 0.858717 + 1.48734i 0.873153 + 0.487445i \(0.162071\pi\)
−0.0144366 + 0.999896i \(0.504595\pi\)
\(860\) −2.43796 2.43796i −0.0831339 0.0831339i
\(861\) 0 0
\(862\) 38.1249i 1.29854i
\(863\) −29.3689 29.3689i −0.999728 0.999728i 0.000272025 1.00000i \(-0.499913\pi\)
−1.00000 0.000272025i \(0.999913\pi\)
\(864\) 0 0
\(865\) 8.85231 33.0373i 0.300988 1.12330i
\(866\) 6.98281 + 26.0602i 0.237286 + 0.885562i
\(867\) 0 0
\(868\) 2.25047i 0.0763858i
\(869\) −11.9761 + 11.9761i −0.406263 + 0.406263i
\(870\) 0 0
\(871\) 2.97355 + 12.7463i 0.100755 + 0.431893i
\(872\) 0.602650i 0.0204083i
\(873\) 0 0
\(874\) −15.1442 + 26.2304i −0.512259 + 0.887258i
\(875\) 7.36439 0.248962
\(876\) 0 0
\(877\) −4.54744 16.9713i −0.153556 0.573080i −0.999225 0.0393710i \(-0.987465\pi\)
0.845668 0.533709i \(-0.179202\pi\)
\(878\) 9.97527 + 37.2282i 0.336649 + 1.25639i
\(879\) 0 0
\(880\) −12.4905 −0.421054
\(881\) −11.7668 + 20.3807i −0.396434 + 0.686644i −0.993283 0.115710i \(-0.963086\pi\)
0.596849 + 0.802354i \(0.296419\pi\)
\(882\) 0 0
\(883\) 5.09275i 0.171385i −0.996322 0.0856923i \(-0.972690\pi\)
0.996322 0.0856923i \(-0.0273102\pi\)
\(884\) 3.35654 + 2.08670i 0.112893 + 0.0701835i
\(885\) 0 0
\(886\) 20.4151 20.4151i 0.685858 0.685858i
\(887\) 13.2225i 0.443969i 0.975050 + 0.221985i \(0.0712535\pi\)
−0.975050 + 0.221985i \(0.928747\pi\)
\(888\) 0 0
\(889\) −4.13304 15.4247i −0.138618 0.517329i
\(890\) 5.38181 20.0852i 0.180399 0.673256i
\(891\) 0 0
\(892\) −2.82276 2.82276i −0.0945129 0.0945129i
\(893\) 10.7811i 0.360775i
\(894\) 0 0
\(895\) 11.9107 + 11.9107i 0.398132 + 0.398132i
\(896\) 3.00983 + 5.21318i 0.100551 + 0.174160i
\(897\) 0 0
\(898\) 6.41059 11.1035i 0.213924 0.370528i
\(899\) 16.9207 4.53390i 0.564338 0.151214i
\(900\) 0 0
\(901\) −18.8190 + 10.8651i −0.626951 + 0.361970i
\(902\) −1.30106 + 0.348619i −0.0433207 + 0.0116077i
\(903\) 0 0
\(904\) 22.1798 5.94307i 0.737690 0.197664i
\(905\) 23.0412 + 6.17388i 0.765917 + 0.205227i
\(906\) 0 0
\(907\) 8.56612 4.94565i 0.284433 0.164218i −0.350995 0.936377i \(-0.614157\pi\)
0.635429 + 0.772160i \(0.280823\pi\)
\(908\) 1.92806 + 7.19562i 0.0639850 + 0.238795i
\(909\) 0 0
\(910\) 17.4239 + 5.28333i 0.577598 + 0.175141i
\(911\) 10.2559 + 5.92123i 0.339792 + 0.196179i 0.660180 0.751107i \(-0.270480\pi\)
−0.320388 + 0.947286i \(0.603813\pi\)
\(912\) 0 0
\(913\) −4.79516 −0.158697
\(914\) −14.3378 + 24.8338i −0.474252 + 0.821429i
\(915\) 0 0
\(916\) −7.51964 + 7.51964i −0.248456 + 0.248456i
\(917\) −11.2685 3.01937i −0.372117 0.0997085i
\(918\) 0 0
\(919\) −1.00599 1.74243i −0.0331846 0.0574775i 0.848956 0.528463i \(-0.177232\pi\)
−0.882141 + 0.470986i \(0.843898\pi\)
\(920\) 24.9786 + 43.2642i 0.823520 + 1.42638i
\(921\) 0 0
\(922\) 3.04499 1.75803i 0.100281 0.0578975i
\(923\) −28.5403 30.4652i −0.939415 1.00278i
\(924\) 0 0
\(925\) 36.4855 + 9.77625i 1.19963 + 0.321441i
\(926\) −1.91482 1.10552i −0.0629248 0.0363297i
\(927\) 0 0
\(928\) 15.0775 15.0775i 0.494943 0.494943i
\(929\) 29.4569 + 29.4569i 0.966450 + 0.966450i 0.999455 0.0330054i \(-0.0105078\pi\)
−0.0330054 + 0.999455i \(0.510508\pi\)
\(930\) 0 0
\(931\) 5.61914 20.9709i 0.184160 0.687294i
\(932\) 2.15726 + 1.24549i 0.0706633 + 0.0407974i
\(933\) 0 0
\(934\) 4.94048 18.4381i 0.161657 0.603313i
\(935\) 9.41490 0.307900
\(936\) 0 0
\(937\) 47.9819 1.56750 0.783750 0.621077i \(-0.213304\pi\)
0.783750 + 0.621077i \(0.213304\pi\)
\(938\) 1.65041 6.15941i 0.0538878 0.201112i
\(939\) 0 0
\(940\) −3.47724 2.00759i −0.113415 0.0654802i
\(941\) −6.36477 + 23.7536i −0.207485 + 0.774346i 0.781192 + 0.624291i \(0.214612\pi\)
−0.988678 + 0.150056i \(0.952055\pi\)
\(942\) 0 0
\(943\) 2.59510 + 2.59510i 0.0845081 + 0.0845081i
\(944\) −22.8350 + 22.8350i −0.743216 + 0.743216i
\(945\) 0 0
\(946\) 3.69358 + 2.13249i 0.120089 + 0.0693332i
\(947\) 40.3879 + 10.8219i 1.31243 + 0.351665i 0.846138 0.532965i \(-0.178922\pi\)
0.466294 + 0.884630i \(0.345589\pi\)
\(948\) 0 0
\(949\) −44.5632 + 10.3960i −1.44658 + 0.337469i
\(950\) 15.1495 8.74657i 0.491515 0.283776i
\(951\) 0 0
\(952\) −4.26388 7.38525i −0.138193 0.239357i
\(953\) −3.67150 6.35923i −0.118932 0.205996i 0.800413 0.599449i \(-0.204614\pi\)
−0.919345 + 0.393453i \(0.871280\pi\)
\(954\) 0 0
\(955\) 19.8822 + 5.32742i 0.643373 + 0.172391i
\(956\) 0.464654 0.464654i 0.0150280 0.0150280i
\(957\) 0 0
\(958\) −22.0449 + 38.1829i −0.712239 + 1.23363i
\(959\) −12.4912 −0.403362
\(960\) 0 0
\(961\) −20.9282 12.0829i −0.675104 0.389772i
\(962\) −42.1747 26.2193i −1.35977 0.845343i
\(963\) 0 0
\(964\) −1.33275 4.97388i −0.0429249 0.160198i
\(965\) −6.82013 + 3.93760i −0.219548 + 0.126756i
\(966\) 0 0
\(967\) −25.3368 6.78898i −0.814778 0.218319i −0.172716 0.984972i \(-0.555254\pi\)
−0.642062 + 0.766653i \(0.721921\pi\)
\(968\) 23.6498 6.33696i 0.760135 0.203677i
\(969\) 0 0
\(970\) −17.3295 + 4.64343i −0.556417 + 0.149091i
\(971\) −11.1860 + 6.45823i −0.358975 + 0.207255i −0.668631 0.743594i \(-0.733120\pi\)
0.309656 + 0.950849i \(0.399786\pi\)
\(972\) 0 0
\(973\) −0.669888 + 0.179496i −0.0214756 + 0.00575438i
\(974\) −12.0534 + 20.8771i −0.386217 + 0.668947i
\(975\) 0 0
\(976\) −13.0711 22.6397i −0.418394 0.724680i
\(977\) 24.5234 + 24.5234i 0.784573 + 0.784573i 0.980599 0.196026i \(-0.0628037\pi\)
−0.196026 + 0.980599i \(0.562804\pi\)
\(978\) 0 0
\(979\) 10.5907i 0.338479i
\(980\) −5.71742 5.71742i −0.182636 0.182636i
\(981\) 0 0
\(982\) 3.49299 13.0360i 0.111466 0.415996i
\(983\) −7.33678 27.3813i −0.234007 0.873326i −0.978594 0.205801i \(-0.934020\pi\)
0.744587 0.667526i \(-0.232647\pi\)
\(984\) 0 0
\(985\) 68.8768i 2.19460i
\(986\) 10.5984 10.5984i 0.337522 0.337522i
\(987\) 0 0
\(988\) 9.22170 2.15130i 0.293381 0.0684421i
\(989\) 11.6207i 0.369516i
\(990\) 0 0
\(991\) 0.249119 0.431486i 0.00791352 0.0137066i −0.862042 0.506838i \(-0.830814\pi\)
0.869955 + 0.493131i \(0.164148\pi\)
\(992\) 8.31867 0.264118
\(993\) 0 0
\(994\) 5.26390 + 19.6451i 0.166961 + 0.623106i
\(995\) −6.94711 25.9270i −0.220238 0.821940i
\(996\) 0 0
\(997\) 39.9905 1.26651 0.633255 0.773943i \(-0.281718\pi\)
0.633255 + 0.773943i \(0.281718\pi\)
\(998\) −3.04127 + 5.26764i −0.0962698 + 0.166744i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 351.2.bf.a.305.4 48
3.2 odd 2 117.2.bc.a.110.9 yes 48
9.4 even 3 117.2.x.a.32.4 yes 48
9.5 odd 6 351.2.ba.a.71.9 48
13.11 odd 12 351.2.ba.a.89.9 48
39.11 even 12 117.2.x.a.11.4 48
117.50 even 12 inner 351.2.bf.a.206.4 48
117.76 odd 12 117.2.bc.a.50.9 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.x.a.11.4 48 39.11 even 12
117.2.x.a.32.4 yes 48 9.4 even 3
117.2.bc.a.50.9 yes 48 117.76 odd 12
117.2.bc.a.110.9 yes 48 3.2 odd 2
351.2.ba.a.71.9 48 9.5 odd 6
351.2.ba.a.89.9 48 13.11 odd 12
351.2.bf.a.206.4 48 117.50 even 12 inner
351.2.bf.a.305.4 48 1.1 even 1 trivial